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Recap

» Learning and inference often involves integrals that are hard
to compute.

» For example:
> Marginalisation/inference: p(x) = | p(x,y)dy

» Likelihood in case of unobserved variables:
L(8) = p(D;0) = |, p(u, D; 0)du

» We here discuss a variational approach to (approximate)
inference and learning.
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History

Variational methods have a long history, in particular in physics.
For example:
» Fermat's principle (1650) to explain the path of light: “light
travels between two given points along the path of shortest
time” (see e.g. http://wuw.feynmanlectures.caltech.edu/I_26.html)

» Principle of least action in classical mechanics and beyond (see

e.g. http://www.feynmanlectures.caltech.edu/II_19.html)
» Finite elements methods to solve problems in fluid dynamics
or civil engineering.
Loosely speaking: the general idea is to frame the original problem
in terms of an optimisation problem.
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Program

1. Preparations
2. The variational principle
3. Application to inference

4. Application to learning
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Program

1. Preparations
o Concavity of the logarithm and Jensen's inequality
o Kullback-Leibler divergence and its properties
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log(u) is a concave function
» log(u) is a concave function
log((1 —a)uy +aup) > (1—a)log(uy) + alog(uy) a € [0,1]
(1 — a)x 4+ ay with a € [0, 1] linearly interpolates between x and y.

» log(average) > average (log)

log(u)
» Generalisation

06 Elg(9)] > El0g8(x)] | /

with g(x) > 0 ty tz

log(u1) |

» Called Jensen’s inequality for concave functions.
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Kullback-Leibler divergence

» Kullback Leibler divergence KL(p||q)
p(x P\X
KL(pllq) = / p(x) log 2 x = Ep(x) ['Og Q] (1)
q(x)
» Properties

» KL(p||g) = 0 if and only if (iff) p=gq
(they may be different on sets of probability zero under p)

> KL(p||q) # KL(ql|p)
> KL(p|lg) >0

» Non-negativity follows from the concavity of the logarithm.
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Non-negativity of the KL divergence

Non-negativity follows from the concavity of the logarithm.

~KL(plla) = ~Epy [log 2] 2
rofug] o

q(x)]
< Iong [ p(x). | (4)

fp(x)ggxg dx=1

Hence —KL(p||q) < log(1) = 0 and thus

KL(p||g) >0 (5)
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Asymmetry of the KL divergence

Blue: mixture of Gaussians p(x) (fixed)
Green: (unimodal) Gaussian g that minimises KL(q||p)

Red: (unimodal) Gaussian g that minimises KL(p||q)
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Barber Figure 28.1, Section 28.3.4
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Asymmetry of the KL divergence

argmin, KL(g||p) = argmin, | g(x) log %dx

» Large penalty when g(x) is large but p(x) is small.
» No penalty when g(x) is small but p(x) is large.
» Encourages g(x) < p(x). Produces good local fit, “mode seeking”.

argmin, KL(p||q) = argmin, [ p(x) log Zg; dx

» Large penalty when g(x) is small but p(x) is large.
» No penalty when g(x) is large but p(x) is small.
» Encourages q(x) > p(x). Produces global fit, corresponds to MLE.
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Asymmetry of the KL divergence

Blue: mixture of Gaussians p(x) (fixed)
Red: optimal (unimodal) Gaussians g(x)

Global fit (left) versus mode seeking (middle and right). (two local

minima are shown)
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Bishop Figure 10.3
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Program

1. Preparations
o Concavity of the logarithm and Jensen's inequality
o Kullback-Leibler divergence and its properties
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Program

2. The variational principle
o Variational lower bound
o Maximising the ELBO to compute the marginal and
conditional from the joint
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Variational lower bound: auxiliary distribution

Consider joint pdf /pmf p(x,y) with marginal p(x) = [ p(x,y)dy
» We can write p(x) as

0% p(x,y)
p(x) = [ p )Ty = Eqy [—q@,x)] (6)

where g(y|x) is an auxiliary distribution (called the variational
distribution in the context of variational inference/learning)
for a given x.

» Log marginal is

p(X, y)] (7)

Iog p(x) — |Og Eq(y\x) [q(y\x)

» Approximating the expectation with a sample average leads to
importance sampling. Another approach is to work with the
concavity of the logarithm instead.
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Variational lower bound: concavity of the logarithm

» Concavity of the log gives

This is the variational lower bound for log p(x).

» Right-hand side is called the (variational) free energy Fx(q) or
the evidence lower bound (ELBO) L4(q)

Lx(q) = Eqyx) [|0g Z(();":))] (9)

» Since g is a function, the ELBO is a functional, which is a
mapping that depends on a function.
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Properties of the ELBO

B (x,y)
Lx(q) = Eq(y|x) ['Og 5<y|§)}

» By manipulating the definition of the ELBO, we obtain the
following equivalent forms

Lx(q) = log p(x) — KL(q(y|x)|[p(y[x)) (10)
= Eq(yx) log p(x]y) — KL(q(y[x)[[p(y))  (11)
— Eq(y|x) log p(X, y) + H(Q) (12)

where p(y) is the marginal of p(x,y) and #(q) is the entropy
of g.

» Entropy is a measure of randomness/variability of a variable

H(q) = —Eqyx) [log g(y[x)] (13)

Larger entropy means more variability.

PMR 2025 ©OGutmann, University of Edinburgh CC BY 4.0 16 / 44


https://creativecommons.org/licenses/by/4.0/

Properties of the ELBO (proof)

» First expression:

p(y\X)p(X)]
qg(y|x)
p(y|x)
q(y|x)
p(y|x)

aly x>] +log plx)

= —KL(q(y|x)||p(y|x)) + log p(x)

Lx(q) = Eqylx) ['Og ]—Eq(y\x) log

q(y|x) |Og + log p(X)]

a(ylx) 'Og

» Second expression is obtained similarly but using

p(x,y) = p(x|y)p(y) instead of p(x,y) = p(y|x)p(x) above.
» Third expression from the definition of the entropy.
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Tightness of the ELBO

> From Lx(q) = log p(x) — KL(q(y[x)||p(y[x)) and
non-negativity of the KL divergence, we have

1. log p(x) > Lx(q) (as before)

2. log p(x) = Lx(q) < q(y|x) = p(y|x)
» Maximising L(q) with respect to g yields both log p(x) and
the conditional p(y|x) at the same time.

» Makes sense: if we know p(x,y) and p(x), we know p(y|x),
and vice versa, since p(y|x) = p(x,y)/p(x).
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Alternative approach

» \We started from the task of approximating the marginal

p(x) = [ p(x,y)dy (14)

» Alternative starting point is the task of approximating the
conditional p(y|x) for some given x by a distribution g(y|x).

» Measuring the quality of the approximation q(y|x) by
KL(q(y[x)[lp(y[x)) gives

KL(q(y[x)|[p(y[x)) = log p(x) — Lx(q) (15)

Same key result as before.
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Variational principle

» By maximising the ELBO

p(X, y)]

Ex(q) — IE‘j‘q(y|x) [|Og q(y\x)

we can split the joint p(x,y) into p(x) and p(y|x)

log p(x) = max Lx(q)

p(y|x) = Argmax Ly(q)

» Highlights the variational principle: The inference problem is
expressed in terms of an optimisation problem.
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Solving the optimisation problem

£x() = Eq(ype |log 254 |
» Difficulties when maximising the ELBO:

» Learning of a pdf/pmf g(y|x)
» Maximisation when objective involves E ) that depends on g

» Restrict search space to a family Q of variational distributions
q(y|x) for which L£4(q) is computable.
» Family O specified by

» independence assumptions, e.g. q(y|x) =]]; q(yi|x), which
corresponds to “mean-field” variational inference
» parametric assumptions, e.g. q(y;|x) = N (y;; 1i(x), 02(x))

» Discussed in more detail later.

» L.(q) can be computed analytically in closed form only in
special cases.
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Program

2. The variational principle
o Variational lower bound
o Maximising the ELBO to compute the marginal and
conditional from the joint
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Program

3. Application to inference
e The mechanics
o Interpretation
o Nature of the approximation
o Mean-field variational inference
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Approximate posterior inference

» Inference task: given value x = x, and joint pdf/pmf p(x,y),

compute p(y|xo).
» Variational approach: estimate the posterior by solving an

optimisation problem

p(y|xo) = argmax Ly, (q) (16)
qgeQ

Q is the set of pdfs/pmfs in which we search for the solution

» From the basic property of the ELBO in Equation (10)

log p(xo) = KL(q(y[xo)[lp(y[xo)) + Lx,(q) = const  (17)

» Because the sum of the KL and ELBO is constant, we have

argmax Ly, (q) = argmin KL(q(y|xo)||p(y|xo)) (18)
qeQ qeQ
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Posterior as compromise between prior and fit

» Equivalent forms of the ELBO:

Ly, (q) = Eq(yix.) log p(xoly) —KL(q(y|x0)|lp(y))  (19)

» By maximising L« (q) we find a g that
» produces y which are likely explanations of x,
» stays close to the prior p(y)

» If included in the search space Q, p(y|x,) is the optimal g,
which means that the posterior fulfils the two desiderata best.

» Defines posterior as solution to a regularised decision making
problem. (But unlike in the expected loss principle, we here take the

expectation with respect to our guess).
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As compromise between variable and likely imputations

» Equivalent forms of the ELBO:

Lxo(q) = Eq(yx,) log p(X0,y) + H(q) (20)

» By maximising L« (q) we find a g that
» produces likely imputations (filled-in data) y
» is maximally variable

» If included in the search space Q, p(y|x,) is the optimal g,
which means that the posterior fulfils the two desiderata best.

» Defines posterior as solution to a regularised decision making
problem. (But unlike in the expected loss principle, we here take the

expectation with respect to our guess).

PMR 2025 ©OGutmann, University of Edinburgh CC BY 4.0 26 / 44


https://creativecommons.org/licenses/by/4.0/

Nature of the approximation

argmaxgc g Lx,(q) = argmingc o KL(q(y[xo)|[p(y[x0))

» When minimising KL(q||p) with respect to g, g will try very
hard to be zero where p is small.

» Assume true posterior is correlated bivariate Gaussian and we
work with @ = {q(y[xo) : q(¥/x0) = q(y1]%0)q(y2|x0)}

(independence but no parametric assumptions)

1
» Optimal g is Gaussian.

) y
» Mean is correct but ’

variances dictated by the
variances of p(y|xo) 0.5
along the y; and y» axes. mean field

: : : approximation
» Posterior variance is

underestimated. 0

0 0.5 Y1 1
(Bishop, Figure 10.2)
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Nature of the approximation

» Assume that true posterior is multimodal, but that the family
of variational distributions Q only includes unimodal
distributions.

» The optimal g(y|x,) only covers one mode: “mode-seeking
behaviour”.

Blue: true posterior
\ Red: approximation

local optimum local optimum

Bishop Figure 10.3 (adapted)
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Mean-field variational inference

» |In mean field variational inference, we assume that the
variational distribution g(y|x) fully factorises, i.e.

q(ylx) = H qi(yilx) (21)

when y is d-dimensional.
» Independence assumption but no parametric assumption

» An approach to learning the g; is to update one at a time
while keeping the others fixed, called coordinate ascent
variational inference (CAVI).

» We next derive the corresponding update equations.
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Mean-field VI: ELBO

With q(ylx) = 11 qi(yi[x), we have

['x(q) :Eq(y\x) |Og P(X, y) - IEj’q(y\x) |Og q(y‘X)
:qu(y1|x) T IEqd(yd|x) [|Og P(X, y)] _

d
Eai(ax) *** Eqa(yalx) [Z log q,-(y,-|x)]
i=1

Second term simplifies:

d d
Eq, - Eqg, [Z log qi()/ix)] = Egni) - Eaqulyalx) [108 gi(yilx)]
i—1 i=1

d
=D Eq i llog ai(yilx)]
i=1
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Mean-field VI: ELBO

Define g(y\1|x) = HijQ qi(yi|x) so that

d

q(yx) = ][ ai(yilx) = q1(y11x)q(y\1/x) (22)
i=1

Hence

Equ () Eag(yalx) [108 P0G Y)] = Egy (1100 By x) [108 (X, ¥)]
ELBO becomes

Lx(9) = Eq, (4110 Eq(y,, ) [log p(x,¥)] -

d
> Egy1x) [l0g i(yilx)] (23)
i=1

We next maximise Ly(q) with respect to g; while keeping the
other g; fixed.
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Mean-field VI: Optimisation

As we optimise with respect to g; we can drop additive terms from
the ELBO that do not depend on g;. This gives the objective

J(ql) — qu(y1|x)Eq(y\1|x) [|Og P(X, y)] o ECll()/1|x) [|Og di ()/1’)()] (24)
Define p(y1|x)

By 1x) = 2 exp [Eqgy ) 08 p(x.Y)] (25)
Then
J(q1) = Ea1(311%) [log p(y1|x) — log Z] — Ea1 (1 1%) llog g1(y1/x)] (26)
o e X))
= —Eq (1]x) [l & ﬁ(yﬂX)] log Z (27)
= —KL(q1(y1x)[|p(y1[x)) — log £ (28)

Thus

argmax J(q1) = argmin KL(gq1(y1x)[|P(y1[x)) = P(yalx)  (29)
1 1
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Mean-field VI: CAVI updates

» The same calculation for the other marginals gives the CAVI
updates:

1

ailyilx) = pilx),  Blyilx) = 5 exp [Eqry,x) o8 p(x.¥)]|

where q(y\i[x) = [[;2; g(y;[x) is the product of all marginals
without marginal g;(y;|x).
» Corresponds to coordinate ascent in function space.

» In standard CAVI, you update factors in-place and
immediately use the newest values for subsequent updates.
Guarantees non-decreasing ELBO.

» Order can be predetermined or randomised.
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Program

3. Application to inference
e The mechanics
o Interpretation
o Nature of the approximation
o Mean-field variational inference
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Program

4. Application to learning
o Learning with Bayesian models
o Learning with statistical models and unobserved variables
o (Variational) EM algorithm
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Learning by Bayesian inference

» Task 1: For a Bayesian model p(x|0)p(6) = p(x,0), compute
the posterior p(0|D)

» Formally the same problem as before: D = x, and 6 =Y.

» Task 2: For a Bayesian model p(v,h|@)p(0) = p(v, h, ),
compute the posterior p(8|D) where the data D are for the
visibles v only.

» With the equivalence D = x,, and (h,0) =y, we are formally
back to the problem just studied.
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Parameter estimation in presence of unobserved variables

» Task: For the model p(v, h; 8), estimate the parameters 6
from data D on the visibles v only (h is unobserved).

» To evaluate the log likelihood function ¢(8), we need to
evaluate the integral

0(0) =logp(D;0) = Iog/hp(D, h; 9)dh, (30)

which is generally intractable.

» In some cases, £(0) and its gradient can be computed by
solving an inference problem, followed by computing an
expectation.

» Here: use the variational approach.
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Parameter estimation in presence of unobserved variables

» We had
B oy PXY)
Ex(q) — Eq(y|x) [l g q(y\x)] (31)
= log p(x) — KL(q(y[x)|p(y|x)) (32)

» Substitute
x—=D, y—h,  p(xy)—=pD,h;0) (33)

» We then have

Lp(0,q) = Eqnp) [Iog piyz(pl”’l\l;;)g)]

= log p(D; 0) — KL(q(h|D)||p(h|D; 8))  (35)

(34)

» Notation Lp(0, q) highlights dependency on 6 and gq.
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MLE by maximising the ELBO

» Using ¢(0) for the log-likelihood log p(D; @), we have
Lp(0,q) = £(8) — KL(q(h|D)||p(h|D; 6))  (36)
» |f the search space Q is unrestricted or includes p(h|D; )

max Lp(0,q) =4(0) (37)

» Maximum likelihood estimation (MLE)

max Lp(0, q) = max £(0) (38)
0,9 7]

MLE = maximise the ELBO Lp(8, q) with respect to 8 and g

» Restricting the search space Q leads to an approximation
when estimating 6@ and p(h|D; ).
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Variational EM algorithm

Variational expectation maximisation (EM): maximise Lp(8, q) by
iterating between maximisation with respect to 8 and
maximisation with respect to g (coordinate ascent).

c
hes
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>
e
k7 contour plot of the
© ELBO (free energy)
'©
C
o
)
©
©
>

>

model parameters

(Adapted from http://www.cs.cmu.edu/~tom/10-702/Zoubin-702.pdf)
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Where is the “expectation”?

» The optimisation with respect to g is called the “expectation
step”

max Lp(0, g) = max K lo
max p(0,q) max q(h|D)[ g

» Denote the best g by g* so that

p(D,h; 0)
q*(h|D) ] (40)

max Lo(6.9) = £p(6.4°) = Eq- (o) | og

which is defined in terms of an expectation and the reason for
the name “expectation step’.
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Classical EM algorithm

» Denote the parameters at iteration k by 6.

» We know that the optimal g for the expectation step is
q*(h|D) = p(h|D; 0y)

» |f we can compute the posterior p(h|D; 08,), we obtain the
(classical) EM algorithm that iterates between:

E-step: compute the expectation

Lp(0,97) = Epnp; ek)[logP(D h; 0)] —Ep(nipie,) log p(h|D; 0)

4

|nterpretat|on expected does not depend on 6 and
completed log-likelihood of @ does not need to be computed

M-step: maximise with respect to 6

Oky1 = argmax Lp(0,q%) = ATgmax Ephp;6,)[log p(D; h; 0)]
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Classical EM algorithm never decreases the log likelihood

» Assume you have updated the parameters and start iteration
k + 1 with optimisation with respect to g

max Lp(0k,q) (41)

> Optimal solution g ; is the posterior p(h|D; 6)) so that

((0k) = Lp(Ok, g11) (42)
> Optimise with respect to the 8 while keeping g fixed at gy,

max Lp(6, q11) (43)

» Due to maximisation, updated parameter @1 is such that
Lp(Ok+1,Gks1) = Lp(Ok, gry1) = 4(Ok) (44)
» From variational lower bound: ¢(8) > Lp(8, q). Hence:
U(0kt1) = L(Ok+1, Grs1) = €(Ok)
= EM yields non-decreasing sequence ¢(01),¢(0>), .. ..
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Program recap

1. Preparations
e Concavity of the logarithm and Jensen’s inequality
e Kullback-Leibler divergence and its properties

2. The variational principle
e Variational lower bound
e Maximising the ELBO to compute the marginal and conditional
from the joint

3. Application to inference
® The mechanics
@ Interpretation
e Nature of the approximation
e Mean-field variational inference

4. Application to learning
@ Learning with Bayesian models
@ Learning with statistical models and unobserved variables
o (Variational) EM algorithm

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 44 / 44


https://creativecommons.org/licenses/by/4.0/

	Preparations
	Concavity of the logarithm and Jensen's inequality
	Kullback-Leibler divergence and its properties

	The variational principle
	Variational lower bound
	Maximising the ELBO to compute the marginal and conditional from the joint

	Application to inference
	The mechanics
	Interpretation
	Nature of the approximation
	Mean-field variational inference

	Application to learning
	Learning with Bayesian models
	Learning with statistical models and unobserved variables
	(Variational) EM algorithm


