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Recap

▶ We modelled actions as interventions in the data generating
process.

▶ For DAGs, intervening on a node removes all incoming arrows
into the node.

▶ We discussed how to compute/predict the effect of
interventions.

▶ However, we have not yet discussed which action to choose in
the face of uncertainty.

▶ This is the topic of decision theory, discussed here.
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Program

1. Brief introduction to decision theory

2. Its use in statistics and machine learning
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Loss

▶ We frame decision making under uncertainty as a game: I first
take an action a. Then a quantity h that was previously
hidden to me is revealed, after which I incur the loss ℓ(h, a).

▶ Since h is unknown/unobserved when we take the action a, we
are dealing with a case of decision making under uncertainty.

▶ Cognitive impairment example:
▶ Hidden/unobserved quantity: cognitive impairment
▶ Action: possible life style changes and cognitive training

▶ Classification example:
▶ Hidden/unobserved quantity: true class label
▶ Action: estimate of the class label

▶ Lots of further examples in statistics and beyond (e.g. finance
or healthcare)
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Decision principles

▶ Popular decision principles are the minimax and the expected
loss (utility) principle.

▶ Minimax principle:
▶ Choose the action that minimises the maximum loss

maxh ℓ(h, a).
▶ Pro: Useful in case of adversaries. Does not depend on the

distribution of h.
▶ Con: Often too pessimistic, resulting in overly conservative

actions
▶ Expected loss principle:

▶ Choose the action that minimises the expected loss
Eh [ℓ(h, a)], called the risk.

▶ Pro: Broadly useful, combines impact of action (loss) with
chance of occurrence (expectation).

▶ Con: Action depends on the distribution of h.
▶ We here focus on the expected loss principle.
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Expected loss

▶ Risk Eh [ℓ(h, a)] depends on the distribution of h.
▶ Provides considerable flexibility:

▶ It can be past data on h that we have collected.
▶ It can be our personal/prior belief of what h may be.
▶ It can be derived from some indirect evidence about h in the

form of x ∼ p(x|h).
▶ Leads to different schools of decision making.
▶ In the last case, we compute the expectation with respect to

the conditional
p(h|x) = p(x|h)p(h)

p(x) (1)

▶ Resulting expected loss

R(a|x) = Ep(h|x) [ℓ(h, a)] (2)

is sometimes called the posterior expected loss / posterior risk.
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From action to policy

▶ Denote by f (h) the distribution of h that we average over and
by R(a; f ) the corresponding risk.

▶ The optimal action is

a∗(f ) = argmin
a

R(a; f ) (3)

= argmin
a

Ef (h) [ℓ(h, a)] (4)

▶ In case of posterior risk, the optimal action depends on x

a∗(p(h|x)) = argmin
a

R(a; p(h|x)) (5)

= argmin
a

Ep(h|x) [ℓ(h, a)] (6)

▶ We will overload notation and denote a∗(p(h|x)) by a∗(x).
▶ Called a policy, mapping evidence x to actions.
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Causal decision theory

▶ A more recent decision principle is framed in terms of
causality (Pearl, Causality, Ch 4).

▶ Choose the action that minimises

R(a) = Ep(y;do(a)) [ℓo(y)] (7)

where ℓo(y) is the loss for outcome y.
▶ Note the use of the postinterventional distribution p(y; do(a)).
▶ It might incorporate evidence already.
▶ We may include an action-dependency in the loss, so that we

have ℓo(y, a)
▶ In some cases, we can relate R(a) to the expected loss.
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Rewriting it in terms of expected loss
▶ If outcome y depends on unobserved variables h, we have

p(y; do(a)) =
∫

p(y, h; do(a))dh (8)

=
∫

p(h; do(a))p(y|h; do(a))dh (9)

= Ep(h;do(a)) [p(y|h; do(a))] (10)
▶ Assume that the intervention happens after h is generated.

Then p(h; do(a)) = p(h)(∗).
▶ Under this assumption

R(a) = Ep(y,h;do(a)) [ℓo(y, a)] (11)
= Ep(h;do(a))Ep(y|h;do(a)) [ℓo(y, a)] (12)
(∗)= Ep(h)Ep(y|h;do(a)) [ℓo(y, a)] (13)

▶ This has the form of the expected loss with
ℓ(h, a) = Ep(y|h;do(a)) [ℓo(y, a)] (14)
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Mild cognitive impairment (MCI) example

▶ 70 year old man: prior MCI probability 5/45, posterior MCI
probability 2/3 after the online test.

▶ Loss function L(h, a) with h ∈ {0, 1} indicating whether he
has MCI or not and a ∈ {0, 1} whether he takes action or not.

▶ Assume taking action means life-style changes (less alcohol,
more exercise) and attending cognitive training sessions for
four months.

▶ Loss is measured in terms of “quality-adjusted life years”
(QALY).

▶ 1 QALY means one year in perfect health. 0.5 QALY can
mean one year which is only half enjoyable, e.g. due to pain.
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MCI example: loss function

▶ Loss function as a table

Action/MCI h = 1 h = 0

a = 1 c+(1-e)H c
a = 0 H 0

▶ H is the harm of having MCI unmanaged over the decision
horizon (1 year). Assume its 14 low quality days
→ H = 14/365 = 0.038 QALY.

▶ e is the reduction of the harm. Assume e = 0.25.
▶ c is the loss in quality time due to taking the action (e.g.

travel to training sessions, attending them instead of doing
something fun, social stigma etc). Assume 0.002 QALY.
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MCI example: optimal action

▶ Loss function
Action/MCI h = 1 h = 0

a = 1 0.0305 0.002
a = 0 0.038 0

▶ Prior risk (units of QALY):

R(a = 1; p(h)) = 5/45 · 0.0305 + 40/45 · 0.002 = 0.0051
R(a = 0; p(h)) = 5/45 · 0.038 + 40/45 · 0 = 0.0042

No action a = 0 has lower risk and is thus better.
▶ Posterior risk (units of QALY):

R(a = 1; p(h|x)) = 2/3 · 0.0305 + 1/3 · 0.002 = 0.0209
R(a = 0; p(h|x)) = 2/3 · 0.038 + 1/3 · 0 = 0.0253

Taking action a = 1 has lower risk and is thus better.
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Common loss functions

▶ Loss functions ℓ(h, a) are best tailored to the problem at hand.
▶ There are, however, a number of “standard” loss functions

that are widely used in statistics and machine learning.
▶ They include

▶ Quadratic loss
▶ Absolute error loss
▶ Zero-one loss
▶ Log-loss

▶ For each loss, we next derive the optimal action/policy.
▶ We denote the distribution of h by f .
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Quadratic loss

▶ For simplicity, assume h and a are one-dimensional.
▶ The quadratic loss is

ℓ(h, a) = (h − a)2 (15)

▶ Optimal action

a∗(f ) = argmin
a

Ef (h)
[
(h − a)2

]
(16)

▶ May be continuous-valued even if h is discrete.
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Quadratic loss
▶ To solve the optimisation problem, let m = Ef [h] be the

expected value of h under f . The loss is

Ef (h)
[
(h − a)2

]
= Ef (h)

[
(h − m + m − a)2

]
(17)

= Ef (h)
[
(h − m)2 + 2(h − m)(m − a)+

+ (m − a)2
]

(18)

= Ef (h)
[
(h − m)2

]
+ 0 + (m − a)2 (19)

= V(h) + (m − a)2 (20)

▶ We thus have

a∗(f ) = argmin
a

(m − a)2 = m

▶ The optimal action is the expected value of h wrt f : Ef [h].
▶ Generalises to multidimensional case: a∗(f ) = Ef [h].
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Absolute error loss

▶ We assume that h and a are one-dimensional.
▶ We here choose a loss that increases linearly as a deviates

from h, rather than quadratically.
▶ The easiest is ℓ(h, a) = |h − a|.
▶ Optimal action

a∗(f ) = argmin
a

Ef (h) [|h − a|] (21)

▶ We can show that a∗(f ) is the median of f (x), i.e. any point
at which probability mass is equally split between the left and
the right.
More formally, let F (α) = P(h ≤ α) be the cumulative distribution
function of f . The median is any number m that satisfies
F (m−) ≤ 0.5 ≤ F (m) where m− is the lower limit of F at m. Not
unique in case of discrete random variables.
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Absolute error loss (proof, not examinable)

▶ We consider the more general case

ℓ(h, a) =
{

k1(h − a) if h ≥ a
k2(a − h) if h < a

with k1, k2 > 0 (22)

This loss is called the quantile or pinball loss.
▶ The posterior expected loss is (assuming pdfs)

R(a; f ) =
∫ ∞

a
k1(h − a)f (h)dh +

∫ a

−∞
k2(a − h)f (h)dh

▶ Taking derivatives gives (using Leibniz rule)

d
daR(a; f (h)) = −k1

∫ ∞

a
f (h)dh + k2

∫ a

−∞
f (h)dh

= −k1(1 −
∫ a

−∞
f (h)dh) + k2

∫ a

−∞
f (h)dh
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Absolute error loss (proof, not examinable)

▶ continued from previous slide:

d
daR(a; f ) = −k1 + (k1 + k2)

∫ a

−∞
f (h)dh

= −k1 + (k1 + k2)P(h ≤ a)

▶ Setting the derivative to zero gives the necessary condition for
an optimum:

P(h ≤ a∗) = k1
k1 + k2

(23)

▶ The second derivative of the expected loss is (k1 + k2)f (a).
Assuming that f (a∗) > 0, a∗ is a unique minimum. (For a∗

where f (a∗) = 0, we have multiple solutions, which is the case
of discrete-valued random variables).

▶ This means that a∗(f ) is the k1/(k1 + k2)-th quantile of f (h).
▶ For k1 = k2, we obtain the 0.5 quantile, i.e. the median.
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Zero-one loss

▶ The unobserved variable h and a may be multivariate.
▶ For discrete h and a, the zero-one loss is

ℓ(h, a) = 1(h ̸= a) = 1 − 1(h = a) =
{

1 if h ̸= a
0 if h = a

(24)

▶ For continuous h and a, it is defined as ℓ(h, a) = 1 − δ(h − a)
where δ(.) is the Dirac-delta distribution (picture as Gaussian
with vanishingly small variance)

▶ Optimal action

a∗(f ) = argmin
a

Ef (h) [ℓ(h, a)] (25)
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Zero-one loss

▶ To solve the optimisation problem, note that

Ef (h) [ℓ(h, a)] = 1 − f (h = a) (26)

This holds for continuous or discrete quantities.
▶ Since

argmina 1 − f (h = a) = argmaxa f (h = a) = argmaxh f (h)
▶ The optimal action is to choose the mode of f

a∗(f ) = argmax
h

f (h) (27)

= argmax
h

log f (h) (28)
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Log-loss

▶ So far, the action a was a scalar or vector.
▶ Here, the action is a distribution over h; denote it by q(h).
▶ The game is as follows: before seeing h, you are asked to

name a distribution q(h).
▶ Then h is revealed, and you incur the loss

ℓ(q, h) = log(1/q(h)) = − log q(h).
▶ If your chosen q assigns a small probability to the h that

occurs, you incur a large penality.
▶ The log loss ℓ(q, h) = log(1/q(h)) is called the “surprise” in

information theory. Note that the surprise is 0 for the certain
event, i.e. if q(h) = 1.

▶ First used for pmfs, but later also for pdfs.
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Log-loss

▶ The log-loss is said to be local since it only evaluates the
quoted q at the value h that actually occurs.

▶ Since we do not know the value of h when we are asked to
report q, we choose q such that the expected loss is
minimized,

a∗(f ) = argmin
q

Ef (h) [ℓ(h, q)] (29)

= argmin
q

Ef (h) [− log q(h)] (30)

▶ Note that a∗(f ) is a distribution.
▶ Expected log loss Ef (h) [− log q(h)] is called cross-entropy of q

relative to f .
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Log-loss

▶ To solve the optimisation problem, note that

Ef (h) [− log q(h)] = Ef (h) [− log q(h) + log f (h) − log f (h)]

= Ef (h)

[
log f (h)

q(h)

]
︸ ︷︷ ︸

KL(f ||q)

−Ef (h) [log f (h)]︸ ︷︷ ︸
entropy

(31)

▶ The Kullback-Leibler (KL) divergence KL(f ||q) is
non-negative and zero iff f = q (see later lectures)

▶ The entropy indicates the average surprise of f , it is a measure
of the randomness of h ∼ f (h). It does not depend on q.

▶ The optimal q thus equals f , i.e.

a∗(f ) = argmin
q

Ef (h) [− log q(h)] = f (h) (32)
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Summary
▶ We derived the optimal action

a∗(f ) = argmin
a

Ef (h) [ℓ(h, a)] (33)

for different loss functions ℓ(h, a)
▶ The optimal actions correspond to different aspects of f

loss optimal action

quadratic expected value of f
absolute error median of f
pinball any quantile of f
0-1 mode of f
log f itself

▶ Allows us to obtain properties of f , and f itself, by solving an
optimisation problem.
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Their use in machine learning

By playing with different choices of h, f (h) and the loss ℓ(h, a), we
can frame classification, regression, inference, and density
estimation as a decision problem.

loss f (h) unknown h action a field

quadratic p(h|x) continuous label label regression
absolute error p(h|x) continuous label label robust regression
pinball p(h|x) continuous label label quantile regression
0-1 p(h|x) discrete label label classification
0-1 p(h|x) model parameters parameters parameter estimation
log data a data point data distribution density estimation
log p(h|x) latent variable distribution of h inference
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0-1 loss for classification and parameter estimation

▶ For the 0-1 loss the optimal action is

a∗(f ) = argmax
h

f (h) (34)

▶ If we use p(h|x) for f (h), we obtain

a∗(x) = argmax
h

p(h|x) (35)

= argmax
h

log p(h|x) (36)

which is called the maximum a-posteriori (MAP) estimate.
▶ Corresponds to the most probable class given x in case of

classification (discrete h).
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0-1 loss for classification and parameter estimation

▶ Using Bayes rule, we further obtain

a∗(x) = argmax
h

log p(x|h) + log p(h) (37)

▶ Let x = (x1, . . . , xn) and assume they are independent so that
p(x|h) =

∏
i p(xi |h). Then

a∗(x) = argmax
h

n∑
i=1

log p(xi |h) + log p(h) (38)

▶ If h corresponds to parameters θ of the model, the first term
is the log-likelihood and the second the prior over the
parameters.

▶ If the prior is uniform, then the MAP estimate equals the
maximum likelihood estimate.
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Log-loss for density estimation

a∗(f ) = argminq Ef (h) [− log q(h)]

▶ Let h be a data point that is being revealed to us. Before we
see h, we are asked to report a distribution q(h) over it.

▶ Let f (h) be the data distribution and assume that we have
samples h1, . . . , hn, with hi ∼ f (h).

▶ We can then approximate the expectation over f with a
sample average. This gives the so-called empirical risk

R̂n(q) = 1
n

n∑
i=1

− log q(hi) (39)

▶ This is considered a “frequentist” approach since we do not
update our belief about h in light of the data h1, . . . , hn.

▶ Taking the expectation with respect to p(h|h1, . . . , hn) would
make the approach “Bayesian”.
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Log-loss for density estimation

▶ The action that minimises the empirical risk is

â∗(f ) = argmin
q

R̂n(q) = argmin
q

1
n

n∑
i=1

− log q(hi) (40)

▶ Most of the time, q is restricted to be a member of a
parametric family Q = {q(h; θ)}. The problem then becomes

â∗(f ) = argmin
q∈Q

1
n

n∑
i=1

− log q(hi) = argmin
θ

1
n

n∑
i=1

− log q(hi ; θ)

▶ This is the same as maximising the log-likelihood.
▶ We have seen two approaches that lead to maximum

likelihood estimation.
▶ Bayesian: minimising the posterior expected 0-1 loss with a

flat prior
▶ Frequentist: minimising empirical risk under log-loss
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