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Recap

» \We modelled actions as interventions in the data generating
process.

» For DAGs, intervening on a node removes all incoming arrows
into the node.

» We discussed how to compute/predict the effect of
interventions.

» However, we have not yet discussed which action to choose in
the face of uncertainty.

» This is the topic of decision theory, discussed here.
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2. Its use in statistics and machine learning
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Program

1. Brief introduction to decision theory
o Loss and decision principles
o Connection to causality
o Mild cognitive impairment example
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We frame decision making under uncertainty as a game: | first
take an action a. Then a quantity h that was previously
hidden to me is revealed, after which | incur the loss £(h, a).

Since h is unknown /unobserved when we take the action a, we
are dealing with a case of decision making under uncertainty.
Cognitive impairment example:

» Hidden/unobserved quantity: cognitive impairment
» Action: possible life style changes and cognitive training

Classification example:
» Hidden/unobserved quantity: true class label
» Action: estimate of the class label

Lots of further examples in statistics and beyond (e.g. finance
or healthcare)
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Decision principles

» Popular decision principles are the minimax and the expected
loss (utility) principle.
» Minimax principle:
» Choose the action that minimises the maximum loss
maxy £(h, a).
» Pro: Useful in case of adversaries. Does not depend on the
distribution of h.
» Con: Often too pessimistic, resulting in overly conservative
actions
» Expected loss principle:

» Choose the action that minimises the expected loss
En [¢(h, a)], called the risk.

» Pro: Broadly useful, combines impact of action (loss) with
chance of occurrence (expectation).

» Con: Action depends on the distribution of h.

» We here focus on the expected loss principle.
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Expected loss

» Risk Ey, [£(h,a)] depends on the distribution of h.
Provides considerable flexibility:

v

» |t can be past data on h that we have collected.

» It can be our personal/prior belief of what h may be.

» |t can be derived from some indirect evidence about h in the
form of x ~ p(x|h).

» Leads to different schools of decision making.

» In the last case, we compute the expectation with respect to
the conditional

_ p(x|h)p(h)
plhlx) = 72 08 (1)
» Resulting expected loss
R(a|x) = Eynx) [¢(h, a)] (2)

is sometimes called the posterior expected loss / posterior risk.
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From action to policy

» Denote by f(h) the distribution of h that we average over and
by R(a; f) the corresponding risk.

» The optimal action is
a*(f) = argmin R(a; f) (3)
d

= arg;nin Efny [¢(h, a)] (4)

» In case of posterior risk, the optimal action depends on x
a” (p(hix)) = argmin R(a; p(h}x)) (5)
— arg;nin IE‘j‘p(h|x) [g(ha a)] (6)

» We will overload notation and denote a*(p(h|x)) by a*(x).

» Called a policy, mapping evidence x to actions.
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Causal decision theory

» A more recent decision principle is framed in terms of
causality (Pearl, Causality, Ch 4).

» Choose the action that minimises

R(a) = Ep(y;do(a)) [fo(Y)] (7)

where /,(y) is the loss for outcome'y.

» Note the use of the postinterventional distribution p(y; do(a)).

v

It might incorporate evidence already.

» We may include an action-dependency in the loss, so that we
have /,(y, a)

» In some cases, we can relate R(a) to the expected loss.
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Rewriting it in terms of expected loss

» |f outcome y depends on unobserved variables h, we have

ply: do(@)) = [ ply, h; do(a))dh

— [ p(h; do(a))p(y|h; do(a))dh

= Ep(h:do(a)) [P(y[h; do(a))]

(8)

(9)
(10)

» Assume that the intervention happens after h is generated.

Then p(h; do(a)) = p(h)(*).
» Under this assumption

R(a) — Ep(y,h;do(a)) [fo(y, a)]

= Ep(hido(a))Ep(ylhido(a)) [€o(y, a)]

(+)
= Epn)Ep(yin;do(a)) [Co(y: )

» This has the form of the expected loss with
é(ha a) — IE:p(y|h;do(a)) [Eo(ya a)]
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Mild cognitive impairment (MCI) example

» 70 year old man: prior MCI probability 5/45, posterior MClI
probability 2/3 after the online test.

» Loss function L(h,a) with h € {0,1} indicating whether he
has MCI or not and a € {0, 1} whether he takes action or not.

» Assume taking action means life-style changes (less alcohol,
more exercise) and attending cognitive training sessions for
four months.

» Loss is measured in terms of “quality-adjusted life years”
(QALY).

» 1 QALY means one year in perfect health. 0.5 QALY can
mean one year which is only half enjoyable, e.g. due to pain.
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MCI example: loss function

» |oss function as a table

Action/MClI h=1 h=20
a=1 c+(l-e)H ¢
a=0>0 H 0

» H is the harm of having MCI unmanaged over the decision
horizon (1 year). Assume its 14 low quality days
— H = 14/365 = 0.038 QALY.

» e is the reduction of the harm. Assume e = (0.25.

» c is the loss in quality time due to taking the action (e.g.
travel to training sessions, attending them instead of doing
something fun, social stigma etc). Assume 0.002 QALY.
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MCI example: optimal action

» Loss function

Action/MCI h=1 h=0

a=1 0.0305 0.002
a=>_0 0.038 O

» Prior risk (units of QALY):

R(a = 1; p(h)) = 5/45 - 0.0305 + 40/45 - 0.002 = 0.0051
R(a = 0; p(h)) = 5/45 - 0.038 + 40/45 - 0 = 0.0042

No action a = 0 has lower risk and is thus better.
» Posterior risk (units of QALY):

R(a=1; p(h|x)) = 2/3-0.0305 + 1/3 - 0.002 = 0.0209
R(a=0; p(h|x)) = 2/3-0.038 +1/3-0 = 0.0253

Taking action a = 1 has lower risk and is thus better.
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1. Brief introduction to decision theory
o Loss and decision principles
o Connection to causality
o Mild cognitive impairment example
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Program

2. Its use in statistics and machine learning
o Common loss functions
o Applications of the 0-1 loss
o Applications of the log-loss
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Common loss functions

» Loss functions /(h, a) are best tailored to the problem at hand.
» There are, however, a number of “standard” loss functions
that are widely used in statistics and machine learning.

» They include

» Quadratic loss

» Absolute error loss
» /Zero-one loss

» Log-loss

» For each loss, we next derive the optimal action/policy.

» \We denote the distribution of h by f.
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Quadratic loss

» For simplicity, assume h and a are one-dimensional.

» The quadratic loss is
¢(h,a) = (h— 3)2 (15)
» Optimal action

a“(f) = arggnin Ef(n {(h — 3)2} (16)

» May be continuous-valued even if h is discrete.
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Quadratic loss

» To solve the optimisation problem, let m = E¢[h] be the
expected value of h under f. The loss is

Ef () {(h - 3)2} = Ef(n) :(h —m+m— 3)2} (17)
= Eg(ry |(h— m)? +2(h — m)(m — a)+

+ (m = ay?] (18)

= Erpy |(h—m)?| +0+(m—2)® (19)

= V(h) + (m — a)? (20)

» \We thus have

a*(f) = argmin(m — a)®> = m
a

» The optimal action is the expected value of h wrt f: E¢[h].
» Generalises to multidimensional case: a*(f) = E¢|h].
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Absolute error loss

» \We assume that h and a are one-dimensional.

» We here choose a loss that increases linearly as a deviates
from h, rather than quadratically.

» The easiest is {(h,a) = |h — a|.
» Optimal action

a"(f) = argmin Er() [[h — al] (21)

» We can show that a*(f) is the median of f(x), i.e. any point
at which probability mass is equally split between the left and
the right.

More formally, let F(a) = P(h < «) be the cumulative distribution
function of f. The median is any number m that satisfies

F(m~) <0.5 < F(m) where m~ is the lower limit of F at m. Not
unique in case of discrete random variables.
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Absolute error loss (proof, not examinable)

» \We consider the more general case

ki(h—a) ifh>a

{h.2) = {kg(a— h) ifh<a

This loss is called the quantile or pinball loss.

» The posterior expected loss is (assuming pdfs)

R(a: f) = /:O kn(h — a)F (h)dh + /_aoo ko(a — h)F(h)dh

» Taking derivatives gives (using Leibniz rule)

T R(a; () =~k | f(hydn+ ke /_aoo F(h)dh
_ _/(1(1_/a F(h)dh) + ko /a F(h)dh
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Absolute error loss (proof, not examinable)

» continued from previous slide:

d

ER(a; f)=—ki + (ki + ko) /_aoo f(h)dh

= —ki + (k1 + k2)P(h < a)

» Setting the derivative to zero gives the necessary condition for
an optimum:

) k1
P(hga):kl—l—kz

» The second derivative of the expected loss is (ky + k2)f(a).
Assuming that f(a*) > 0, a* is a unique minimum. (For a*
where f(a*) = 0, we have multiple solutions, which is the case
of discrete-valued random variables).

» This means that a*(f) is the ki /(k1 + k»)-th quantile of f(h).
» For ki = ko, we obtain the 0.5 quantile, i.e. the median.

(23)
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/ero-one loss

» The unobserved variable h and a may be multivariate.

» For discrete h and a, the zero-one loss is

é(h,a)zﬂ(h#a):l—ﬂ(h:a):{(1) :]‘::i: (24)

» For continuous h and a, it is defined as ¢/(h,a) =1 —(h — a)
where §(.) is the Dirac-delta distribution (picture as Gaussian
with vanishingly small variance)

» Optimal action

a“(f) = argél;nin Efmn [£(h,a)] (25)
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/ero-one loss

» To solve the optimisation problem, note that
Erw [((h,2)] =1~ f(h = a) (26)

This holds for continuous or discrete quantities.

» Since
argming 1 — f(h = a) = argmax, f(h = a) = argmax, f(h)

» The optimal action is to choose the mode of f

a“(f) = argf]nax f(h) (27)
= argllf]nax log f(h) (28)
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Log-loss

v

So far, the action a was a scalar or vector.
Here, the action is a distribution over h; denote it by g(h).

The game is as follows: before seeing h, you are asked to
name a distribution g(h).

Then h is revealed, and you incur the loss

{(g,h) = log(1/q(h)) = — log g(h).

If your chosen g assigns a small probability to the h that
occurs, you incur a large penality.

The log loss ¢(q,h) = log(1/q(h)) is called the “surprise” in
information theory. Note that the surprise is 0 for the certain
event, i.e. if g(h) = 1.

First used for pmfs, but later also for pdfs.
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Log-loss

» The log-loss is said to be local since it only evaluates the
quoted g at the value h that actually occurs.

» Since we do not know the value of h when we are asked to
report g, we choose g such that the expected loss is

minimized,
a’(f) = argmin Er(n) ((h, q)] (29)
= al‘g;nin Etn) [ log q(h)] (30)

» Note that a*(f) is a distribution.

> Expected log loss [E¢ ) [— log g(h)] is called cross-entropy of g
relative to f.
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Log-loss

» To solve the optimisation problem, note that

Ef(n) [—log g(h)] = Ef(n) [ log q(h) + log f(h) — log f(h)]

f(h)
= E¢(n) [Iog m] jEf(h) £|r0g f(h)l (31)
KL€1:||q) entropy

» The Kullback-Leibler (KL) divergence KL(f||q) is
non-negative and zero iff f = g (see later lectures)

» The entropy indicates the average surprise of f, it is a measure
of the randomness of h ~ f(h). It does not depend on gq.

» The optimal g thus equals f, i.e.

a*(F) = argmin Erqy [~ loga(h)] = F(n) (32
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Summary

» We derived the optimal action

a“(f) = arg;nin Efny [€(h, a)] (33)

for different loss functions £(h, a)
» The optimal actions correspond to different aspects of f

loss optimal action
quadratic expected value of f
absolute error median of f

pinball any quantile of f
0-1 mode of f

log f itself

» Allows us to obtain properties of f, and f itself, by solving an
optimisation problem.
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Their use in machine learning

By playing with different choices of h, f(h) and the loss ¢(h, a), we
can frame classification, regression, inference, and density
estimation as a decision problem.

loss f(h) unknown h action a field

quadratic p(h|x)  continuous label label regression

absolute error  p(h|x)  continuous label label robust regression
pinball p(h|x)  continuous label label quantile regression
0-1 p(h|x)  discrete label label classification

0-1 p(h|x)  model parameters  parameters parameter estimation
log data a data point data distribution  density estimation
log p(h|x) latent variable distribution of h  inference
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0-1 loss for classification and parameter estimation

» For the 0-1 loss the optimal action is

a“(f) = arg]rf'nax f(h) (34)

» |If we use p(h|x) for f(h), we obtain

a“(x) = argf]nax p(h|x) (35)
= arglrflnax log p(h|x) (36)

which is called the maximum a-posteriori (MAP) estimate.

» Corresponds to the most probable class given x in case of
classification (discrete h).
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0-1 loss for classification and parameter estimation

» Using Bayes rule, we further obtain

a“(x) = arglif‘nax log p(x|h) + log p(h) (37)

» lLet x = (X1,...,X,) and assume they are independent so that
p(x/h) = []; p(x;|h). Then

a’(x) = argf]naxzn: log p(xi|h) + log p(h) (38)
i=1

» If h corresponds to parameters 8 of the model, the first term
is the log-likelihood and the second the prior over the
parameters.

» If the prior is uniform, then the MAP estimate equals the
maximum likelihood estimate.
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Log-loss for density estimation

a*(f) = argming E¢y,) [— log q(h)]
» Let h be a data point that is being revealed to us. Before we
see h, we are asked to report a distribution g(h) over it.
» Let f(h) be the data distribution and assume that we have
samples hy, ... h,, with h; ~ f(h).

» We can then approximate the expectation over f with a
sample average. This gives the so-called empirical risk

Rn(q) = % zn: —log q(h;) (39)

=1

» This is considered a “frequentist” approach since we do not
update our belief about h in light of the data hy,... h,.

» Taking the expectation with respect to p(hlhy,..., h,) would
make the approach “Bayesian’.
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Log-loss for density estimation

» The action that minimises the empirical risk is

a“(f) = argmm R.(q) = argmm Z —log q(h;)  (40)
i=1

» Most of the time, g is restricted to be a member of a
parametric family @ = {q(h; 8)}. The problem then becomes

a*(f) = argmin — Z log g(h )—argmm Z log q(h;; 9)
qeQ i=1 i=1

» This is the same as maximising the log-likelihood.
» We have seen two approaches that lead to maximum
likelihood estimation.
» Bayesian: minimising the posterior expected 0-1 loss with a
flat prior
» Frequentist: minimising empirical risk under log-loss
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1. Brief introduction to decision theory
@ Loss and decision principles
e Connection to causality

e Mild cognitive impairment example

2. Its use in statistics and machine learning
e Common loss functions
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e Applications of the log-loss
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