
Factor and Independent Component Analysis

Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134)
School of Informatics, The University of Edinburgh

Autumn Semester 2025



Recap

▶ Model-based learning from data
▶ Observed data as a sample from an unknown data generating

distribution
▶ Learning using parametric statistical models and Bayesian

models,
▶ Their relation to probabilistic graphical models
▶ Likelihood function, maximum likelihood estimation, and the

mechanics of Bayesian inference
▶ Classical examples to illustrate the concepts
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Applications of factor and independent component analysis
▶ Factor analysis and independent component analysis are two

classical methods for data analysis.
▶ The origins of factor analysis (FA) are attributed to a 1904

paper by psychologist Charles Spearman. It is used in fields
such as
▶ Psychology, e.g intelligence research
▶ Marketing
▶ Wide range of physical and biological sciences
...

▶ Independent component analysis (ICA) has mainly been
developed in the 90s. It can be used where FA can be used.
Popular applications include
▶ Neuroscience (brain imaging, spike sorting) and theoretical

neuroscience
▶ Telecommunications (de-convolution, blind source separation)
▶ Finance (finding hidden factors)
...
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Directed graphical model underlying FA and ICA

FA: factor analysis ICA: independent component analysis

h1 h2 h3

v1 v2 v3 v4 v5

▶ The visibles v = (v1, . . . , vD) are independent from each other
given the latents h = (h1, . . . , hH), but generally dependent
under the marginal p(v).

▶ Latent variable model: explains statistical dependencies
between (observed) vi through (unobserved) hi .

▶ Different assumptions on p(v|h) and p(h) lead to different
statistical models, and data analysis methods with markedly
different properties.
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Program

1. Factor analysis

2. Independent component analysis
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Program

1. Factor analysis
Parametric model
Ambiguities in the model (factor rotation problem)
Learning the parameters by maximum likelihood estimation
Probabilistic principal component analysis as special case

2. Independent component analysis
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Parametric model for factor analysis

▶ In factor analysis (FA), all random variables are Gaussian.
▶ Importantly, the number of latents H is assumed smaller than

the number of visibles D.
▶ Latents: p(h) = N (h; 0, I) (uncorrelated standard normal)
▶ Conditional p(v|h; θ) is Gaussian

p(v|h; θ) = N (v; Fh + c,ΨΨΨ)

Parameters θ are
▶ Vector c ∈ RD : sets the mean of v
▶ F = (f1, . . . fH): D × H matrix with D > H

Columns fi are called “factors”, its elements the “factor
loadings”.

▶ ΨΨΨ: diagonal matrix ΨΨΨ = diag(Ψ1, . . . , ΨD)
Tuning parameter: the number of factors H
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Parametric model for factor analysis

▶ p(v|h; θ) = N (v; Fh + c,ΨΨΨ) is equivalent to

v = Fh + c + ϵ

=
H∑

i=1
fihi + c + ϵ ϵ ∼ N (ϵ; 0,ΨΨΨ)

▶ Data generation: Add H < D factors weighted by hi to the
constant vector c, and corrupt the “signal” Fh + c by additive
Gaussian noise.

▶ Fh spans a H dimensional subspace of RD
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Interesting structure of the data is contained in a subspace

Example for D = 2, H = 1.
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Interesting structure of the data is contained in a subspace

Example for D = 3, H = 2 (“pancake” in the 3D space)
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(points below the plane not shown)

(Figures courtesy of David Barber)
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Basic results that we need

▶ If x has density N (x;µµµx , Cx ), z density N (z;µµµz , Cz), and
x ⊥⊥ z then y = Ax + z has density

N (y; Aµµµx + µµµz , ACxA⊤ + Cz)

(see e.g. Barber Result 8.3 or Deisenroth et al (Math for ML), Sec 6.5)

▶ An orthonormal (orthogonal) matrix R is a square matrix for
which the transpose R⊤ equals the inverse R−1, i.e.

R⊤ = R−1 or R⊤R = RR⊤ = I

(see e.g. Barber Appendix A.1 or Deisenroth et al (Math for ML), Sec 3.4)

▶ Orthonormal matrices rotate points.
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Factor rotation problem

▶ Using the basic results, we obtain

v = Fh + c + ϵ

= F(RR⊤)h + c + ϵ

= (FR)(R⊤h) + c + ϵ

= (FR)h̃ + c + ϵ

▶ Since p(h) = N (h; 0, I) and R is orthonormal,
p(h̃) = N (h̃; 0, I), and the two models

v = Fh + c + ϵ v = (FR)h̃ + c + ϵ

produce data with exactly the same distribution.
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Factor rotation problem

▶ Two estimates F̂ and F̂R explain the data equally well.
▶ Estimation of the factor matrix F is not unique.
▶ With the Gaussianity assumption on h, there is a rotational

ambiguity in the factor analysis model.
▶ The columns of F and FR span the same subspace, so that

the FA model is best understood to define a subspace of the
data space.

▶ The individual columns of F (factors) carry little meaning by
themselves.

▶ There are post-processing methods that choose R after
estimation of F so that the columns of FR have some
desirable properties to aid interpretation, e.g. that they have
as many zeros as possible (sparsity).
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Likelihood function

▶ We have seen that the FA model can be written as

v = Fh + c + ϵ h ∼ N (h; 0, I) ϵ ∼ N (ϵ; 0,ΨΨΨ)

with ϵ ⊥⊥ h
▶ From the basic results on multivariate Gaussians: v is

Gaussian with mean and variance equal to

E [v] = c V [v] = FF⊤ + ΨΨΨ

▶ Likelihood is given by likelihood for multivariate Gaussian.
▶ But due to the form of the covariance matrix of v, closed form

solution is not possible and iterative methods are needed (see
e.g. Barber Section 21.2, not examinable).
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Probabilistic principal component analysis as special case

▶ In FA, the variances Ψi of the additive noise ϵ can be different
for each dimension.

▶ Probabilistic principal component analysis (PPCA) is obtained
for

Ψi = σ2 ΨΨΨ = σ2I
▶ FA has a richer description of the additive noise than PCA.
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Program

1. Factor analysis
Parametric model
Ambiguities in the model (factor rotation problem)
Learning the parameters by maximum likelihood estimation
Probabilistic principal component analysis as special case

2. Independent component analysis
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Program

1. Factor analysis

2. Independent component analysis
Parametric model
Ambiguities in the model
sub-Gaussian and super-Gaussian pdfs
Learning the parameters by maximum likelihood estimation
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Parametric model for independent component analysis

▶ In ICA, unlike in FA, the latents are assumed to be
non-Gaussian. (one latent can be assumed to be Gaussian)

▶ The latents hi are assumed to be statistically independent

ph(h) =
∏

i
ph(hi)

▶ Conditional p(v|h; θ) is generally Gaussian

p(v|h; θ) = N (v; Fh + c,ΨΨΨ) or v = Fh + c + ϵ

Called “noisy” ICA
▶ The number of latents H can be larger than D

(“overcomplete” case) or smaller (“undercomplete” case).
▶ We here consider the widely used special case where the noise

is zero and H = D (“noise-free square ICA model”).
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Parametric model for independent component analysis

In ICA, the matrix F is typically denoted by A and called the
“mixing” matrix. The model is

v = Ah ph(h) =
D∏

i=1
ph(hi)

where the hi are typically assumed to have zero mean and unit
variance.
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Ambiguities

▶ Denote the columns of A by ai .
▶ From

v = Ah =
D∑

i=1
aihi =

D∑
k=1

aik hik =
D∑

i=1
(aiαi)

1
αi

hi

it follows that the ICA model has an ambiguity regarding the
ordering of the columns of A and their scaling.

▶ The unit variance assumption on the latents fixes the scaling
but not the ordering ambiguity.

▶ Note: for non-Gaussian latents, there is no rotational
ambiguity.
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Non-Gaussian latents: variables with sub-Gaussian pdfs

▶ Sub-Gaussian pdf: (assume variables have mean zero) pdf that
is less peaked at zero than a Gaussian of the same variance.

▶ Example: uniform random variable
Samples (h1, h2) Samples (v1, v2)

Horizontal axes: h1 and v1. Vertical axes h2 and v2. Not in the same scale
(Adapted from Figures 7.5 and 7.6, Independent Component Analysis by Hyvärinen, Karhunen, and Oja).
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Non-Gaussian latents: variables with super-Gaussian pdfs

▶ Super-Gaussian pdf: (assume variables have mean zero) pdf
that is more peaked at zero than a Gaussian of the same
variance.

▶ Example: Laplace random variable, where p(hi) ∝ exp(−
√

2|hi |)
Samples (h1, h2) Samples (v1, v2)

Horizontal axes: h1 and v1. Vertical axes h2 and v2. Not in the same scale
(Adapted from Figures 7.8 and 7.9, Independent Component Analysis by Hyvärinen, Karhunen, and Oja).
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Distribution of the visibles
▶ The mapping h 7→ v = Ah is deterministic and invertible. By

the laws of transformation of random variables
p(v; A) = ph(A−1v)| det A−1|

(see e.g. Barber Result 8.1 or Deisenroth et al (Math for ML), Sec 6.7.2)
▶ Denote the inverse of A by B

A−1v = Bv =

b1v
...

bDv


where the b1, . . . , bD are the row vectors of the matrix B.

▶ Given the independence of the latents, we thus have
p(v; A) = ph(A−1v)| det A−1| = ph(Bv)| det B|

=
[ D∏

j=1
ph(bjv)

]
| det B|
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Likelihood function

▶ Since the mapping from A to B is invertible. We can write
the likelihood function in terms of the matrix B,

▶ Given iid data D = {v1, . . . , vn}, we obtain

L(B) =
n∏

i=1

[ D∏
j=1

ph(bjvi)
]
| det B|

▶ The log-likelihood is given by

ℓ(B) =
n∑

i=1

D∑
j=1

log ph(bjvi) + n log | det B|

▶ Can be optimised using gradient ascent (slow) or with more
powerful methods (see Barber 21.6, not examinable)

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 24 / 26

https://creativecommons.org/licenses/by/4.0/


The likelihood and the distribution of the latents

ℓ(B) =
∑n

i=1

∑D
j=1 log ph(bjvi ) + n log | det B|

▶ B and hence the mixing A can be uniquely estimated, up to
the scaling and order ambiguity, as long as the ph are
non-Gaussian (one latent Gaussian is allowed).

▶ Non-Gaussianity assumption on the latents solves the “factor
rotation” problem in FA.

▶ The pdf ph of the latents enter the (log) likelihood.
▶ If not known, they have to be estimated, which is difficult.
▶ It turns out that learning whether ph is super-Gaussian or

sub-Gaussian is enough. (not examinable, Section 9.1.2 of Independent
Component Analysis by Hyvärinen, Karhunen, and Oja)
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Program recap

1. Factor analysis
Parametric model
Ambiguities in the model (factor rotation problem)
Learning the parameters by maximum likelihood estimation
Probabilistic principal component analysis as special case

2. Independent component analysis
Parametric model
Ambiguities in the model
sub-Gaussian and super-Gaussian pdfs
Learning the parameters by maximum likelihood estimation
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