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Recap

▶ Learning and inference often involves integrals that are hard
to compute.

▶ For example:
▶ Marginalisation/inference: p(x) =

∫
y p(x, y)dy

▶ Likelihood in case of unobserved variables:
L(θ) = p(D; θ) =

∫
u p(u, D; θ)du

▶ We here discuss a variational approach to (approximate)
inference and learning.
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History

Variational methods have a long history, in particular in physics.
For example:
▶ Fermat’s principle (1650) to explain the path of light: “light

travels between two given points along the path of shortest
time” (see e.g. http://www.feynmanlectures.caltech.edu/I_26.html)

▶ Principle of least action in classical mechanics and beyond (see
e.g. http://www.feynmanlectures.caltech.edu/II_19.html)

▶ Finite elements methods to solve problems in fluid dynamics
or civil engineering.

Loosely speaking: the general idea is to frame the original problem
in terms of an optimisation problem.
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log(u) is a concave function

▶ log(u) is a concave function

log((1−a)u1 +au2) ≥ (1−a) log(u1)+a log(u2) a ∈ [0, 1]

(1 − a)x + ay with a ∈ [0, 1] linearly interpolates between x and y .

▶ log(average) ≥ average (log)

▶ Generalisation

logE[g(x)] ≥ E[log g(x)]

with g(x) > 0 u1 u2

log(u1)

log(u2)

log(u)

u

log(u)

▶ Called Jensen’s inequality for concave functions.
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Kullback-Leibler divergence

▶ Kullback Leibler divergence KL(p||q)

KL(p||q) =
∫

p(x) log p(x)
q(x)dx = Ep(x)

[
log p(x)

q(x)

]
(1)

▶ Properties
▶ KL(p||q) = 0 if and only if (iff) p = q

(they may be different on sets of probability zero under p)

▶ KL(p||q) ̸= KL(q||p)
▶ KL(p||q) ≥ 0

▶ Non-negativity follows from the concavity of the logarithm.
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Non-negativity of the KL divergence

Non-negativity follows from the concavity of the logarithm.

−KL(p||q) = −Ep(x)

[
log p(x)

q(x)

]
(2)

= Ep(x)

[
log q(x)

p(x)

]
(3)

≤ logEp(x)

[q(x)
p(x)

]
︸ ︷︷ ︸∫

p(x) q(x)
p(x) dx=1

(4)

Hence −KL(p||q) ≤ log(1) = 0 and thus

KL(p||q) ≥ 0 (5)
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Asymmetry of the KL divergence

Blue: mixture of Gaussians p(x) (fixed)

Green: (unimodal) Gaussian q that minimises KL(q||p)

Red: (unimodal) Gaussian q that minimises KL(p||q)
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Barber Figure 28.1, Section 28.3.4
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Asymmetry of the KL divergence
argminq KL(q||p) = argminq

∫
q(x) log q(x)

p(x) dx
▶ Large penalty when q(x) is large but p(x) is small.
▶ No penalty when q(x) is small but p(x) is large.
▶ Encourages q(x) < p(x). Produces good local fit, “mode seeking”.

argminq KL(p||q) = argminq
∫

p(x) log p(x)
q(x) dx

▶ Large penalty when q(x) is small but p(x) is large.
▶ No penalty when q(x) is large but p(x) is small.
▶ Encourages q(x) > p(x). Produces global fit, corresponds to MLE.
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Asymmetry of the KL divergence

Blue: mixture of Gaussians p(x) (fixed)

Red: optimal (unimodal) Gaussians q(x)

Global fit (left) versus mode seeking (middle and right). (two local
minima are shown)

minq KL( p || q) minq KL( q || p) minq KL( q || p)

Bishop Figure 10.3
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Variational lower bound: auxiliary distribution

Consider joint pdf /pmf p(x, y) with marginal p(x) =
∫

p(x, y)dy
▶ We can write p(x) as

p(x) =
∫

p(x, y)q(y|x)
q(y|x)dy = Eq(y|x)

[p(x, y)
q(y|x)

]
(6)

where q(y|x) is an auxiliary distribution (called the variational
distribution in the context of variational inference/learning)
for a given x.

▶ Log marginal is

log p(x) = logEq(y|x)

[p(x, y)
q(y|x)

]
(7)

▶ Approximating the expectation with a sample average leads to
importance sampling. Another approach is to work with the
concavity of the logarithm instead.
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Variational lower bound: concavity of the logarithm

▶ Concavity of the log gives

log p(x) = logEq(y|x)

[p(x, y)
q(y|x)

]
≥ Eq(y|x)

[
log p(x, y)

q(y|x)

]
(8)

This is the variational lower bound for log p(x).
▶ Right-hand side is called the (variational) free energy Fx(q) or

the evidence lower bound (ELBO) Lx(q)

Lx(q) = Eq(y|x)

[
log p(x, y)

q(y|x)

]
(9)

▶ Since q is a function, the ELBO is a functional, which is a
mapping that depends on a function.
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Properties of the ELBO

Lx(q) = Eq(y|x)
[
log p(x,y)

q(y|x)

]
▶ By manipulating the definition of the ELBO, we obtain the

following equivalent forms

Lx(q) = log p(x) − KL(q(y|x)||p(y|x)) (10)
= Eq(y|x) log p(x|y) − KL(q(y|x)||p(y)) (11)
= Eq(y|x) log p(x, y) + H(q) (12)

where p(y) is the marginal of p(x, y) and H(q) is the entropy
of q.

▶ Entropy is a measure of randomness/variability of a variable

H(q) = −Eq(y|x) [log q(y|x)] (13)

Larger entropy means more variability.
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Properties of the ELBO (proof)

▶ First expression:

Lx(q) = Eq(y|x)

[
log p(x, y)

q(y|x)

]
= Eq(y|x)

[
log p(y|x)p(x)

q(y|x)

]
= Eq(y|x)

[
log p(y|x)

q(y|x) + log p(x)
]

= Eq(y|x)

[
log p(y|x)

q(y|x)

]
+ log p(x)

= −KL(q(y|x)||p(y|x)) + log p(x)

▶ Second expression is obtained similarly but using
p(x, y) = p(x|y)p(y) instead of p(x, y) = p(y|x)p(x) above.

▶ Third expression from the definition of the entropy.
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Tightness of the ELBO

▶ From Lx(q) = log p(x) − KL(q(y|x)||p(y|x)) and
non-negativity of the KL divergence, we have

1. log p(x) ≥ Lx(q) (as before)

2. log p(x) = Lx(q) ⇔ q(y|x) = p(y|x)
▶ Maximising Lx(q) with respect to q yields both log p(x) and

the conditional p(y|x) at the same time.
▶ Makes sense: if we know p(x, y) and p(x), we know p(y|x),

and vice versa, since p(y|x) = p(x, y)/p(x).
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Alternative approach

▶ We started from the task of approximating the marginal

p(x) =
∫

p(x, y)dy (14)

▶ Alternative starting point is the task of approximating the
conditional p(y|x) for some given x by a distribution q(y|x).

▶ Measuring the quality of the approximation q(y|x) by
KL(q(y|x)||p(y|x)) gives

KL(q(y|x)||p(y|x)) = log p(x) − Lx(q) (15)

Same key result as before.
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Variational principle

▶ By maximising the ELBO

Lx(q) = Eq(y|x)

[
log p(x, y)

q(y|x)

]
we can split the joint p(x, y) into p(x) and p(y|x)

log p(x) = max
q

Lx(q)

p(y|x) = argmax
q

Lx(q)

▶ Highlights the variational principle: The inference problem is
expressed in terms of an optimisation problem.
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Solving the optimisation problem

Lx(q) = Eq(y|x)
[
log p(x,y)

q(y|x)

]
▶ Difficulties when maximising the ELBO:

▶ Learning of a pdf/pmf q(y|x)
▶ Maximisation when objective involves Eq(y|x) that depends on q

▶ Restrict search space to a family Q of variational distributions
q(y|x) for which Lx(q) is computable.

▶ Family Q specified by
▶ independence assumptions, e.g. q(y|x) =

∏
i q(yi |x), which

corresponds to “mean-field” variational inference
▶ parametric assumptions, e.g. q(yi |x) = N (yi ; µi(x), σ2

i (x))
▶ Discussed in more detail later.
▶ Lx(q) can be computed analytically in closed form only in

special cases.
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Approximate posterior inference

▶ Inference task: given value x = xo and joint pdf/pmf p(x, y),
compute p(y|xo).

▶ Variational approach: estimate the posterior by solving an
optimisation problem

p̂(y|xo) = argmax
q∈Q

Lxo (q) (16)

Q is the set of pdfs/pmfs in which we search for the solution
▶ From the basic property of the ELBO in Equation (10)

log p(xo) = KL(q(y|xo)||p(y|xo)) + Lxo (q) = const (17)

▶ Because the sum of the KL and ELBO is constant, we have

argmax
q∈Q

Lxo (q) = argmin
q∈Q

KL(q(y|xo)||p(y|xo)) (18)
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Posterior as compromise between prior and fit

▶ Equivalent forms of the ELBO:

Lxo (q) = Eq(y|xo) log p(xo|y)−KL(q(y|xo)||p(y)) (19)

▶ By maximising Lxo (q) we find a q that
▶ produces y which are likely explanations of xo
▶ stays close to the prior p(y)

▶ If included in the search space Q, p(y|xo) is the optimal q,
which means that the posterior fulfils the two desiderata best.

▶ Defines posterior as solution to a regularised decision making
problem. (But unlike in the expected loss principle, we here take the
expectation with respect to our guess).
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As compromise between variable and likely imputations

▶ Equivalent forms of the ELBO:

Lxo (q) = Eq(y|xo) log p(xo, y) + H(q) (20)

▶ By maximising Lxo (q) we find a q that
▶ produces likely imputations (filled-in data) y
▶ is maximally variable

▶ If included in the search space Q, p(y|xo) is the optimal q,
which means that the posterior fulfils the two desiderata best.

▶ Defines posterior as solution to a regularised decision making
problem. (But unlike in the expected loss principle, we here take the
expectation with respect to our guess).
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Nature of the approximation
argmaxq∈Q Lxo (q) = argminq∈Q KL(q(y|xo)||p(y|xo))

▶ When minimising KL(q||p) with respect to q, q will try very
hard to be zero where p is small.

▶ Assume true posterior is correlated bivariate Gaussian and we
work with Q = {q(y|xo) : q(y|xo) = q(y1|xo)q(y2|xo)}
(independence but no parametric assumptions)

▶ Optimal q is Gaussian.
▶ Mean is correct but

variances dictated by the
variances of p(y|xo)
along the y1 and y2 axes.

▶ Posterior variance is
underestimated.
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mean �eld 
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approximation

(Bishop, Figure 10.2)
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Nature of the approximation

▶ Assume that true posterior is multimodal, but that the family
of variational distributions Q only includes unimodal
distributions.

▶ The optimal q(y|xo) only covers one mode: “mode-seeking
behaviour”.

local optimumlocal optimum

Blue: true posterior

Red: approximation

Bishop Figure 10.3 (adapted)
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Mean-field variational inference

▶ In mean field variational inference, we assume that the
variational distribution q(y|x) fully factorises, i.e.

q(y|x) =
d∏

i=1
qi(yi |x) (21)

when y is d-dimensional.
▶ Independence assumption but no parametric assumption
▶ An approach to learning the qi is to update one at a time

while keeping the others fixed, called coordinate ascent
variational inference (CAVI).

▶ We next derive the corresponding update equations.
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Mean-field VI: ELBO

With q(y|x) =
∏d

i=1 qi(yi |x), we have

Lx(q) =Eq(y|x) log p(x, y) − Eq(y|x) log q(y|x)
=Eq1(y1|x) · · ·Eqd (yd |x) [log p(x, y)] −

Eq1(y1|x) · · ·Eqd (yd |x)

[ d∑
i=1

log qi(yi |x)
]

Second term simplifies:

Eq1 · · ·Eqd

[ d∑
i=1

log qi(yi |x)
]

=
d∑

i=1
Eq1(y1|x) · · ·Eqd (yd |x) [log qi(yi |x)]

=
d∑

i=1
Eqi (yi |x) [log qi(yi |x)]
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Mean-field VI: ELBO
Define q(y\1|x) =

∏d
j=2 qi(yi |x) so that

q(y|x) =
d∏

i=1
qi(yi |x) = q1(y1|x)q(y\1|x) (22)

Hence

Eq1(y1|x) · · ·Eqd (yd |x) [log p(x, y)] = Eq1(y1|x)Eq(y\1|x) [log p(x, y)]

ELBO becomes

Lx(q) = Eq1(y1|x)Eq(y\1|x) [log p(x, y)] −
d∑

i=1
Eqi (yi |x) [log qi(yi |x)] (23)

We next maximise Lx(q) with respect to q1 while keeping the
other qi fixed.
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Mean-field VI: Optimisation
As we optimise with respect to q1 we can drop additive terms from
the ELBO that do not depend on q1. This gives the objective
J(q1) = Eq1(y1|x)Eq(y\1|x) [log p(x, y)] −Eq1(y1|x) [log q1(y1|x)] (24)

Define p̄(y1|x)

p̄(y1|x) = 1
Z exp

[
Eq(y\1|x) [log p(x, y)]

]
(25)

Then
J(q1) = Eq1(y1|x) [log p̄(y1|x) − log Z ] − Eq1(y1|x) [log q1(y1|x)] (26)

= −Eq1(y1|x)

[
log q1(y1|x)

p̄(y1|x)

]
− log Z (27)

= −KL(q1(y1|x)||p̄(y1|x)) − log Z (28)
Thus

argmax
q1

J(q1) = argmin
q1

KL(q1(y1|x)||p̄(y1|x)) = p̄(y1|x) (29)
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Mean-field VI: CAVI updates

▶ The same calculation for the other marginals gives the CAVI
updates:

qi(yi |x) = p̄(yi |x), p̄(yi |x) = 1
Z exp

[
Eq(y\i |x) [log p(x, y)]

]
where q(y\i |x) =

∏
j ̸=i q(yj |x) is the product of all marginals

without marginal qi(yi |x).
▶ Corresponds to coordinate ascent in function space.
▶ In standard CAVI, you update factors in-place and

immediately use the newest values for subsequent updates.
Guarantees non-decreasing ELBO.

▶ Order can be predetermined or randomised.
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Learning by Bayesian inference

▶ Task 1: For a Bayesian model p(x|θ)p(θ) = p(x, θ), compute
the posterior p(θ|D)

▶ Formally the same problem as before: D = xo and θ ≡ y.
▶ Task 2: For a Bayesian model p(v, h|θ)p(θ) = p(v, h, θ),

compute the posterior p(θ|D) where the data D are for the
visibles v only.

▶ With the equivalence D = xo and (h, θ) ≡ y, we are formally
back to the problem just studied.
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Parameter estimation in presence of unobserved variables

▶ Task: For the model p(v, h; θ), estimate the parameters θ
from data D on the visibles v only (h is unobserved).

▶ To evaluate the log likelihood function ℓ(θ), we need to
evaluate the integral

ℓ(θ) = log p(D; θ) = log
∫

h
p(D, h; θ)dh, (30)

which is generally intractable.
▶ In some cases, ℓ(θ) and its gradient can be computed by

solving an inference problem, followed by computing an
expectation.

▶ Here: use the variational approach.
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Parameter estimation in presence of unobserved variables

▶ We had

Lx(q) = Eq(y|x)

[
log p(x, y)

q(y|x)

]
(31)

= log p(x) − KL(q(y|x)||p(y|x)) (32)

▶ Substitute

x → D, y → h, p(x, y) → p(D, h; θ) (33)

▶ We then have

LD(θ, q) = Eq(h|D)

[
log p(D, h; θ)

q(h|D)

]
(34)

= log p(D; θ) − KL(q(h|D)||p(h|D; θ)) (35)

▶ Notation LD(θ, q) highlights dependency on θ and q.
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MLE by maximising the ELBO

▶ Using ℓ(θ) for the log-likelihood log p(D; θ), we have

LD(θ, q) = ℓ(θ) − KL(q(h|D)||p(h|D; θ)) (36)

▶ If the search space Q is unrestricted or includes p(h|D; θ)

max
q

LD(θ, q) = ℓ(θ) (37)

▶ Maximum likelihood estimation (MLE)

max
θ,q

LD(θ, q) = max
θ

ℓ(θ) (38)

MLE = maximise the ELBO LD(θ, q) with respect to θ and q
▶ Restricting the search space Q leads to an approximation

when estimating θ and p(h|D; θ).
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Variational EM algorithm
Variational expectation maximisation (EM): maximise LD(θ, q) by
iterating between maximisation with respect to θ and
maximisation with respect to q (coordinate ascent).

model parameters
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contour plot of the
ELBO (free energy)

(Adapted from http://www.cs.cmu.edu/~tom/10-702/Zoubin-702.pdf)
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Where is the “expectation”?

▶ The optimisation with respect to q is called the “expectation
step”

max
q∈Q

LD(θ, q) = max
q∈Q

Eq(h|D)

[
log p(D, h; θ)

q(h|D)

]
(39)

▶ Denote the best q by q∗ so that

max
q∈Q

LD(θ, q) = LD(θ, q∗) = Eq∗(h|D)

[
log p(D, h; θ)

q∗(h|D)

]
(40)

which is defined in terms of an expectation and the reason for
the name “expectation step”.
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Classical EM algorithm

▶ Denote the parameters at iteration k by θk .
▶ We know that the optimal q for the expectation step is

q∗(h|D) = p(h|D; θk)
▶ If we can compute the posterior p(h|D; θk), we obtain the

(classical) EM algorithm that iterates between:

E-step: compute the expectation

LD(θ, q∗) = Ep(h|D;θk)[log p(D, h; θ)]︸ ︷︷ ︸
interpretation: expected

completed log-likelihood of θ

−Ep(h|D;θk) log p(h|D; θk)︸ ︷︷ ︸
does not depend on θ and

does not need to be computed

M-step: maximise with respect to θ

θk+1 = argmax
θ

LD(θ, q∗) = argmax
θ

Ep(h|D;θk)[log p(D, h; θ)]
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Classical EM algorithm never decreases the log likelihood
▶ Assume you have updated the parameters and start iteration

k + 1 with optimisation with respect to q

max
q

LD(θk , q) (41)

▶ Optimal solution q∗
k+1 is the posterior p(h|D; θk) so that

ℓ(θk) = LD(θk , q∗
k+1) (42)

▶ Optimise with respect to the θ while keeping q fixed at q∗
k+1

max
θ

LD(θ, q∗
k+1) (43)

▶ Due to maximisation, updated parameter θk+1 is such that

LD(θk+1, q∗
k+1) ≥ LD(θk , q∗

k+1) = ℓ(θk) (44)
▶ From variational lower bound: ℓ(θ) ≥ LD(θ, q). Hence:

ℓ(θk+1) ≥ LD(θk+1, q∗
k+1) ≥ ℓ(θk)

⇒ EM yields non-decreasing sequence ℓ(θ1), ℓ(θ2), . . ..
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Program recap

1. Preparations
Concavity of the logarithm and Jensen’s inequality
Kullback-Leibler divergence and its properties

2. The variational principle
Variational lower bound
Maximising the ELBO to compute the marginal and conditional
from the joint

3. Application to inference
The mechanics
Interpretation
Nature of the approximation
Mean-field variational inference

4. Application to learning
Learning with Bayesian models
Learning with statistical models and unobserved variables
(Variational) EM algorithm
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