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Recap

▶ Topic 1: Representation What reasonably weak assumptions
can we make to efficiently represent p(x, y, z)?
▶ Directed and undirected graphical models
▶ Factorisation and independencies

▶ Topic 2: Exact inference Can we further exploit the
assumptions on p(x, y, z) to efficiently compute the posterior
probability or derived quantities?
▶ Yes! Factorisation can be exploited by using the distributive

law and by caching computations.
▶ Variable elimination and message passing algorithms
▶ Inference for hidden Markov models
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Recap

p(x|yo) =
∑

z
p(x,yo ,z)∑

x,z
p(x,yo ,z)

▶ Topic 3: Actions and decision making How to predict the
outcome of actions and choose optimal actions?
▶ Actions as interventions in the data generating process.
▶ Graph surgery and different ways to compute

postinterventional distributions
▶ Decision theory and common loss functions
▶ Some loss functions were related to learning from data

▶ Issue 4: Where do the non-negative numbers p(x, y, z) come
from?
Topic 4: Learning How can we learn the numbers from data?
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Program

1. Basic concepts

2. Learning by maximum likelihood estimation

3. Learning by Bayesian inference
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Program

1. Basic concepts
Observed data as a sample drawn from an unknown data
generating distribution
Probabilistic, statistical, and Bayesian models
Partition function and unnormalised statistical models
Learning = parameter estimation or learning = Bayesian
inference

2. Learning by maximum likelihood estimation

3. Learning by Bayesian inference
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Learning from data

▶ Use observed data D to learn about their source
▶ Enables probabilistic inference, decision making, . . .

 

  

 

Data space

 

Observation

Insight

Data source

Unknown properties
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Data

▶ We typically assume that the observed data D correspond to a
random sample (draw) from an unknown distribution p∗(D)

D ∼ p∗(D)

▶ In other words, we consider the data D to be a realisation
(observation) of a random variable with distribution p∗.
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Data

▶ Example: You use some transition and emission distribution
and generate data from the hidden Markov model.
(e.g. via ancestral sampling)

v1 v2 v3 v4

h1 h2 h3 h4

▶ You know the visibles (v1, v2, v3, . . . , vT ) ∼ p(v1, . . . , vT ).
▶ You give the generated visibles to a friend who does not know

about the distributions that you used, nor possibly that you
used a HMM. For your friend:

D = (v1, v2, v3, . . . , vT ) D ∼ p∗(D)
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Independent and identically distributed (iid) data

▶ Let D = {x1, . . . , xn}. If

p∗(D) =
n∏

i=1
p∗(xi)

then the data (or the corresponding random variables) are
said to the iid. D is also said to be a random sample from p∗.

▶ In other words, the xi were independently drawn from the
same distribution p∗(x).

▶ Example: n time series (v1, v2, v3, . . . , vT ) each independently
generated with the same transition and emission distribution.
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Independent and identically distributed (iid) data

▶ Example: Generate n samples (x (i)
1 , . . . , x (i)

5 ) from

p(x1, x2, x3, x4, x5) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x2)

with known conditionals, using e.g. ancestral sampling.
▶ You collect the n observed values

of x4, i.e.

x (1)
4 , . . . , x (n)

4

and give them to a friend who
does not know how you generated
the data but that they are iid.

x1 x2

x3

x4

x5

▶ For your friend, the x (i)
4 are data points xi ∼ p∗.

▶ Remark: if the subscript index is occupied, we often use superscripts to
enumerate the data points.
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Using models to learn from data
▶ Set up a model with properties that the unknown data source

might have.
▶ The potential properties are the parameters θ of the model.
▶ Model may include independence and parametric family

assumptions.
▶ Learning: Assess which θ are in line with the observed data D.

 

  

 

Data space

Observation

Learning

Data source

Unknown properties

Model

M(θ)
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Models

▶ The term “model” has multiple meanings, see e.g.
https://en.wikipedia.org/wiki/Model

▶ In our course:
▶ probabilistic model
▶ statistical model
▶ Bayesian model

▶ See Section 3 in the background document Introduction to
Probabilistic Modelling

▶ Note: the three types are often confounded, and often just
called probabilistic or statistical model, or just “model”.
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Probabilistic model

Example from the first lecture: cognitive impairment test

▶ Sensitivity of 0.8 and specificity of
0.95 (Scharre, 2010)

▶ Probabilistic model for presence of
impairment (x = 1) and detection by
the test (y = 1):

P(x = 1) = 0.11 (prior)
P(y = 1|x = 1) = 0.8 (sensitivity)
P(y = 0|x = 0) = 0.95 (specificity) (Example from sagetest.osu.edu)

▶ From first lecture:
A probabilistic model is an abstraction of reality that uses
probability theory to quantify the chance of uncertain events.
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Probabilistic model
▶ In brief: probabilistic model ≡ probability distribution

(pmf/pdf).
▶ Probabilistic model was written in terms of the probability P.

In terms of the pmf it is

px (1) = 0.11
py |x (1|1) = 0.8
py |x (0|0) = 0.95

▶ Commonly written as

p(x = 1) = 0.11
p(y = 1|x = 1) = 0.8
p(y = 0|x = 0) = 0.95

where the notation for probability measure P and pmf p are
confounded.
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Statistical model
▶ If we substitute the numbers with parameters, we obtain a

(parametric) statistical model

p(x = 1) = θ1

p(y = 1|x = 1) = θ2

p(y = 0|x = 0) = θ3

▶ For each value of the θi , we obtain a different pmf.
Dependency highlighted by writing

p(x = 1; θ1) = θ1

p(y = 1|x = 1; θ2) = θ2

p(y = 0|x = 0; θ3) = θ3

▶ Or: p(x , y ; θ) where θ = (θ1, θ2, θ3) is a vector of parameters.
▶ A statistical model corresponds to a set/family of probabilistic

models, here indexed by the parameters θ: {p(x; θ)}θ
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Bayesian model

▶ In Bayesian models, we combine statistical models with a
(prior) probability distribution on the parameters θ.

▶ Each member of the family {p(x; θ)}θ is considered a
conditional pmf/pdf of x given θ

▶ Use conditioning notation p(x|θ)
▶ The conditional p(x|θ) and the pmf/pdf p(θ) for the (prior)

distribution of θ together specify the joint pmf/pdf via the
product rule

p(x, θ) = p(x|θ)p(θ)
▶ Bayesian model for x = probabilistic model for (x, θ).
▶ The prior may be parameterised, e.g. p(θ; α). The parameters

α are called “hyperparameters”.
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Graphical models as statistical models

▶ Directed or undirected graphical models are sets of probability
distributions, e.g. all p that factorise as

p(x) =
∏

i
p(xi |pai) or p(x) ∝

∏
i

ϕi(Xi)

They are thus statistical models.
▶ If we consider parametric families for p(xi |pai) and ϕi(Xi),

they correspond to parametric statistical models

p(x; θ) =
∏

i
p(xi |pai ; θi) or p(x; θ) ∝

∏
i

ϕi(Xi ; θi)

where θ = (θ1, θ2, . . .).
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Cancer-asbestos-smoking example (Barber Figure 9.4)
▶ Very simple toy example about the relationship between lung

Cancer, Asbestos exposure, and Smoking

DAG:

a s

c

Factorisation:
p(c, a, s) = p(c|a, s)p(a)p(s)

Parametric models: (for binary vars)

p(a = 1; θa) = θa
p(s = 1; θs) = θs

p(c = 1|a, s; θc) a s

θ1
c 0 0

θ2
c 1 0

θ3
c 0 1

θ4
c 1 1

All parameters are ≥ 0

▶ Factorisation + parametric models for the factors gives the
parametric statistical model
p(c, a, s; θ) = p(c|a, s; θc)p(a; θa)p(s; θs) θ = (θa, θs , θc)
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Cancer-asbestos-smoking example

▶ The model specification p(a = 1; θa) = θa is equivalent to

p(a; θa) = (θa)a(1 − θa)1−a

= θ1(a=1)
a (1 − θa)1(a=0)

Note: (θa)a means parameter θa to the power of a.
▶ a is a Bernoulli random variable with “success” probability θa.
▶ Equivalently for s.
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Cancer-asbestos-smoking example

▶ Table parameterisation p(c|a, s; θc), with θc = (θ1
c , . . . , θ4

c),
can be written more compactly in similar form.

▶ Enumerate the states of the parents of c so that

pac = 1 ⇔ (a = 0, s = 0) . . . pac = 4 ⇔ (a = 1, s = 1)

▶ We then have

p(c|a, s; θc) =
4∏

j=1

[
(θj

c)c(1 − θj
c)1−c

]
1(pac=j)

=
4∏

j=1
(θj

c)1(c=1,pac=j)(1 − θj
c)1(c=0,pac=j)

Product over the possible states of the parents and the
possible states of c.

▶ Equivalent to the table but more convenient to manipulate.
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Cancer-asbestos-smoking example

▶ Working with the table representation does not shrink the set
of probabilistic models.

▶ Set of p(c, a, s) defined by the DAG = parametric family
{p(c, a, s; θ)}θ, where θ are the parameters in the table.

▶ Other parametric models are possible too:
▶ As before but some parameters are tied, e.g. θ2

c = θ3
c

▶ p(c = 1|a, s) = σ (w0 + w1a + w2s) where σ() is the sigmoid
function σ(u) = 1/(1 + exp(−u)).

In both cases, the parameterisation limits the space of
possible probabilistic models.
(see slides Basic Assumptions for Efficient Model Representation)
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Cancer-asbestos-smoking example

▶ We can turn the table-based parametric model into a Bayesian
model by assigning a (prior) probability distribution to θ

▶ Often: we assume independence of the parameters so that the
prior pdf/pmf factorises, e.g.

p(θ) = p(θa)p(θs)
4∏

j=1
p(θj

c)

▶ With correspondence p(x; θ) = p(x|θ), the Bayesian model is

p(x, θ) = p(x|θ)p(θ)
= θ1(a=1)

a (1 − θa)1(a=0)p(θa)θ1(s=1)
s (1 − θs)1(s=0)p(θs)

4∏
j=1

(θj
c)1(c=1,pac=j)(1 − θj

c)1(c=0,pac=j)
4∏

j=1
p(θj

c)

▶ Note the factorisation.
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Partition function

▶ pdfs/pmfs integrate/sum to one.
▶ Parameterised Gibbs distributions

p(x; θ) ∝
∏

i
ϕi(Xi ; θi)

do typically not integrate/sum one.
▶ For normalisation, we can divide the unnormalised model

p̃(x; θ) =
∏

i ϕi(Xi ; θi) by the partition function Z (θ),

Z (θ) =
∫

p̃(x; θ)dx or Z (θ) =
∑

x
p̃(x; θ).

▶ By construction,
p(x; θ) = p̃(x; θ)

Z (θ)
sums/integrates to one for all values of θ.
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Unnormalised statistical models

▶ If each element of {p(x; θ)}θ integrates/sums to one∫
p(x; θ)dx = 1 or

∑
x

p(x; θ) = 1

for all θ, we say that the statistical model is normalised.
▶ If not, the statistical model is unnormalised.
▶ Undirected graphical models generally correspond to

unnormalised models.
▶ But: partition function Z (θ) may be hard to evaluate, which

is an issue for likelihood-based learning.
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Reading off the partition function from a normalised model
▶ Consider p̃(x; θ) = exp

(
−1

2x⊤ΣΣΣ−1x
)

where x ∈ Rm and ΣΣΣ is
symmetric.

▶ Parameters θ are the lower (or upper) triangular part of ΣΣΣ
including the diagonal.

▶ Corresponds to an unnormalised Gaussian.
▶ Partition function can be computed in closed form

Z (θ) = | det 2πΣΣΣ|1/2 p(x; θ) = 1
| det 2πΣΣΣ|1/2 exp

(
−1

2x⊤ΣΣΣ−1x
)

▶ Given a normalised model p(x; θ), you can read off the
partition function as the inverse of the part that does not
depend on x, i.e. you can split a normalised p(x; θ) into an
unnormalised model and the partition function:

p(x; θ) −→ p(x; θ) = p̃(x; θ)
Z (θ)
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The domain matters

▶ Consider p̃(x; θ) = exp
(
−1

2x⊤Ax
)

where x ∈ {0, 1}m and A
is symmetric.

▶ Parameters θ are the lower (or upper) triangular part of A
including the diagonal.

▶ Model is known as Ising model or Boltzmann machine.
▶ Difference to previous slide:

▶ Notation/parameterisation: A vs ΣΣΣ−1 (does not matter)
▶ x ∈ {0, 1}m vs x ∈ Rm (does matter!)

▶ Partition function defined via sum rather than integral

Z (θ) =
∑

x∈{0,1}m

exp
(

−1
2x⊤Ax

)

▶ There is no analytical closed-form expression for Z (θ).
Expensive to compute if m is large.
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Learning

We consider two approaches to learning:
1. Learning with statistical models = parameter estimation

(or: estimation of the model)

2. Learning with Bayesian models = Bayesian inference
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Learning with statistical models = parameter estimation

▶ We use use data to pick one element p(x; θ̂) from the set of
probabilistic models {p(x; θ)}θ.

{p(x; θ)}θ
data D

−→ p(x; θ̂)

▶ In other words, we use data to select the estimate θ̂ from the
possible values of the parameters θ.

▶ Using data to pick a value of θ corresponds to a mapping
(function) from data to parameters. The mapping is called an
estimator.

▶ Overloading of notation for the estimate and estimator:
▶ θ̂ as selected parameter value is the estimate of θ.
▶ θ̂ as mapping θ̂(D) is the estimator of θ.

This overloading of notation is often done. For example, when
writing y = x2 + 1, y can be considered to be the output of the
function (≡ estimate) or the function y(x) itself (≡ estimator).
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Learning with Bayesian models = Bayesian inference
▶ We use data to determine the plausibility (posterior pdf/pmf)

of all possible values of the parameters θ.

p(x|θ)p(θ) data D
−→ p(θ|D)

▶ Instead of picking one value from the set of possible values of
θ, we here assess all of them.

▶ Reduces learning to inference.
▶ “Inverts” the data generating process

DAGs:

θ

D

general case

θ

x1 x2 x3 . . .

iid data

data
gen

process

lea
rn

in
g
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Predictive distribution

▶ Given data D, we would like to predict the next value x.
▶ If we take the parameter estimation approach, the predictive

distribution is p(x; θ̂).
▶ In the Bayesian inference approach, we compute

p(x|D) =
∫

p(x, θ|D)dθ

=
∫

p(x|θ, D)p(θ|D)dθ

=
∫

p(x|θ)p(θ|D)dθ

(if x ⊥⊥ D | θ as e.g. in the iid case)

Visualisation as a DAG:

θ

D x

Average of predictions p(x|θ), weighted by p(θ|D).
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There are many methods for parameter estimation

▶ There is a multitude of methods to estimate the parameters.
▶ Many methods can be framed in terms of a decision problem.
▶ More broadly, they often correspond to solving an optimisation

problem, e.g. θ̂ = argmaxθ J(θ, D) for some objective
function J . Called M-estimation in the statistics literature.

▶ Maximum likelihood estimation (MLE) is popular (see next).
▶ Maximum-a-posteriori estimation where we estimate θ by

computing the maximiser of the posterior θ̂ = argmaxθ p(θ|D).
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Program

1. Basic concepts
Observed data as a sample drawn from an unknown data
generating distribution
Probabilistic, statistical, and Bayesian models
Partition function and unnormalised statistical models
Learning = parameter estimation or learning = Bayesian
inference

2. Learning by maximum likelihood estimation

3. Learning by Bayesian inference
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Program

1. Basic concepts

2. Learning by maximum likelihood estimation
The likelihood function and the maximum likelihood estimate
MLE for Gaussian, Bernoulli, and fully observed directed
graphical models of discrete random variables
The likelihood function is informative and more than just an
objective function to optimise

3. Learning by Bayesian inference
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The likelihood function L(θ)

▶ Measures agreement between θ and the observed data D
▶ Probability that sampling from the model with parameter

value θ generates data like D.
▶ Exact match for discrete random variables

 

  

 

Data space

 

ObservationData source

Unknown properties

Model

M(θ)
Data generation
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The likelihood function L(θ)

▶ Measures agreement between θ and the observed data D
▶ Probability that sampling from the model with parameter

value θ generates data like D.
▶ Small neighbourhood for continuous random variables

 

  

 

Data space

 

ObservationData source

Unknown properties

Model

M(θ)
Data generation

ε
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The likelihood function L(θ)
▶ Probability that the model generates data like D for

parameter value θ,

L(θ) = p(D; θ)

where p(D; θ) is the parameterised model pdf/pmf.
▶ The likelihood function indicates the likelihood of the

parameter values, and not of the data.
▶ For iid data x1, . . . , xn

L(θ) = p(D; θ) = p(x1, . . . , xn; θ) =
n∏

i=1
p(xi ; θ)

▶ Log-likelihood function ℓ(θ) = log L(θ). For iid data:

ℓ(θ) =
n∑

i=1
log p(xi ; θ)

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 36 / 58

https://creativecommons.org/licenses/by/4.0/


Maximum likelihood estimate

▶ The maximum likelihood estimate (MLE) is

θ̂ = argmax
θ

ℓ(θ) = argmax
θ

L(θ)

▶ Is the optimal decision for different common losses (see slides
on decision making).

▶ Numerical methods are usually needed for the optimisation.
▶ We typically only find local optima (sub-optimal but often

useful)
▶ In simple cases, closed form solution possible.
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Gaussian example
▶ Model

p(x ; θ) = 1√
2πσ2

exp
(

−(x − µ)2

2σ2

)
θ = (µ, σ2) x ∈ R

▶ Data D: n iid observations x1, . . . , xn
▶ Log-likelihood function

ℓ(θ) =
n∑

i=1
log p(xi ; θ)

= − 1
2σ2

n∑
i=1

(xi − µ)2 − n
2 log(2πσ2)

▶ Maximum likelihood estimates (see exercises)

µ̂ = 1
n

n∑
i=1

xi σ̂2 = 1
n

n∑
i=1

(xi − µ̂)2
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Bernoulli example
▶ Model

p(x ; θ) = θx (1 − θ)1−x = θ1(x=1)(1 − θ)1(x=0)

with θ ∈ [0, 1], x ∈ {0, 1}
▶ Equivalent to p(x = 1; θ) = θ, or the table

p(x ; θ) x

1 − θ 0
θ 1

▶ Data D: n iid observations x1, . . . , xn
▶ Log-likelihood function

ℓ(θ) =
n∑

i=1
log p(xi ; θ)

=
n∑

i=1
xi log(θ) + (1 − xi) log(1 − θ)
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Bernoulli example

Log-likelihood function:

ℓ(θ) =
n∑

i=1
xi log(θ) + (1 − xi) log(1 − θ)

= nx=1 log(θ) + nx=0 log(1 − θ)

where nx=1 is the number of times xi = 1, i.e.

nx=1 =
n∑

i=1
xi =

n∑
i=1

1(xi = 1)

and nx=0 = n − nx=1 is the number of times xi = 0, i.e.

nx=0 =
n∑

i=1
(1 − xi) =

n∑
i=1

1(xi = 0)
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Bernoulli example
▶ Constraint optimisation problem:

θ̂ = argmax
θ∈[0,1]

nx=1 log(θ) + nx=0 log(1 − θ)

▶ Constraint is not needed as the unconstrained optimal θ turns
out to satisfy it.

▶ First and second derivatives of ℓ(θ) are

ℓ(θ)′ = nx=1
θ

− nx=0
1 − θ

ℓ(θ)′′ = −nx=1
θ2 − nx=0

(1 − θ)2 (1)

▶ Setting ℓ(θ)′ to zero and solving for θ gives

nx=1
nx=0

= θ

1 − θ
⇒ θ̂ = nx=1

nx=1 + nx=0
= nx=1

n (2)

▶ ℓ′′(θ̂) < 0, hence θ̂ is a maximum.
▶ θ̂ is the fraction of ones in the data.
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Cancer-asbestos-smoking example

a s

c
▶ Statistical model

p(c, a, s; θ) = p(c|a, s; θ1
c , . . . , θ4

c)p(a; θa)p(s; θs)

with p(a = 1; θa) = θa p(s = 1; θs) = θs and

p(c = 1|a, s; θ1
c , . . . , θ4

c)) a s

θ1
c 0 0

θ2
c 1 0

θ3
c 0 1

θ4
c 1 1

▶ Data D:: n iid observations x1, . . . , xn, where xi = (ai , si , ci)
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Cancer-asbestos-smoking example

▶ The random variables a and s are Bernoulli distributed so that
the parameters are estimated as before.

▶ For parameters of the conditional p(c|a, s),

p̂(c = 1|a = 0, s = 0) = θ̂1
c =

∑n
i=1 1(ci = 1, ai = 0, si = 0)∑n

i=1 1(ai = 0, si = 0)

and equivalently for the other parameters. (see exercises)
▶ Denominator: number of data points that satisfy the

specifications (constraints) given by the conditioning set.
▶ Estimate is the fraction of times c = 1 among the data points

that satisfy the constraints given by the conditioning set.
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What we miss with maximum likelihood estimation

▶ The likelihood function indicates to which extent various
parameter values are congruent with the observed data.

▶ Establishes an ordering of relative preferences for different
parameter values, i.e. θ1 is preferred over θ2 if L(θ1) > L(θ2).

▶ Max. lik. estimation ignores information contained in the data.
▶ Example: Likelihood for Bernoulli model with

D = (0, 0, 0, 0, 0, 0, 0, 1, 1, 1, . . .) generated with parameter
value 1/3 (green line)
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What we miss with maximum likelihood estimation

▶ A compromise between considering the whole (log) likelihood
function and only its maximum is the computation of the
curvature (Hessian) at the maximum.

▶ strong curvature: max lik estimate clearly to be preferred

▶ shallow curvature: several other parameter values are nearly
equally in line with the data.
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Program

1. Basic concepts

2. Learning by maximum likelihood estimation
The likelihood function and the maximum likelihood estimate
MLE for Gaussian, Bernoulli, and fully observed directed
graphical models of discrete random variables
The likelihood function is informative and more than just an
objective function to optimise

3. Learning by Bayesian inference
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Program

1. Basic concepts

2. Learning by maximum likelihood estimation

3. Learning by Bayesian inference
Bayesian approach reduces learning to probabilistic inference
Different views of the posterior distribution
Conjugate priors
Posterior for Gaussian, Bernoulli, and fully observed directed
graphical models of discrete random variables

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 47 / 58

https://creativecommons.org/licenses/by/4.0/


Reduces learning to probabilistic inference

▶ We use data to determine the plausibility (posterior pdf/pmf)
of all possible values of the parameters θ.

p(x|θ)p(θ) data D
−→ p(θ|D)

▶ Same framework for learning and inference.
▶ Decision that minimises the posterior expected log-loss.
▶ In some cases, closed-form solutions can be obtained (e.g. for

conjugate priors).
▶ In some cases, exact inference methods that we discussed

earlier can be used.
▶ If closed form solutions are not possible and exact inference is

computationally too costly, we have to resort to approximate
inference via e.g. sampling or variational methods.
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The posterior combines likelihood function and prior
▶ Bayesian inference takes the whole likelihood function into

account

p(θ|D) = p(θ, D)
p(D)

= p(D|θ)p(θ)
p(D)

∝ p(D|θ)p(θ)
∝ L(θ)p(θ)

▶ L(θ) tilts the prior p(θ) to the posterior p(θ|D).
▶ For iid data D = (x1, . . . xn)

p(θ|D) ∝
[ n∏

i=1
p(xi |θ)

]
p(θ)

▶ For large n, likelihood dominates: argmaxθ p(θ|D) ≈ MLE
(assuming the prior is non-zero at the MLE)
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The posterior distribution is a conditional

p(θ|D) = p(θ,D)
p(D)

▶ For simplicity, consider discrete-valued data so that

p(θ|D) = p(θ|x = D) = p(θ, x = D)
p(D)

▶ Assume we can sample tuples (θ(i), x(i)) from the joint p(θ, x)

θ(i) ∼ p(θ) x(i) ∼ p(x|θ(i))

▶ Conditioning on x = D then corresponds to only retaining
those samples (θ(i), x(i)) where x(i) = D.

▶ Samples from the posterior = samples from the prior that
produce data equal to the observed one.

▶ Remark: This view of Bayesian inference forms the basis of a class of
approximate methods known as approximate Bayesian computation.
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Conjugate priors

▶ Assume the prior is part of a parametric family with
hyperparameters α, i.e. the prior is an element of {p(θ; α)}α,
so that

p(θ) = p(θ; α0)

for some fixed α0.
▶ If the posterior p(θ|D) is part of the same family as the prior,

▶ the prior and posterior are called conjugate distributions
▶ the prior is said to be a conjugate prior for p(x|θ) or for the

likelihood function.
▶ Learning then corresponds to updating the hyperparameters.

α0 data D
−→ α(D)

▶ Models p(x|θ) that a part of the exponential family always
have a conjugate prior (see Barber 8.5).
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Gaussian example (posterior of the mean for known variance)

▶ Denote pdf of a Gaussian random variable x with mean µ and
variance σ2 by N (x ; µ, σ2).

▶ Bayesian model

p(x |θ) = N (x |θ, σ2) p(θ; α0) = N (θ; µ0, σ2
0)

Hyperparameters α0 = (µ0, σ2
0)

▶ Data D: n iid observations x1, . . . , xn
▶ Posterior for θ (see exercises)

p(θ|D) = N (θ; µn, σ2
n)

µn = σ2
0

σ2
0 + σ2/n

x̄ + σ2/n
σ2

0 + σ2/n
µ0

1
σ2

n
= 1

σ2/n + 1
σ2

0

where x̄ = 1/n
∑

i xi is the sample average (the MLE).
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Gaussian example (posterior of the mean for known variance)

µn = σ2
0

σ2
0+σ2/n x̄ + σ2/n

σ2
0+σ2/n µ0

▶ Introduce
wn = σ2

0
σ2

0 + σ2/n
(3)

For n = 0, wn → 0. For n → ∞, wn → 1
▶ Moreover:

σ2/n
σ2

0 + σ2/n
= 1 − wn (4)

▶ Hence
µn = wnx̄ + (1 − wn)µ0 (5)

As the number of data points increases, µn travels from prior
mean µ0 to the MLE x̄ along a straight line.

▶ The posterior mean of θ linearly interpolates between prior
mean µ0 and MLE x̂ .
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Bernoulli example
▶ Recall: Beta distribution with parameters α, β

B(f ; α, β) ∝ f α−1(1 − f )β−1 f ∈ [0, 1]

see the background document Introduction to Probabilistic Modelling
▶ Bayesian model

p(x |θ) = θx (1 − θ)1−x p(θ; α0) = B(θ; α0, β0)

where x ∈ {0, 1}, θ ∈ [0, 1], and α0 = (α0, β0)
▶ Data D: n iid observations x1, . . . , xn
▶ Posterior for θ (see exercises)

p(θ|D) = B(θ; αn, βn)
αn = α0 + nx=1 βn = β0 + nx=0

where nx=1 were the number of ones and nx=0 the number of
zeros in the data.
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Examples of the beta distribution B(f ; α, β) (Figures courtesy C. Williams)

Expected value: α
α+β , Variance: α
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Bernoulli example

▶ Bernoulli model with D = (0, 0, 0, 0, 0, 0, 0, 1, 1, 1, . . .)
generated with parameter value 1/3 (green line)

▶ Posterior in blue, B(2, 2) prior in black
▶ Compare with earlier likelihood plots. Note the “pull” towards

the prior when n is small.
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(b) n = 5 observations
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(c) n = 10 observations
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Cancer-asbestos-smoking example

▶ Bayesian model

p(c, a, s|θ) = p(c|a, s, θ1
c , . . . , θ4

c)p(a|θa)p(s|θs)

=
4∏

j=1
(θj

c)1(c=1,pac=j)(1 − θj
c)1(c=0,pac=j)

θ1(a=1)
a (1 − θa)1(a=0)θ1(s=1)

s (1 − θs)1(s=0)

▶ Assume the prior factorises (independence assumptions):

p(θa, θs , θ1
c , . . . , θ4

c ; α0) =
∏

j
B(θj

c ; αj
c,0, βj

c,0)

B(θa; αa,0, βa,0)B(θs ; αs,0, βs,0)

▶ Data D: n iid observations x1, . . . , xn, where xi = (ai , si , ci)
▶ The parameters are independent under the posterior and

follow a beta distribution (see exercises)
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Program recap

1. Basic concepts
Observed data as a sample drawn from an unknown data generating
distribution
Probabilistic, statistical, and Bayesian models
Partition function and unnormalised statistical models
Learning = parameter estimation or learning = Bayesian inference

2. Learning by maximum likelihood estimation
The likelihood function and the maximum likelihood estimate
MLE for Gaussian, Bernoulli, and fully observed directed graphical models
of discrete random variables
The likelihood function is informative and more than just an objective
function to optimise

3. Learning by Bayesian inference
Bayesian approach reduces learning to probabilistic inference
Different views of the posterior distribution
Conjugate priors
Posterior for Gaussian, Bernoulli, and fully observed directed graphical
models of discrete random variables
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