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Recap

» Assuming a factorisation / set of statistical independencies
allowed us to efficiently represent the pdf or pmf of random
variables

» Factorisation can be exploited for inference

» by using the distributive law
» by re-using already computed quantities

» Inference for general factor graphs (variable elimination)

v

Inference for factor trees

» Sum-product and max-sum message passing
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1. Markov models

2. Inference by message passing
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Program

1. Markov models
o Markov chains
e Transition distribution
o Hidden Markov models (HMMs)
o Emission distribution
o Important instances of HMMs
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Applications of (hidden) Markov models

Markov and hidden Markov models have many applications, e.g.
» speech modelling (speech recognition)

text modelling (natural language processing)

gene sequence modelling (bioinformatics)

spike train modelling (neuroscience)

object tracking (robotics)

stock price prediction (finance)

navigation systems (aerospace)

vV vv VvV VY
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Markov chains

» First-order Markov chain: models that factorise as

d
p(x1;. .., Xd) = H p(xi|xi-1)
i=1

> DAG (for d=4)

» [ —th order Markov chain: models that factorise as

d
p(X17 <. 7Xd) — H p(Xi|Xi—L7 s 7Xi—1)
i=1
> DAG (L=2, d=4)

K
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Vector-valued Markov chains

» While not explicitly discussed, the graphical models extend to
vector-valued variables.

» Chain rule with ordering x1,..., Xy

d
,D(X]_, R 7Xd) — H p(X,'|X1, s ,X,'_]_)
i=1

N

e

» 1st order Markov chain:

p(X1,...,Xq4) = Hp(x,\x, 1
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Modelling time series

» Index i may refer to time t

» For example, 1st order Markov chain of length T:

-
p(X1;. .., XT) = H p(xe[xe—1)
t=1

» Only the last time point x;_1 is relevant for x;.
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Transition distribution

(Consider 1st order Markov chain.)

» p(xi|xj_1) is called the transition distribution
» For discrete random variables, p(x;|x;_1) is defined by a
transition matrix Al)

p(X,- — k’X,-_l = k/) — Ail,)k’ (Aii,),k convention is also used)

» For continuous random variables, p(x;|x;_1) is a conditional
pdf, e.g.

p(xi|xi—1) = —1 exp <—(Xi — fi(Xi_l))2>

2
2ﬂ0? 2Ui

for some (typically parameterised) function f;
» Homogeneous Markov chain: p(x;|x;_1) does not depend on i,
e.g.
A) = A or oi=0, fi=f

» Inhomogeneous Markov chain: p(x;j|x;_1) does depend on i
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Hidden

Markov models (HMMs)

DAG:

vy

>
>
>

1st order Markov chain on hidden (latent) variables h;.

Each visible (observed) variable v; only depends on the
corresponding hidden variable h;

Factorisation

d
p(h1:q, vi.a) = p(va|h1)p(h1) | | p(vilhi)p(hilhi—1)
=2
The visibles are d-connected if hiddens are not observed

Visibles are d-separated (independent) given the hiddens
The h;js model/explain all dependencies between the v;s
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Emission distribution

» p(v;|h;) is called the emission distribution

» Discrete-valued v; and h;:
p(vi|h;) can be represented as a matrix

» Discrete-valued v; and continuous-valued h;:
p(vi|h;) is a conditional pmf.
» Continuous-valued v;: p(vj|h;) is a density

» As for the transition distribution, the emission distribution
p(vi|h;) may depend on i or not.

» If neither the transition nor the emission distribution depend
on i, we have a stationary (or homogeneous) hidden Markov
model.
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Gaussian emission model with discrete-valued latents
» Special case: h; 1L h;j_1 ,and v; e R™ h; € {1,..., K}

p(h = k) = p«

pvlh = k) = ———

e
| det 27X |1/2 P

(30— 5 v )

for all h; and v;.

> DAG
() (=) (hs)
OO (¥

» Corresponds to d iid draws from a Gaussian mixture model
with K mixture components

» Mean E|v|h = k| = py
» Covariance matrix V|v|h = k] = X4
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Gaussian emission model with discrete-valued latents

The HMM is a generalisation of the Gaussian mixture model where
cluster membership at “time” i (the value of h;) generally depends
on cluster membership at “time” i — 1 (the value of h;_1).

1 - 1

0 ' 0 .
0 0.5 1 0 0.5 1

Example for v; € R?, h; € {1,2,3}. Left: p(v|h = k). Right: samples
(Bishop, Figure 13.8)
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Gaussian emission model with Gaussian latents

» HMMs with Gaussian emission and transition distributions
correspond to linear dynamical systems.

» Transition model:

p(hilhi_1) = N'(h;; Ah;_1,X") (1)
hi =Ah,_; +nf, "~ AN(n";0,Z") (2

I

» Emission model:

p(vilhi—1) = N(v;;Ch;_1,X") (3)
vV, = Ch,'_l -+ n)-/, n? ~ N(n"; 0,:‘/) (4)

I

v

If p(hy1) is Gaussian, the whole model is jointly Gaussian

v

Computation of p(h;|vi.¢) is the filtering problem: for the
model above, this was solved by Kalman (1960) and is now
called Kalman filtering.

» Very widely used, e.g. in location and navigation systems.
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Program

1. Markov models
o Markov chains
e Transition distribution
o Hidden Markov models (HMMs)
o Emission distribution
o Important instances of HMMs
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Program

2. Inference by message passing
o Inference: filtering, prediction, smoothing, Viterbi
o Filtering: Sum-product message passing yields the a-recursion
e Smoothing: Sum-product message passing yields the a-
recursion
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The classical inference problems

(Considering the index i to refer to time t)

Filtering (Inferring the present) p(ht|vi.t)

(
Smoothing  (Inferring the past) p(he|viy) t<u
Prediction  (Inferring the future)  p(ht|vi.,) t>u

p(Vt|V1:u) t>u

Most likely  (Viterbi algorithm) argmaxy,  p(h1:¢|vit)
hidden path |

Posterior (Forward filtering hi.t ~ p(h1.¢|vi:t)
sampling backward sampling)

For the HMM, all tasks can be solved via message passing
(sum-product or max-sum algorithm).
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The classical inference problems

filtering

smoothing

SN .

prediction

S
t
Sy denotes the extent of data

avalable

Figure based on Fig. 1.0-1 of Gelb et al (1974)
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Factor graph for hidden Markov model

Factor graph:
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Filtering p(h:|v1.+): factor graph

» When computing p(h¢|vi:t), the vi.p = (v, ..., v¢) are
assumed known and are kept fixed (e.g. t = 4)
» For s =1,... t, the factors p(vs|hs) depend only on hs.

Combine them with p(hs|hs_1) and form new factors ¢

¢1(h) = p(vilh1)p(h1),  @s(hs—1, hs) = p(vs|hs)p(hs|hs—1)

» Factor graph

P2 @ b3 @ P4 P(h5h4)P(h6h5)

1
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Filtering p(h¢|vi.:): messages

Messages needed to compute p(hg|vi4): (t = 4)

There is a simplification:
» The message from p(hs|hy) to hg equals 1!

» Follows from message passing starting at leaves v5 and vg
since the factors p(.|.) are conditionals and sum to one, e.g.

> p(velhs) =1 > p(hs|hs) =
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Filtering p(h:|v1.+): reduce to inference on chain

» A message is an effective factor obtained by summing out all
variables downstream from where the message is coming from.

» This means that we can replace the factor sub-graph to the
right of the last observed variable v; and latent h; (here v4
and hy) with the effective factor.

» Effective factor is 1, so that we can just remove the sub-graph.

v

Also can be seen by “marginalising out” the unobserved future

» Reduces problem to message passing on a chain.

@3 P4
.—> h —>.—>/h\—>.—>@—>.%@
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Filtering p(h¢|vi.:): message passing on the chain

P1 P2 ®3 on
()1
» Initialisation: g, —n (1) = ¢1(h1)
» Variable node h; copies the message:
Fby— ey (h1) = Ly —hy (1)

» Same for other variable nodes. Let us write the algorithm in
terms of fu,—p, (hi) messages only.
» Message from ¢ to hy:

Hop—hy(h2) = da(h1, ho) g, —sn (h1)

h1
» Message from ¢g to hg, for s =2,...,t
,Ugbs—>h Z ¢s S— 17 ,Ugbs 1—hs_ 1(/75—1)
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Filtering p(h¢|vi.:): message passing on the chain

P1 P2 ®3 P4
—(——(————
> The messages piy,—h,(hs) are traditionally denoted by a(hs).
» Message passing for filtering becomes:

> Init: () = ¢1(h1) = p(valh)p(h1)
» Update rule for s = 2,...t:

alhs) = ¢s(hs—1, hs)o(hs_1)
— P(V5|h5) Z p(hs‘hs—l)a(hs—l)

hs—l

» Algorithm known as “alpha-recursion”.
» Desired probability:
1

p(ht|vit) = ?Oé(ht) Ly = Z@(ht)
t he
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Filtering p(h¢|vi.¢): likelihood

» Joint model for hi.+ and vq.;

t

p(hi:t, vi:e) = p(va|hi)p(h1) | [ p(vilhi)p(hilhi-1)
=2

» Conditional p(hy.t|vi:t) is proportional to the joint

p(hi:t|vie) oc p(va|hn)p(hn) | [ p(vilhi)p(hilhi-1)
=2

» Normalising constant for the equation above is the
likelihood /marginal p(vy.¢)

» From results on message passing: Z; that normalises the
posterior marginal p(h¢|vi.¢) is also the normaliser of
p(hlit‘vlit)v l.e. p(Vl:t):

Ly = Z@(ht) = p(vi:t)

he
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Filtering p(h¢|v1.¢): interpretation

» We have seen that p(h¢|vi:t) o< a(hy).

¢1 @2 ¢3 P4 p(hs|hs)  p(he|hs)

— - N\ — — —
T T

p(vs|hs) p(ve|he)

/l\

» Consider p(hs|vi.s) with s < t (e.g. s=2and t = 4)
p(hs|h2) P(h4|h3) P(hS‘/ﬁ) P<(_h6|/£)
_©—> %//72\%.% h3 hg %. hs i he
T T T T

p(vslhs) @ p(valhs) B p(vs|hs) p(ve|he)

T T T T

c

» Messages to the left of hs are the same as for p(ht|vi.t).

» Messages to the right of hs are all equal to one.
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Filtering p(h¢|v1.¢): interpretation

» This means that the intermediate a(hs) that we compute

when computing p(h:|vi.+) are unnormalised posteriors
themselves:

Oé(hs) X P(h5|V1;5)
Note that we condition on vy.s and not vy.;.
> Moreover p(vi:s) = > p(s) @l hs).

» Hence, the alpha-recursion gives us posteriors p(hs|vi:s) and
likelihoods p(vy.s) fors=1,...,t.

PMR 2025 ©OGutmann, University of Edinburgh CC BY 4.0 27 / 37


https://creativecommons.org/licenses/by/4.0/

Filtering p(h¢|v1.¢): interpretation

» Proof by induction shows that a(hs) = p(hs, vi:s).
» Base case holds by definition: a(h1) = p(hi1)p(va|h1).
» Assume it holds for a(hs—1). Then:

a(hs) =) p(vlhs)p(hs|hs—1)ax(hs 1)

hs 1
induction h
( = ) Z p(V5|hs)p(hs|hs—1)p(h5—17 V155—1)
hs 1
Markov pro
( =" " Z p(Vs‘h57 hs_1, V1:s—1)p(h5|h5—17 VliS—l)p(h5_17 Vl:s_l)
hs 1
roduct rule
° — ) Z P(V5|h5, hs_1, V1;5_1)p(hs, hs—1, Vl:s_l)
hs 1
(Produ:Ct rule) Z p(Vs, hs7 hs—1, V1;5_1)
hs 1

(margi:nalise) p(Vs, hS, Vl;s_l)

= P(hs; Vl:s)
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Filtering p(h¢|v1.¢): interpretation

» Update rule as prediction-correction algorithm:

a(hs) preczide) p(h5> Vl:s)

)
(Produ:ct rule p(Vs‘h57 Vl:s_l)p(hsa Vl:s—l)
(Markﬁ prop

2 prer) p(vs|hs)p(hs, vis—1)
X P(Vs‘hs) p(hs‘Vl:s—l)

7 \\ 4

~~

correction  prediction

» The correction term updates the predictive distribution
p(hs|vi:s—1) to include the new data vs.

PMR 2025 ©Gutmann, University of Edinburgh cC BY 4.0
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Filtering p(h:|v1.+): summary

» Conditioning reduces the factor graph for the HMM to a
chain.

» Message passing for filtering:

P I|nit: Oz(hl) = p(V1|h1)p(h1)
» Update rule for s =2,...t:

Oé(hs) — p(Vs|hs)Z p(hs‘hs—l)&(hs—l)

hs—l

which involves prediction of hg given vi.s_1 and correction
using new datum vs.

» a(hs) = p(hs, vi:s) o< p(hs|vi:s) and p(vis) = >4 alhs), for
s=1,...,t
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Smoothing p(h:|vi.,), t < u: reduce to inference on chain

» Unlike in filtering where we predict h; from data up to time t,
in smoothing we have observations from later time points.

» Messages needed to compute p(ht|vi.y) (eg t =2, u=4)

$1 $2 b3 P4 p(hs|hs)  p(he|hs)
— — —

» As in filtering, we can simplify to a chain
¢1_> _)sz% %¢3<_ <_¢4<_
() ()=
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Smoothing p(h:|vi.,), t < u: message passing on chain

¢1_> %¢2_> e%e e¢4e
() )—m——{(r ) —m——{(1)

Messages — from factor leaf ¢ to h; same as in filtering.
Messages <— from variable leaf h, to h; via message passing.
Init: pp, g, (hu) =1

Next message fig, h, 1 (hu_1) = S, Sulhu_1, hu)

Variable nodes just copy the incoming message. Write the
algorithm in terms of B(hs) = pg,,,—h,(hs) only:

B(hs—l) — Z qu(hs—la hs)ﬁ(hs)
hs
= ZP(Vs|hs)P(hs|hs—1)6(hs)

hs

vvyyvyyvVvyy

» Gives “alpha-beta recursion” for smoothing.
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Smoothing p(h:|vi.,), t < u: message passing on chain

(bll —{(hn d: — (hp — qﬁ hy — qj.“ @
N NG NG :
» — Forwards via alpha-recursion

» |nit: oz(hl) = p(V1|h1)p(h1)
» Update rule for s =2,...t:

a(hs) — P(V5|h5) Z p(hs‘hs—l)a(hs—l)

» < Backwards via beta-recursion

» Init: B(h,) =1
» Update rule for s =u,...t+ 1:

B(hs—l) — Z p(Vs‘hs)p(hs|hs—1)5(hs)
hs

» Desired probability:

1
p(helviw) = —ga(he)B(he)  Z¢ =3 a(h)B(h:)
t hy
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Smoothing p(h:|v1.,), t < u: interpretation

» We now show that 3(hs) equals the probability of the
upstream observations given hg,

B(hs) = p(Vst1.u|hs) forall s < u

» First consider B(h,—_1):

5(hu—1) — %: p(Vu‘hu)p(hu‘hu—l) 5\(1@

(Markov prop) Z p(Vu’hua hu_l)P(hu’hu—l)
hy

(prodU:Ct rule) Z p(Vw hu’hu—l)
hy

(marginalise)

— p(Vu’hu—l)

» Hence 5(hs) = p(Vvsi1:u|hs) holds for s = u — 1. Provides the
base case for a proof by induction.
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Smoothing p(h:|v1.,), t < u: interpretation
Assume [(hs) = p(Vsi1.u|hs) holds. Then:
B(hs—1) = > p(vs|hs)p(hs|hs—1)5(hs)
hs

(induction hyp)
= ZP(V5|hS)P(hS|hs—l)P(Vs+1:U|h5)
hs

(Markov prop)
27 p(vslhe)p(helho1)p (v vl ve)
h

(product rule)
= ZP(VS:U‘hS)p(hSMS—l)
hs

Markov pro
ML p(veulhs, hs1)p(hslhs-1)
h

(product rule)
" :t Zp(vs:mhs“’s—l)
hs

(marginalise)

- p(Vs:u‘hs—l)
By induction, 8(hs) = p(Vvsi1.4|hs) for all s < u.
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Doing more with the a(h;), B(hs)

» Due to link to message passing: Knowing all a(hs), 8(hs) =
knowing all marginals and all joints of neighbouring latents
given the observed data, which will be needed when
estimating the parameters of HMMs (see later).

» We can use the «a(hs) for predictions (see exercises).

» We can use the a(hs) for sampling posterior trajectories, i.e.
to sample from p(hy,... ht|vi, ..., v¢) (see exercises).

» Algorithms extend to the case of continuous random variables:
replace sums with integrals.
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Program recap

1. Markov models
e Markov chains
@ Transition distribution

e Hidden Markov models (HMMs)
e Emission distribution
o

Important instances of HMMs

2. Inference by message passing
o Inference: filtering, prediction, smoothing, Viterbi
e Filtering: Sum-product message passing yields the a-recursion
e Smoothing: Sum-product message passing yields the a-f recursion
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