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Recap

▶ Topic 1: Representation What reasonably weak assumptions
can we make to efficiently represent p(x, y, z)?
▶ Directed and undirected graphical models
▶ Factorisation and independencies

▶ Topic 2: Exact inference Can we further exploit the
assumptions on p(x, y, z) to efficiently compute the posterior
probability or derived quantities?
▶ Yes! Use factorisation, distributive law, cache computations
▶ Variable elimination and message passing algorithms
▶ Inference for hidden Markov models

▶ Topic 3: Actions and decision making How to predict the
outcome of actions and choose optimal actions?
▶ Actions as interventions in the data generating process
▶ Graph surgery and computation of postinterventional

distributions
▶ Decision theory and common loss functions
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Recap

p(x|yo) =
∑

z
p(x,yo ,z)∑

x,z
p(x,yo ,z)

▶ Topic 4: Learning How can we learn p(x, y, z) from data?
▶ Probabilistic, statistical, and Bayesian models
▶ Learning by parameter estimation and learning by Bayesian

inference
▶ Basic models to illustrate the concepts.
▶ Models for factor and independent component analysis, and

their estimation by maximising the likelihood.
▶ Issue 5: For some models, exact inference and learning is too

costly even after fully exploiting the assumptions made.
Topic 5: Approximate inference and learning
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Recap

Examples we have seen where inference and learning is too costly:
▶ Computing marginals when exploiting a factorisation is

impossible.
▶ During variable elimination, we may generate new factors that

depend on many variables.
▶ Even if we can compute p(x|yo), if x is high-dimensional, we

will generally not be able to compute expectations such as

E [g(x) | yo] =
∫

g(x)p(x|yo)dx

for some function g .
▶ Solving optimisation problems such as argmaxθ ℓ(θ) can be

computationally costly.
▶ Here: focus on computational issues of evaluating ℓ(θ) that

arise from high-dimensional integrals (sums).
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Computing integrals

∫
x∈S f (x)dx S ⊆ Rd

▶ In some cases, closed form solutions possible.
▶ If x is low-dimensional (d ≤ 2 or ≤ 3), highly accurate

numerical methods exist (with e.g. Simpson’s rule),

0

2
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-2 -1 0 1 2

see https://en.wikipedia.org/wiki/Numerical_integration.
▶ Curse of dimensionality: Solutions feasible in low dimensions

become quickly computationally prohibitive as the dimension
d increases.

▶ We then say that evaluating the integral (sum) is
computationally “intractable”.
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Program

1. Intractable likelihoods due to unobserved variables

2. Intractable likelihoods due to intractable partition functions

3. Combined case of unobserved variables and intractable partition
functions
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Program

1. Intractable likelihoods due to unobserved variables
Unobserved variables
The likelihood function is implicitly defined via an integral
The gradient of the log-likelihood can be computed by
solving an inference problem

2. Intractable likelihoods due to intractable partition functions

3. Combined case of unobserved variables and intractable partition
functions

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 7 / 31

https://creativecommons.org/licenses/by/4.0/


Unobserved variables

▶ Observed data D correspond to observations of some random
variables.

▶ Our model may contain random variables for which we do not
have observations, i.e. “unobserved variables”.

▶ Conceptually, we can distinguish between
▶ hidden/latent variables: random variables that are important

for the model description but for which we (normally) never
observe data (see e.g. HMM, factor analysis)

▶ variables for which data are missing: these are random
variables that are (normally) observed but for which D does
not contain observations for some reason
(e.g. some people refuse to answer in polls, malfunction of the
measurement device, etc. )
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The likelihood in presence of unobserved variables

▶ Likelihood function is (proportional to the) probability that the
model generates data like the observed one for parameter θ

▶ We thus need to know the distribution of the variables for
which we have data (e.g. the “visibles” v)

▶ If the model is defined in terms of the visibles and unobserved
variables u, we have to marginalise out the unobserved
variables (sum rule) to obtain the distribution of the visibles

p(v; θ) =
∫

u
p(u, v; θ)du

(replace with sum in case of discrete variables)
▶ Likelihood function is implicitly defined via an integral

L(θ) = p(D; θ) =
∫

u
p(u, D; θ)du,

which is generally intractable to compute.
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Evaluating the likelihood by solving an inference problem

▶ The problem of computing the integral

p(v; θ) =
∫

u
p(u, v; θ)du

corresponds to a marginal inference problem.
▶ Even if an analytical solution is not possible, we can

sometimes exploit the properties of the model
(independencies!) to numerically compute the marginal
efficiently, e.g. by message passing.

▶ For each likelihood evaluation, we then have to solve a
marginal inference problem.

▶ Example: In HMMs the likelihood of θ can be computed using
the alpha recursion (see before). Note that this only provides
the value of L(θ) at a specific value of θ, and not the whole
function.

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 10 / 31

https://creativecommons.org/licenses/by/4.0/


Evaluating the gradient by solving an inference problem

▶ The likelihood is often maximised by gradient ascent

θ′ = θ + ϵ∇θℓ(θ)

where ϵ denotes the step-size.
▶ For a model p(u, v; θ) with data D for v, the gradient ∇θℓ(θ)

can be expressed as

∇θℓ(θ) = Eu∼p(u|D;θ) [∇θ log p(u, D; θ)]

Note: the expectation is taken with respect to p(u|D; θ).
(see later slides for a proof)
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Evaluating the gradient by solving an inference problem

∇θℓ(θ) = Eu∼p(u|D;θ) [∇θ log p(u, D; θ)]

Interpretation:
▶ ∇θ log p(u, D; θ) is the gradient of the log-likelihood if we had

observed the data (u, D) (gradient after “filling-in” data).
▶ p(u|D; θ) indicates which values of u are plausible given D

(and when using parameter value θ).
▶ ∇θℓ(θ) is a weighted average of gradients for filled-in data

where the weight indicates the plausibility of the values that
are used to fill-in the missing data.
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Proof (not examinable)

The key to the proof of

∇θℓ(θ) = Eu∼p(u|D;θ) [∇θ log p(u, D; θ)]

is that f ′(x) = log f (x)′f (x) for some function f (x).

∇θℓ(θ) = ∇θ log
∫

u
p(u, D; θ)du

= 1∫
u p(u, D; θ)du

∫
u

∇θp(u, D; θ)du

=
∫

u ∇θp(u, D; θ)du
p(D; θ)

=
∫

u [∇θ log p(u, D; θ)] p(u, D; θ)du
p(D; θ)

=
∫

u
[∇θ log p(u, D; θ)] p(u|D; θ)du

= Eu∼p(u|D;θ) [∇θ log p(u, D; θ)]

where we have used that p(u|D; θ) = p(u, D; θ)/p(D; θ).
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How helpful is the connection to inference?

▶ The (log) likelihood can be computed by solving an inference
problem.

▶ Its gradient also requires solving an inference problem, with an
additional expectation step.

▶ Practical when inference is fast/tractable and the required
expectations are computable.

▶ Allows one to use approximate inference methods (e.g.
sampling) for likelihood-based learning.
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Program

1. Intractable likelihoods due to unobserved variables
Unobserved variables
The likelihood function is implicitly defined via an integral
The gradient of the log-likelihood can be computed by
solving an inference problem

2. Intractable likelihoods due to intractable partition functions

3. Combined case of unobserved variables and intractable partition
functions
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Program

1. Intractable likelihoods due to unobserved variables

2. Intractable likelihoods due to intractable partition functions
Unnormalised models and the partition function
The likelihood function is implicitly defined via an integral
The gradient of the log-likelihood can be computed by
solving an inference problem

3. Combined case of unobserved variables and intractable partition
functions
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Unnormalised (energy-based) statistical models

▶ Unnormalised statistical models: statistical models where
some elements p̃(x; θ) do not integrate/sum to one∫

p̃(x; θ)dx = Z (θ) ̸= 1

▶ Partition function Z (θ) can be used to normalise
unnormalised models via

p(x; θ) = p̃(x; θ)
Z (θ)

▶ But Z (θ) is only implicitly defined via an integral: to evaluate
Z at θ, we have so compute an integral.
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The partition function is part of the likelihood function

▶ Consider p(x ; θ) = p̃(x ;θ)
Z(θ) =

exp
(

−θ x2
2

)
√

2π/θ

▶ Log-likelihood function for precision θ ≥ 0

ℓ(θ) = −n log

√
2π

θ
−θ

n∑
i=1

x2
i
2

▶ Data-dependent and
independent terms balance
each other.

▶ Ignoring Z (θ) leads to a
meaningless solution.

▶ Errors in approximations of
Z (θ) lead to errors in MLE.
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The partition function is part of the likelihood function

▶ Assume you want to learn the parameters for an unnormalised
statistical model p̃(x; θ) by maximising the likelihood.

▶ For the likelihood function, we need the normalised statistical
model p(x; θ)

p(x; θ) = p̃(x; θ)
Z (θ) Z (θ) =

∫
p̃(x; θ)dx

▶ Partition function enters the log-likelihood function

ℓ(θ) =
n∑

i=1
log p(xi ; θ)

=
n∑

i=1
log p̃(xi ; θ) − n log Z (θ)

▶ If the partition function is expensive to evaluate, evaluating
and maximising the likelihood function is expensive.
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The partition function in Bayesian inference

▶ Since the likelihood function is needed in Bayesian inference,
intractable partition functions are also an issue here.

▶ The posterior is

p(θ; D) ∝ L(θ)p(θ)

∝ p̃(D; θ)
Z (θ) p(θ)

▶ Requires the partition function.
▶ If the partition function is expensive to evaluate,

likelihood-based learning (MLE or Bayesian inference) is
expensive.
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Evaluating ∇θℓ(θ) by solving an inference problem
▶ For a model p(x; θ) = p̃(x; θ)/Z (θ), the gradient ∇θℓ(θ) can

be expressed as

∇θℓ(θ) =
n∑

i=1
m(xi ; θ) − n

∫
m(x; θ)p(x; θ)dx

∝ 1
n

n∑
i=1

m(xi ; θ) − Ep(x;θ) [m(x; θ)]

with m(x; θ) = ∇θ log p̃(x; θ) (see proof below)
▶ Compares empirical expectation of features m(x; θ) with

expectation under the model.
▶ Parameters θ are updated to reduce mismatch.
▶ Gradient ascent on ℓ(θ) is possible if the expected value

Ep(x;θ) [m(x; θ)] can be computed.
▶ Problem of computing the partition function becomes a

problem of computing the expected value with respect to
p(x; θ).
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Proof (not examinable)

We can write the gradient of the log-likelihood function as follows

∇θℓ(θ) = ∇θ

n∑
i=1

log p(xi ; θ)

= ∇θ

n∑
i=1

log p̃(xi ; θ)
Z (θ)

= ∇θ

n∑
i=1

log p̃(xi ; θ) − ∇θn log Z (θ)

=
n∑

i=1
∇θ log p̃(xi ; θ)︸ ︷︷ ︸

m(xi ;θ)

−n∇θ log Z (θ)

=
n∑

i=1
m(xi ; θ) − n∇θ log Z (θ)
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The gradient ∇θ log Z (θ) is

∇θ log Z (θ) = 1
Z (θ)∇θZ (θ)

= 1
Z (θ)∇θ

∫
p̃(x; θ)dx

=
∫

∇θp̃(x; θ)dx
Z (θ)

Since (log f (x))′ = f ′(x)
f (x) we have f ′(x) = (log f (x))′f (x) so that

∇θ log Z (θ) =
∫

∇θ [log p̃(x; θ)] p̃(x; θ)dx
Z (θ)

=
∫

∇θ [log p̃(x; θ)]︸ ︷︷ ︸
m(x;θ)

p(x; θ)dx

=
∫

m(x; θ)p(x; θ)dx

which concludes the proof.
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Program

1. Intractable likelihoods due to unobserved variables

2. Intractable likelihoods due to intractable partition functions
Unnormalised models and the partition function
The likelihood function is implicitly defined via an integral
The gradient of the log-likelihood can be computed by
solving an inference problem

3. Combined case of unobserved variables and intractable partition
functions
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Program

1. Intractable likelihoods due to unobserved variables

2. Intractable likelihoods due to intractable partition functions

3. Combined case of unobserved variables and intractable partition
functions

Restricted Boltzmann machine example
The likelihood function is implicitly defined via an integral
The gradient of the log-likelihood can be computed by
solving two inference problems
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Unnormalised models with unobserved variables
In some cases, we both have unobserved variables and intractable
partition functions.

Example: Restricted Boltzmann machines (see exercises)

▶ Unnormalised statistical model (binary vi , hi ∈ {0, 1})

p(v, h; W, a, b) ∝ exp
(
v⊤Wh + a⊤v + b⊤h

)
▶ Partition function (see exercises)

Z (W, a, b) =
∑
v,h

exp
(
v⊤Wh + a⊤v + b⊤h

)

=
∑

v
exp

(∑
i

aivi

) dim(h)∏
j=1

[
1 + exp

(∑
i

viWij + bj

)]

▶ Becomes quickly very expensive to compute as the dimension
of v, i.e. the number of visibles, increases.
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Unobserved variables and intractable partition functions

▶ Assume we have data D about the visibles v and the
statistical model is specified as

p(u, v; θ) ∝ p̃(u, v; θ)
∫

u,v
p̃(u, v; θ)dudv = Z (θ) ̸= 1

▶ Log-likelihood features two generally intractable integrals

ℓ(θ) = log
[∫

u
p̃(u, D; θ)du

]
− log

[∫
u,v

p̃(u, v; θ)dudv
]
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Unobserved variables and intractable partition functions

▶ The gradient ∇θℓ(θ) is given by the difference of two
expectations Due to unobs vars

Due to partition func

∇θℓ(θ) = Ep(u|D;θ) [m(u, D; θ)] − Ep(u,v;θ) [m(u, v; θ)]

where
m(u, v; θ) = ∇θ log p̃(u, v; θ)

▶ The first expectation is with respect to p(u|D; θ).
▶ The second expectation is with respect to p(u, v; θ).
▶ Gradient ascent on ℓ(θ) is possible if the two expectations can

be computed. Typically done by taking a sample average, and
hence requires sampling from p(u|D; θ) and p(u, v; θ).
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Proof (not examinable)

▶ For the second term due to the log partition function, the
same calculations as before give

∇θ log Z (θ) =
∫

[∇θ log p̃(u, v; θ)] p(u, v; θ)dudv

(with (u, v) taking the role of x)

▶ For the first term, the same steps as for the case of
normalised models with unobserved variables give

∇θ log
∫

u
p̃(u, D; θ)du =

∫
u [∇θ log p̃(u, D; θ)] p̃(u, D; θ)du

p̃(D; θ)

▶ Moreover

p̃(u, D; θ)
p̃(D; θ) = p̃(u, D; θ)/Z (θ)

p̃(D; θ)/Z (θ) = p(u, D; θ)
p(D; θ) = p(u|D; θ)
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Proof (not examinable)

▶ Hence

∇θ log
∫

u
p̃(u, D; θ)du =

∫
u

[∇θ log p̃(u, D; θ)] p(u|D; θ)du

=
∫

u
m(u, D; θ)p(u|D; θ)du

▶ Posterior expectation of m(u, v; θ) when evaluated at v = D,
and where the expectation is taken with respect to the
posterior p(u|D; θ).
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Program recap

1. Intractable likelihoods due to unobserved variables
Unobserved variables
The likelihood function is implicitly defined via an integral
The gradient of the log-likelihood can be computed by solving an
inference problem

2. Intractable likelihoods due to intractable partition functions
Unnormalised models and the partition function
The likelihood function is implicitly defined via an integral
The gradient of the log-likelihood can be computed by solving an
inference problem

3. Combined case of unobserved variables and intractable partition
functions

Restricted Boltzmann machine example
The likelihood function is implicitly defined via an integral
The gradient of the log-likelihood can be computed by solving two
inference problems
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