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Recap

Topic 1: Representation What reasonably weak assumptions
can we make to efficiently represent p(x,y,z)?

» Directed and undirected graphical models
» Factorisation and independencies

Topic 2: Exact inference Can we further exploit the
assumptions on p(x,y, z) to efficiently compute the posterior
probability or derived quantities?

» Yes! Factorisation can be exploited by using the distributive
law and by caching computations.

» Variable elimination and message passing algorithms

» Inference for hidden Markov models

Issue 3: Thank you for the numbers. But what shall | best do?

Topic 3: Actions and decision making How to predict the
outcome of actions and choose optimal actions?
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Kidney stone example

Overall success rate Small stones arge stones

Treatment a 78% (273/350)  93% (81/87) 73% (192/263)
Treatment b 83% (289/350) 87% (234/270) 69% (55/80)

» A hospital collects the data above on the success rate of two
surgery procedures to remove kidney stones (data were

collected in 1986).

» Treatment a: open surgery, treatment b: minimally-invasive
procedure (percutaneous nephrolithotomy)

» Overall, treatment b looks to be more effective than a

» When broken down for both small and large kidney stones,
treatment a is more effective than b.

» Which treatment (action) is more effective when the size of
the kidney stones is unknown?

Example 6.37 in Peters, Janzing and Schélkopf, 2017
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Kidney stone example

Overall success rate Small stones Large stones
Treatment a 78% (273/350) 93% (81/87) 73% (192/263)
Treatment b 83% (289/350) 87% (234/270) 69% (55/80)

>

Treatment assignment is not random: Treatment a tends to
be assigned for cases of large stones (more difficult to treat),
and treatment b for small stones (easier to treat).

Surgeons may expect treatment a to be better than treatment
b and therefore assign the difficult cases to treatment a with
higher probability.

Having more often to deal with difficult problems explains why
treatment a performs better per subpopulation, but not
overall.

An example of “Simpson’s paradox”, where a trend that holds
in all subpopulations may not hold at the population level.
Still: which treatment is more effective when the size of the
kidney stones is unknown?
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Program

1. Modelling actions as interventions in causal DAGs

2. Computing the effect of interventions

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 5/ 33


https://creativecommons.org/licenses/by/4.0/

Program

1. Modelling actions as interventions in causal DAGs
o Causal DAGs
o Interventions change the data generating process
o Interventions change the DAG locally
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Causal DAGs

» Causal DAGs are DAGs where the arrows are assumed to
represent a causal direction.

» Causal DAGs represent nature’'s data-generating mechanism.

» Before: given p(x), we drew a DAG based on the
independencies and variable ordering chosen.

» In DGMs, the incoming arrows for x; specified the parent set
pa; and hence what goes into the conditioning set in
p(xi|pa;), but the arrows didn’t have a mechanistic or causal
meaning.

» This is different for causal DAGs.

» The following three graphs represent the same independencies
but different causal mechanisms.

== O—O—) O—E—O
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Actions as interventions in the data generating process

>

>

As in DAGs, causal DAGs specify a data generating process
via ancestral sampling.

Different root nodes (nodes without parents) in the DAG
represent independent root causes.

Picking a topological ordering, we generate data according to
Xj ~ p(x,-\pa,-) for all i. (for root nodes: p(xi|pa;) = p(x;))

We model an action on variable x; as an intervention in the
data generating process where x; is not sampled from
p(xx|pay) but from a new distribution p’(x).

Intervention disconnects x; from its parents and makes it a
root variable (cause).

When intervening on X, the data generating mechanisms of
the other variables remain unchanged; we can change one
mechanism without changing the others.
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Actions as interventions in the data generating process

» This means each parent-child relationship in a causal DAG is

thought to represent a stable and autonomous physical
mechanism.

» Intervention defines a new model, the postinterventional
distribution, that is denoted by p(x; do(xx) ~ p’) or
p(x; do(xx)) for simplicity.

» Postinterventional distribution factorises as
p(x; do(xx) ~ p') = || p(xilpa;) - p'(xk) - [ ] p(xilpa;) (1)
i<k i>k

=TI p(xilpa;) - P (k) (2)
i+k
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Atomic interventions

» Important special case is when the action/intervention sets a
variable x;, to a specific value a.

» Called “atomic intervention” and corresponds to
p'(xk) = d(xk — a)
» Postinterventional distribution is

: xjlpa;) if xx =
p(x; do(xk)w(xk—a)):{on'#“’( RO

» Notation: p(x; do(xx) = a) or simply p(x; do(xk)) if clear
from context.
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Graph surgery

» Intervening on x, makes it a root cause. Graphically, this
means all incoming edges into x; are removed.

» Resulting graph is denoted by Gg, if G is the original graph.
» First row: original graph G. Second row: Gx

== O—O—») O—E—O
=0~ O —0 O O—O
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S prl n kler exa m ple (based on Judea Pearl, Causality, 2nd ed, Ch1l)

» Sprinklers tend to be on as a function of the season
p(S, T, R, W, L)=p(S)p(T[S)p(R[S)p(WI|R, S)p(L|W)
» | can switch it on/off at any time, according to p'(T)
p(S, T, R, W, L;do(T)) = p(S)p'(T)p(RIS)p(WIR, S)p(LIW)

Season
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Kidney stone example

» In the kidney stone example, we had three binary variables:
treatment T, stone size S, and the result R.

» Treatment is prescribed depending on stone size. Result also
depends on the stone size (difficulty of surgery). This gives
the DAG G.

» Variables such as S that are the common cause of other
variables are called confounders.

» |f we intervene on the treatment, we get the graph G,
disconnecting T from the confounder S.

(S O
C ® O &
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Program

1. Modelling actions as interventions in causal DAGs
o Causal DAGs
o Interventions change the data generating process
o Interventions change the DAG locally
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Program

2. Computing the effect of interventions
o Inverse probability weighting and adjustment for direct causes
o Observing vs acting: the role of backdoors
o Backdoor adjustment
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How do we compute the effect of interventions (actions)?

» Recall the postinterventional distribution

p(x; do(xi) ~ p') = ]| p(xilpa;) - p'(xx) (4)
i£k

» If all terms in the factorisation are known, we can compute
marginals or conditionals using the inference techniques that
we have seen so far (variable elimination, message passing if
applicable etc).

» We can use the model to predict the effect/outcome of an
intervention, e.g. compute p(x;; do(x)) for some i, without
performing the action.

» But computation may not always be (computationally)
feasible. Limitation discussed on the inference slides apply.

» Let us leverage the connection between p(x; do(xx) ~ p’) and
p(x) to obtain alternatives.
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Relation between pre and postinterventional distribution

p(x; do(x) ~ p') = ||, P(xilpay) - p'(xi)
» With p(x) = [; p(xi|pa;) prior to the intervention, it follows
that

p(x)
P(xk|pay

p(x; do(xi) ~ p') = )P’(Xk) (5)

> With p(xk|pay) = p(xk, pay)/p(pay), we have

p(x)
p(xk, pay)
= p(Xk|xi, par)p(pai)p' () (7)

p(x; do(xk) ~ p') = p(pay)p' (x«) (6)

where X, denotes all variables but xx, pa,.

» Gives rise to two methods: inverse probability weighting and
adjustment for direct causes.
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Inverse probability weighting

p(x)
p(xk|pay)

p(x; do(xx) ~ p') = P’ (xk)

> Assume we have n samples x{) ~ p(x) available and that
evaluating p(xx|pay) is possible.

» We can use them to compute expectations with respect to
p(x; do(xx) ~ p’) by computing a weighted average.

» Let g(x) be an arbitrary function, then:

Ep(xdo(os)-rr) [800] = [ p(xi o) ~ pg(x)dx  (8)

- [ P(x) Pg)ix ()

Xk|Pak

-/ p<x>pp/(xk) g(x)dx  (10)

(xk|pak)

B Pr) o
“ B o] (D

which we approximate as a sample average.
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Inverse probability weighting

» We have

P ) (12)

I p(x;do (i )~p') [g(x)] = Ep(x) [p(Xk\pak)g

I i i
~ 3 wig(x @), x0 ~px) (13)
i=1
p’(X,Ei))

p(xpaf,))
» The term p(xx|pa,) is called the propensity score.

with w() =

» The effect of an intervention on x, can be computed from
observational data, i.e. the samples x; ~ p(x).

» Practical use depends on n and the effective sample size (see
lectures on sampling).
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Adjustment for direct causes

p(x; do(xi) ~ p') = p(Xk|xk, pay)p(pPag)p’ (x)
Assume we would like to compute p(x;; do(xx) ~ p’), i # k

vy

Marginalising over all variables but x;, xx, pa,, we have
p(xi, Xk, Pay; do(xk) ~ p") = p(xi|xk, pay)p(pay)p'(xk) (14)
» Marginalising out the parent variables gives
p(xi, xk; do(xk) ~ p') = Eppa,) [P(xi|xk: pay)] p'(xk)  (15)
» Further marginalising out x, ~ p'(xx) gives
p(xi; do(xk) ~ p') = Eppa,)pr ) [P(XilXk, Pak)] (16)

» For atomic interventions where p’(xx) = §(xx — a) we obtain

p(xi; do(xk) = a) = Ep(pa,) [p(Xi|xk = a,pay)] (17)
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Adjustment for direct causes

p(xi; do(xx) = a) = Ep(pa,) [P(Xi|xk = a, pay)]
» When computing the causal effect of setting x, = a on Xx;, we
» compute p(x;|xx = a,pa,) for each value of the parents pa,
> average with respect to their marginal distribution p(pa,).
» This is called adjusting for the direct causes / the parents

» For discrete-valued pa;, this corresponds to computing the
effect p(xj|xx = a, pa,) for each subpopulation/stratum
separately, and then averaging them together, weighted by the
probability of each subpopulation/stratum.

» In case of p(x;; do(xx) ~ p’), we vary xx and average over
p'(x) too.
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Connection to graph surgery

» When computing
p(xi; do(xk) = 3) = Ep(pn,) [P(ilxk = 2,08,)]  (18)
or, more generally,
p(xi; do(xk) ~ p') = Eppa,)pr ) [P(Xi1Xk, paK)] (19)

the intervened-on variable x, and its parents pa, are root
variables with distributions p’(xx) and p(pa,).

» The arrow pa, — xi is removed from the graph, in line with
graph surgery.

(S O
{ ® O (R
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Kidney stone example

p(xi; do(xx) = a) = Ep(pa,) [P(Xi|xk = a, pay)]

Overall success rate Small stones Large stones
Treatment a 78% (273/350) 93% (81/87) 73% (192/263)
Treatment b 83% (289/350) 87% (234/270) 69% (55/80)

» Which treatment is more effective when the size of the kidney
stones is unknown?

» We compute p(R=1;do(T) =a) and p(R=1;do(T) = b)
The parent variable of T is S,

p(S = small) = (87 + 270) /700 = 0.510,

p(S = large) = (263 4 80) /700 = 0.490

(R=1T =a,5 =small) =0.931 and

(R=1|T = a,5 = large) = 0.730, hence

v

\4
T O

p(R =1;do(T) = a) = 0.931 - 0.510 -+ 0.730 - 0.490 = 0.833
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Kidney stone example

p(xi; do(xx) = a) = Ep(pa,) [P(Xi|xk = a, pay)]

Overall success rate Small stones Large stones
Treatment a 78% (273/350) 93% (81/87) 73% (192/263)
Treatment b 83% (289/350) 87% (234/270) 69% (55/80)

» p(R=1|T = b,S = small) = 0.867 and
p(R=1|T = b,S = large) = 0.688, hence

p(R =1;do(T) = b) = 0.867 - 0.510 + 0.688 - 0.490 = 0.779

» We see that p(R=1;do(T)=a) > p(R=1;do(T) = b).
Treatment a is more effective.

» But when choosing a treatment, success rate may only be one

criterion. Others may be recovery time, duration of the
procedure, etc.
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Difference between conditioning and intervening

» In the example, we found that the postinterventional and
conditional distributions are not the same

p(R=1;do(T)=a)=0.833+p(R=1|T = a) = 0.780
p(R=1;do(T)=b)=0.779 # p(R = 1| T = b) = 0.826

» What is the reason for this?

» Conditioning corresponds to a filtering process where we take
all outcomes from the data generating process, keep those in
line with the observed values (the conditioning set), and
re-normalise.

» Interventions (actions) are different: we locally change the
data generating process and depending where and how we
intervene, the distribution of downstream variables changes.
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Directed and backdoor paths

» To better understand the difference between conditioning and
intervening, consider how probability mass/information can
flow between two nodes.

» Consider all the paths (trails) from a node xjx to x;. We can
distinguish between those that start with

» arrows going out of xj: directed (causal) paths
» arrows going into x,: backdoor (associative) paths
» For d-separation (independencies, conditioning), both types of
paths matter; causal and associative effect are mixed.

» For interventions, only directed paths matter; backdoor paths
are cut in the graph surgery

directed path
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Directed and backdoor paths

» Unblocked/open backdoor paths lead to dependencies
(associations) between two variables, but there is no causal
connection.

» Such associations between variables without a causal origin
are said to be “spurious”.

» Non-descendants of a variable x;, cannot be changed by an
intervention on xi (as there is a topological ordering of the
variables, for which they have been generated prior to xx)

» Hence causal effects only travel along directed paths, not
backdoor paths.

directed path
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When is intervening and conditioning the same?

» It follows that the existence of open backdoor paths leads to a
difference between conditional and postinterventional
distributions.

» In other words, if the only active trails between x, and x;
given z are directed paths, i.e. no open backdoor path exists,
then p(xi|z; do(xx) = a) = p(xi|z,xk = a).

» \We can use d-separation in a modified graph to check whether
all backdoor paths are closed:

1. Remove all outgoing arrows from x, call the resulting graph
ka (this removes possible directed paths from the graph)

2. Check whether x; AL Xk|Z in ka (if so, all backdoor paths are closed)

» This leads to the following result on action/observation
exchange (Pearl, Biometrika 82 (4), 1995, slightly simplified version)

If x; AL xk|z in Gy, then p(xi|z; do(xk) = a) = p(y|z,xx = a)
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Kidney stone example

Overall success rate Small stones Large stones
Treatment a 78% (273/350) 93% (81/87) 73% (192/263)
Treatment b 83% (289/350) 87% (234/270) 69% (55/80)

» Assume we now know the size of the stone S (e.g. through
CT scans).

» Since T UL R|S in G, S blocks all backdoor paths
» |nterventional and conditional distribution are the same:

p(R=1[5;do(T))=p(R=1[5,T) (20)

» Values can be read out directly from the table.

T (R (T (R
G Gr
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Back-door adjustment

» By adjusting for the parents/direct causes, we can compute
postinterventional distributions from the conditional
p(xi|xx, pay). In case of atomic interventions, we had

p(xi; do(xk) = a) = Ep(pa,) [p(Xi|xk = a,pay)] (21)

» Expectation can be approximated as sampled average if we
can observe the parents of the intervened-on variable x.

» \We here derive a more general result that can be used when
the parents are unobserved.
» We start with the sum-rule applied to p(x;; do(xx) = a)

(working with discrete variables for clarity)

p(x;; do(xx) = a) = Z p(xi, z; do(xx) = a) (22)

= Z p(xi

z; do(xx) = a)p(z; do(xx) = a)

PMR 2025 ©OGutmann, University of Edinburgh CC BY 4.0 30 / 33


https://creativecommons.org/licenses/by/4.0/

Back-door adjustment

p(xi; do(xx) = a) = Zz p(xi|z; do(xx) = a)p(z; do(xx) = a)
» If (1) z blocks all backdoor paths from xj to x;, i.e.
x;j AL xx|z in Gy, then p(x;|z; do(xx) = a) = p(xi|z, xx = a)
and N

p(x;; do(xx) = a) = Z p(xi|z, xx = a)p(z; do(xx) = a) (23)

» If (2) no component of z is a descendant of xj, then
p(Z; dO(Xk) = a) = p(Z) (non-descendants are not affected by actions on
xx) and

p(xi; do(xx) = a) = Z p(xi|z, xx = a)p(z) (24)

— IE:’p(z) [p(X,"Z, Xk = a)] (25)

» This is called the back-door adjustment to compute the causal
effect of do(xx) = a on x;.
» z = pa, gives the adjustment formula for direct causes.
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Back-door adjustment

» Example configurations where z satisfies the two conditions
are shown below.
» The parents u of x, are assumed unobserved.

» Observing z is sufficient to compute p(x;; do(xx) = a) from
p(xi|z, xx = a) via

p(X,'; dO(Xk) = a) = Ep(z) [p(X,"Z,Xk = a)] (26)

. () . ()
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Program recap

1. Modelling actions as interventions in causal DAGs
e Causal DAGs

e Interventions change the data generating process
e Interventions change the DAG locally

2. Computing the effect of interventions

e |nverse probability weighting and adjustment for direct causes
@ Observing vs acting: the role of backdoors
e Backdoor adjustment
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