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Recap

▶ Assuming a factorisation / set of statistical independencies
allowed us to efficiently represent the pdf or pmf of random
variables

▶ Factorisation can be exploited for inference
▶ by using the distributive law
▶ by re-using already computed quantities

▶ Inference for general factor graphs (variable elimination)
▶ Inference for factor trees
▶ Sum-product and max-sum message passing
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Program

1. Markov models

2. Inference by message passing
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Program

1. Markov models
Markov chains
Transition distribution
Hidden Markov models (HMMs)
Emission distribution
Important instances of HMMs

2. Inference by message passing
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Applications of (hidden) Markov models

Markov and hidden Markov models have many applications, e.g.
▶ speech modelling (speech recognition)
▶ text modelling (natural language processing)
▶ gene sequence modelling (bioinformatics)
▶ spike train modelling (neuroscience)
▶ object tracking (robotics)
▶ stock price prediction (finance)
▶ navigation systems (aerospace)

▶
...
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Markov chains

▶ First-order Markov chain: models that factorise as

p(x1, . . . , xd) =
d∏

i=1
p(xi |xi−1)

▶ DAG (for d=4)
x1 x2 x3 x4

▶ L−th order Markov chain: models that factorise as

p(x1, . . . , xd) =
d∏

i=1
p(xi |xi−L, . . . , xi−1)

▶ DAG (L=2, d=4)

x1 x2 x3 x4
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Vector-valued Markov chains
▶ While not explicitly discussed, the graphical models extend to

vector-valued variables.
▶ Chain rule with ordering x1, . . . , xd

p(x1, . . . , xd) =
d∏

i=1
p(xi |x1, . . . , xi−1)

x1 x2 x3 x4

▶ 1st order Markov chain:

p(x1, . . . , xd) =
d∏

i=1
p(xi |xi−1)

x1 x2 x3 x4
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Modelling time series

▶ Index i may refer to time t
▶ For example, 1st order Markov chain of length T :

p(x1, . . . , xT ) =
T∏

t=1
p(xt |xt−1)

▶ Only the last time point xt−1 is relevant for xt .
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Transition distribution
(Consider 1st order Markov chain.)
▶ p(xi |xi−1) is called the transition distribution
▶ For discrete random variables, p(xi |xi−1) is defined by a

transition matrix A(i)

p(xi = k|xi−1 = k ′) = A(i)
k,k′ (A(i)

k′,k convention is also used)

▶ For continuous random variables, p(xi |xi−1) is a conditional
pdf, e.g.

p(xi |xi−1) = 1√
2πσ2

i

exp
(
−(xi − fi(xi−1))2

2σ2
i

)

for some (typically parameterised) function fi
▶ Homogeneous Markov chain: p(xi |xi−1) does not depend on i ,

e.g.
A(i) = A or σi = σ, fi = f

▶ Inhomogeneous Markov chain: p(xi |xi−1) does depend on i
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Hidden Markov models (HMMs)
DAG:

v1 v2 v3 v4

h1 h2 h3 h4

▶ 1st order Markov chain on hidden (latent) variables hi .
▶ Each visible (observed) variable vi only depends on the

corresponding hidden variable hi
▶ Factorisation

p(h1:d , v1:d) = p(v1|h1)p(h1)
d∏

i=2
p(vi |hi)p(hi |hi−1)

▶ The visibles are d-connected if hiddens are not observed
▶ Visibles are d-separated (independent) given the hiddens
▶ The his model/explain all dependencies between the vis
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Emission distribution

▶ p(vi |hi) is called the emission distribution
▶ Discrete-valued vi and hi :

p(vi |hi) can be represented as a matrix
▶ Discrete-valued vi and continuous-valued hi :

p(vi |hi) is a conditional pmf.
▶ Continuous-valued vi : p(vi |hi) is a density
▶ As for the transition distribution, the emission distribution

p(vi |hi) may depend on i or not.
▶ If neither the transition nor the emission distribution depend

on i , we have a stationary (or homogeneous) hidden Markov
model.
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Gaussian emission model with discrete-valued latents

▶ Special case: hi ⊥⊥ hi−1 , and vi ∈ Rm, hi ∈ {1, . . . , K}

p(h = k) = pk

p(v|h = k) = 1
| det 2πΣΣΣk |1/2 exp

(
−1

2(v−µµµk)⊤ΣΣΣ−1
k (v−µµµk)

)
for all hi and vi .

▶ DAG
h1

v1

h2

v2

. . .

hd

vd

▶ Corresponds to d iid draws from a Gaussian mixture model
with K mixture components
▶ Mean E[v|h = k] = µµµk
▶ Covariance matrix V[v|h = k] = ΣΣΣk
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Gaussian emission model with discrete-valued latents

The HMM is a generalisation of the Gaussian mixture model where
cluster membership at “time” i (the value of hi) generally depends
on cluster membership at “time” i − 1 (the value of hi−1).

k = 1

k = 2

k = 3

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Example for vi ∈ R2, hi ∈ {1, 2, 3}. Left: p(v|h = k). Right: samples

(Bishop, Figure 13.8)
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Gaussian emission model with Gaussian latents
▶ HMMs with Gaussian emission and transition distributions

correspond to linear dynamical systems.
▶ Transition model:

p(hi |hi−1) = N (hi ; Ahi−1,ΣΣΣh) (1)
hi = Ahi−1 + nh

i , nh
i ∼ N (nh

i ; 0,ΣΣΣh) (2)

▶ Emission model:

p(vi |hi−1) = N (vi ; Chi−1,ΣΣΣv ) (3)
vi = Chi−1 + nv

i , nh
i ∼ N (nv

i ; 0,ΣΣΣv ) (4)

▶ If p(h1) is Gaussian, the whole model is jointly Gaussian
▶ Computation of p(ht |v1:t) is the filtering problem: for the

model above, this was solved by Kalman (1960) and is now
called Kalman filtering.

▶ Very widely used, e.g. in location and navigation systems.
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Program

1. Markov models
Markov chains
Transition distribution
Hidden Markov models (HMMs)
Emission distribution
Important instances of HMMs

2. Inference by message passing
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Program

1. Markov models

2. Inference by message passing
Inference: filtering, prediction, smoothing, Viterbi
Filtering: Sum-product message passing yields the α-recursion
Smoothing: Sum-product message passing yields the α-β
recursion
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The classical inference problems

(Considering the index i to refer to time t)

Filtering (Inferring the present) p(ht |v1:t)
Smoothing (Inferring the past) p(ht |v1:u) t < u
Prediction (Inferring the future) p(ht |v1:u) t > u

p(vt |v1:u) t > u
Most likely (Viterbi algorithm) argmaxh1:t p(h1:t |v1:t)
hidden path
Posterior (Forward filtering h1:t ∼ p(h1:t |v1:t)
sampling backward sampling)

For the HMM, all tasks can be solved via message passing
(sum-product or max-sum algorithm).

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 17 / 37

https://creativecommons.org/licenses/by/4.0/


The classical inference problems
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denotes the extent of data
available

Figure based on Fig. 1.0-1 of Gelb et al (1974)
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Factor graph for hidden Markov model
DAG:

v1 v2 v3 v4 v5 v6

h1 h2 h3 h4 h5 h6

Factor graph:

v1

p(v1|h1)

v2

p(v2|h2)

v3

p(v3|h3)

v4

p(v4|h4)

v5

p(v5|h5)

v6

p(v6|h6)

p(h1)

h1
p(h2|h1)

h2
p(h3|h2)

h3
p(h4|h3)

h4
p(h5|h4)

h5
p(h6|h5)

h6
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Filtering p(ht |v1:t): factor graph

▶ When computing p(ht |v1:t), the v1:t = (v1, . . . , vt) are
assumed known and are kept fixed (e.g. t = 4)

▶ For s = 1, . . . , t, the factors p(vs |hs) depend only on hs .
Combine them with p(hs |hs−1) and form new factors ϕs

ϕ1(h1) = p(v1|h1)p(h1), ϕs(hs−1, hs) = p(vs |hs)p(hs |hs−1)

▶ Factor graph

v5

p(v5|h5)

v6

p(v6|h6)

ϕ1
h1

ϕ2
h2

ϕ3
h3

ϕ4
h4

p(h5|h4)
h5

p(h6|h5)
h6
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Filtering p(ht |v1:t): messages
Messages needed to compute p(h4|v1:4): (t = 4)

ϕ1

h1

ϕ2

h2

ϕ3

h3

ϕ4

h4

p(h5|h4)

h5

p(h6|h5)

h6

v5

p(v5|h5)

v6

p(v6|h6)

→ → → → → → → ← ← ← ←

↑

↑

↑

↑

There is a simplification:
▶ The message from p(h5|h4) to h4 equals 1!
▶ Follows from message passing starting at leaves v5 and v6

since the factors p(.|.) are conditionals and sum to one, e.g.∑
v6

p(v6|h6) = 1
∑
h6

p(h6|h5) = 1
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Filtering p(ht |v1:t): reduce to inference on chain

▶ A message is an effective factor obtained by summing out all
variables downstream from where the message is coming from.

▶ This means that we can replace the factor sub-graph to the
right of the last observed variable vt and latent ht (here v4
and h4) with the effective factor.

▶ Effective factor is 1, so that we can just remove the sub-graph.
▶ Also can be seen by “marginalising out” the unobserved future
▶ Reduces problem to message passing on a chain.

ϕ1
h1

ϕ2
h2

ϕ3
h3

ϕ4
h4

→ → → → → → →
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Filtering p(ht |v1:t): message passing on the chain
ϕ1

h1

ϕ2
h2

ϕ3
h3

ϕ4
h4

→ → → → → → →

▶ Initialisation: µϕ1→h1(h1) = ϕ1(h1)
▶ Variable node h1 copies the message:

µh1→ϕ2(h1) = µϕ1→h1(h1)

▶ Same for other variable nodes. Let us write the algorithm in
terms of µϕi →hi (hi) messages only.

▶ Message from ϕ2 to h2:

µϕ2→h2(h2) =
∑
h1

ϕ2(h1, h2)µϕ1→h1(h1)

▶ Message from ϕs to hs , for s = 2, . . . , t:

µϕs→hs (hs) =
∑
hs−1

ϕs(hs−1, hs)µϕs−1→hs−1(hs−1)
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Filtering p(ht |v1:t): message passing on the chain
ϕ1

h1

ϕ2
h2

ϕ3
h3

ϕ4
h4

→ → → →

▶ The messages µϕs→hs (hs) are traditionally denoted by α(hs).
▶ Message passing for filtering becomes:

▶ Init: α(h1) = ϕ1(h1) = p(v1|h1)p(h1)
▶ Update rule for s = 2, . . . t:

α(hs) =
∑
hs−1

ϕs(hs−1, hs)α(hs−1)

= p(vs |hs)
∑
hs−1

p(hs |hs−1)α(hs−1)

▶ Algorithm known as “alpha-recursion”.
▶ Desired probability:

p(ht |v1:t) = 1
Zt

α(ht) Zt =
∑
ht

α(ht)
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Filtering p(ht |v1:t): likelihood
▶ Joint model for h1:t and v1:t

p(h1:t , v1:t) = p(v1|h1)p(h1)
t∏

i=2
p(vi |hi)p(hi |hi−1)

▶ Conditional p(h1:t |v1:t) is proportional to the joint

p(h1:t |v1:t) ∝ p(v1|h1)p(h1)
t∏

i=2
p(vi |hi)p(hi |hi−1)

▶ Normalising constant for the equation above is the
likelihood/marginal p(v1:t)

▶ From results on message passing: Zt that normalises the
posterior marginal p(ht |v1:t) is also the normaliser of
p(h1:t |v1:t), i.e. p(v1:t):

Zt =
∑
ht

α(ht) = p(v1:t)
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Filtering p(ht |v1:t): interpretation

▶ We have seen that p(ht |v1:t) ∝ α(ht).
ϕ1

h1

ϕ2

h2

ϕ3

h3

ϕ4

h4

p(h5|h4)

h5

p(h6|h5)

h6

v5

p(v5|h5)

v6

p(v6|h6)

→ → → → → → → ← ← ← ←

↑

↑

↑

↑

▶ Consider p(hs |v1:s) with s < t (e.g. s = 2 and t = 4)

ϕ1

h1

ϕ2

h2

p(h3|h2)

h3

p(h4|h3)

h4

p(h5|h4)

h5

p(h6|h5)

h6

v3

p(v3|h3)

v4

p(v4|h4)

v5

p(v5|h5)

v6

p(v6|h6)

→ → → ← ← ← ← ← ← ← ←

↑

↑

↑

↑

↑

↑

↑

↑

▶ Messages to the left of hs are the same as for p(ht |v1:t).
▶ Messages to the right of hs are all equal to one.
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Filtering p(ht |v1:t): interpretation

▶ This means that the intermediate α(hs) that we compute
when computing p(ht |v1:t) are unnormalised posteriors
themselves:

α(hs) ∝ p(hs |v1:s)

Note that we condition on v1:s and not v1:t .
▶ Moreover p(v1:s) =

∑
h(s) α(hs).

▶ Hence, the alpha-recursion gives us posteriors p(hs |v1:s) and
likelihoods p(v1:s) for s = 1, . . . , t.
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Filtering p(ht |v1:t): interpretation
▶ Proof by induction shows that α(hs) = p(hs , v1:s).
▶ Base case holds by definition: α(h1) = p(h1)p(v1|h1).
▶ Assume it holds for α(hs−1). Then:

α(hs) =
∑
hs−1

p(vs |hs)p(hs |hs−1)α(hs−1)

(induction hyp)=
∑
hs−1

p(vs |hs)p(hs |hs−1)p(hs−1, v1:s−1)

(Markov prop)=
∑
hs−1

p(vs |hs , hs−1, v1:s−1)p(hs |hs−1, v1:s−1)p(hs−1, v1:s−1)

(product rule)=
∑
hs−1

p(vs |hs , hs−1, v1:s−1)p(hs , hs−1, v1:s−1)

(product rule)=
∑
hs−1

p(vs , hs , hs−1, v1:s−1)

(marginalise)= p(vs , hs , v1:s−1)

= p(hs , v1:s)
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Filtering p(ht |v1:t): interpretation

▶ Update rule as prediction-correction algorithm:

α(hs)
(prev slide)= p(hs , v1:s)
(product rule)= p(vs |hs , v1:s−1)p(hs , v1:s−1)
(Markov prop)= p(vs |hs)p(hs , v1:s−1)

∝ p(vs |hs)︸ ︷︷ ︸
correction

p(hs |v1:s−1)︸ ︷︷ ︸
prediction

▶ The correction term updates the predictive distribution
p(hs |v1:s−1) to include the new data vs .
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Filtering p(ht |v1:t): summary

▶ Conditioning reduces the factor graph for the HMM to a
chain.

▶ Message passing for filtering:
▶ Init: α(h1) = p(v1|h1)p(h1)
▶ Update rule for s = 2, . . . t:

α(hs) = p(vs |hs)
∑
hs−1

p(hs |hs−1)α(hs−1)

which involves prediction of hs given v1:s−1 and correction
using new datum vs .

▶ α(hs) = p(hs , v1:s) ∝ p(hs |v1:s) and p(v1:s) =
∑

hs α(hs), for
s = 1, . . . , t

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 30 / 37

https://creativecommons.org/licenses/by/4.0/


Smoothing p(ht |v1:u), t < u: reduce to inference on chain

▶ Unlike in filtering where we predict ht from data up to time t,
in smoothing we have observations from later time points.

▶ Messages needed to compute p(ht |v1:u) (e.g. t = 2, u = 4)

ϕ1

h1

ϕ2

h2

ϕ3

h3

ϕ4

h4

p(h5|h4)

h5

p(h6|h5)

h6

v5

p(v5|h5)

v6

p(v6|h6)

→ → → ← ← ← ← ← ← ← ←

↑

↑

↑

↑

▶ As in filtering, we can simplify to a chain
ϕ1

h1

ϕ2

h2

ϕ3

h3

ϕ4

h4
→ → → ← ← ← ←
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Smoothing p(ht |v1:u), t < u: message passing on chain

ϕ1
h1

ϕ2
h2

ϕ3
h3

ϕ4
h4

→ → → ← ← ← ←

▶ Messages → from factor leaf ϕ1 to ht same as in filtering.
▶ Messages ← from variable leaf hu to ht via message passing.
▶ Init: µhu→ϕu (hu) = 1
▶ Next message µϕu→hu−1(hu−1) =

∑
hu ϕu(hu−1, hu)

▶ Variable nodes just copy the incoming message. Write the
algorithm in terms of β(hs) = µϕs+1→hs (hs) only:

β(hs−1) =
∑
hs

ϕs(hs−1, hs)β(hs)

=
∑
hs

p(vs |hs)p(hs |hs−1)β(hs)

▶ Gives “alpha-beta recursion” for smoothing.
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Smoothing p(ht |v1:u), t < u: message passing on chain
ϕ1

h1

ϕ2
h2

ϕ3
h3

ϕ4
h4

→ → ← ←

▶ → Forwards via alpha-recursion
▶ Init: α(h1) = p(v1|h1)p(h1)
▶ Update rule for s = 2, . . . t:

α(hs) = p(vs |hs)
∑
hs−1

p(hs |hs−1)α(hs−1)

▶ ← Backwards via beta-recursion
▶ Init: β(hu) = 1
▶ Update rule for s = u, . . . t + 1:

β(hs−1) =
∑
hs

p(vs |hs)p(hs |hs−1)β(hs)

▶ Desired probability:

p(ht |v1:u) = 1
Zu

t
α(ht)β(ht) Zu

t =
∑
ht

α(ht)β(ht)
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Smoothing p(ht |v1:u), t < u: interpretation
▶ We now show that β(hs) equals the probability of the

upstream observations given hs ,

β(hs) = p(vs+1:u|hs) for all s < u

▶ First consider β(hu−1):

β(hu−1) =
∑
hu

p(vu|hu)p(hu|hu−1) β(hu)︸ ︷︷ ︸
1

(Markov prop)=
∑
hu

p(vu|hu, hu−1)p(hu|hu−1)

(product rule)=
∑
hu

p(vu, hu|hu−1)

(marginalise)= p(vu|hu−1)

▶ Hence β(hs) = p(vs+1:u|hs) holds for s = u − 1. Provides the
base case for a proof by induction.
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Smoothing p(ht |v1:u), t < u: interpretation
Assume β(hs) = p(vs+1:u|hs) holds. Then:

β(hs−1) =
∑
hs

p(vs |hs)p(hs |hs−1)β(hs)

(induction hyp)=
∑
hs

p(vs |hs)p(hs |hs−1)p(vs+1:u|hs)

(Markov prop)=
∑
hs

p(vs |hs)p(hs |hs−1)p(vs+1:u|hs , vs)

(product rule)=
∑
hs

p(vs:u|hs)p(hs |hs−1)

(Markov prop)=
∑
hs

p(vs:u|hs , hs−1)p(hs |hs−1)

(product rule)=
∑
hs

p(vs:u, hs |hs−1)

(marginalise)= p(vs:u|hs−1)

By induction, β(hs) = p(vs+1:u|hs) for all s < u.
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Doing more with the α(hs), β(hs)

▶ Due to link to message passing: Knowing all α(hs), β(hs) =⇒
knowing all marginals and all joints of neighbouring latents
given the observed data, which will be needed when
estimating the parameters of HMMs (see later).

▶ We can use the α(hs) for predictions (see exercises).
▶ We can use the α(hs) for sampling posterior trajectories, i.e.

to sample from p(h1, . . . ht |v1, . . . , vt) (see exercises).
▶ Algorithms extend to the case of continuous random variables:

replace sums with integrals.
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Program recap

1. Markov models
Markov chains
Transition distribution
Hidden Markov models (HMMs)
Emission distribution
Important instances of HMMs

2. Inference by message passing
Inference: filtering, prediction, smoothing, Viterbi
Filtering: Sum-product message passing yields the α-recursion
Smoothing: Sum-product message passing yields the α-β recursion
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