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Recap

▶ Variational principle of performing inference via optimisation.
▶ Maximising the evidence lower bound (ELBO) with respect to

the variational distribution allows us to (approximately)
compute the marginal and the conditional from the joint.

▶ Overview of how to use the variational principle to solve
inference and learning tasks.

▶ For parameter estimation in presence of unobserved variables:
Coordinate ascent on the ELBO leads to the (variational) EM
algorithm.
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Program

1. HMM parametrisation and the learning problem

2. Options for learning the parameters

3. Learning the parameters by EM
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1. HMM parametrisation and the learning problem
Assumptions: discrete case and stationarity
Constraints on the parameters

2. Options for learning the parameters

3. Learning the parameters by EM
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Hidden Markov model

Specified by
▶ DAG (representing the independence assumptions)

v1 v2 v3 v4

h1 h2 h3 h4

▶ Transition distribution p(hi |hi−1)
▶ Emission distribution p(vi |hi)
▶ Initial state distribution p(h1)
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The classical inference problems

▶ Classical inference problems:
▶ Filtering: p(ht |v1:t)
▶ Smoothing: p(ht |v1:u) where t < u
▶ Prediction: p(ht |v1:u) and/or p(vt |v1:u) where t > u
▶ Most likely hidden path (Viterbi alignment):

argmaxh1:t p(h1:t |v1:t)
▶ Posterior sampling (forward filtering, backward sampling):

h1:t ∼ p(h1:t |v1:t)

▶ Inference problems can be solved by message passing.
▶ Requires that the transition, emission, and initial state

distributions are known.
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Learning problem
▶ Data: D = {D1, . . . , Dn}, where each Dj is a sequence of

visibles of length dj , i.e.

Dj = (v (j)
1 , . . . , v (j)

dj
)

▶ Assumptions:
▶ All variables are discrete: hi ∈ {1, . . . K}, vi ∈ {1, . . . , M}.
▶ Stationarity

▶ Parametrisation:
▶ Transition distribution is parameterised by the matrix A

p(hi = k|hi−1 = k ′; A) = Ak,k′ (Ak′,k convention is also used)

▶ Emission distribution is parameterised by the matrix B

p(vi = m|hi = k; B) = Bm,k (Bk,m convention is also used)

▶ Initial state distribution is parameterised by the vector a

p(h1 = k; a) = ak

▶ Task: Use the data D to learn A, B, and a
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Learning problem

▶ Since A, B, and a represent (conditional) distributions, the
parameters are constrained to be non-negative and to satisfy

K∑
k=1

p(hi = k|hi−1 = k ′) =
K∑

k=1
Ak,k′ = 1 for all k ′

M∑
m=1

p(vi = m|hi = k) =
M∑

m=1
Bm,k = 1 for all k

k∑
k=1

p(h1 = k) =
K∑

k=1
ak = 1

▶ Note: Much of what follows holds more generally for HMMs
and does not use the stationarity assumption or that the hi
and vi are discrete random variables.

▶ The parameters together will be denoted by θ.
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Program

1. HMM parametrisation and the learning problem

2. Options for learning the parameters
Learning by gradient ascent on the log-likelihood or by EM
Comparison

3. Learning the parameters by EM
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Options for learning the parameters

▶ The model p(h, v; θ) is normalised but we have unobserved
variables.

▶ Option 1: Gradient ascent on the log-likelihood

θnew = θold + ϵ
n∑

j=1
Ep(h|Dj ;θold)

[
∇θ log p(h, Dj ; θ)

∣∣∣∣
θold

]

▶ Option 2: EM algorithm

θnew = argmax
θ

n∑
j=1

Ep(h|Dj ;θold) [log p(h, Dj ; θ)]

▶ For HMMs, both are possible since the required posteriors can
be computed efficiently.
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Options for learning the parameters

Option 1: θnew = θold + ϵ
∑n

j=1 Ep(h|Dj ;θold)

[
∇θ log p(h, Dj ; θ)

∣∣∣
θold

]
Option 2: θnew = argmaxθ

∑n
j=1 Ep(h|Dj ;θold) [log p(h, Dj ; θ)]

▶ Similarities:
▶ Both require computation of the posterior expectation.
▶ In opt 2, assume the “M” step is performed by gradient ascent,

θ′ = θ + ϵ
n∑

j=1
Ep(h|Dj ;θold) [∇θ log p(h, Dj ; θ)]

where θ is initialised with θold, and the final θ′ gives θnew.
If only one gradient step is taken, option 2 becomes option 1.

▶ Differences:
▶ Unlike option 2, option 1 requires re-computation of the

posterior after each ϵ update of θ, which may be costly.
▶ In some cases (including HMMs), the “M”/argmax step can be

performed analytically in closed form.
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Program

1. HMM parametrisation and the learning problem

2. Options for learning the parameters

3. Learning the parameters by EM
E-step
M-step
EM (Baum-Welch) algorithm
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The EM objective function

▶ Denote the objective in the EM algorithm by J(θ, θold),

J(θ, θold) =
n∑

j=1
Ep(h|Dj ;θold) [log p(h, Dj ; θ)]

▶ Expected log-likelihood after filling-in the missing data
▶ We show next that for the HMM model in general, the full

posteriors p(h|Dj ; θold) are not needed but just

p(hi , hi−1 | Dj ; θold) p(hi | Dj ; θold).

They can be obtained with the alpha-beta recursion.
▶ Posteriors need to be computed for each observed sequence

Dj , and need to be re-computed after updating θ.
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The EM objective function

▶ The HMM model factorises as

p(h, v; θ) = p(h1; a)p(v1|h1; B)
d∏

i=2
p(hi |hi−1; A)p(vi |hi ; B)

▶ For sequence Dj , we have

log p(h, Dj ; θ) = log p(h1; a) + log p(v (j)
1 |h1; B)+

dj∑
i=2

log p(hi |hi−1; A) + log p(v (j)
i |hi ; B)

▶ Since

Ep(h|Dj ;θold) [log p(h1; a)] = Ep(h1|Dj ;θold) [log p(h1; a)]
Ep(h|Dj ;θold) [log p(hi |hi−1; A)] = Ep(hi ,hi−1|Dj ;θold) [log p(hi |hi−1; A)]

Ep(h|Dj ;θold)

[
log p(v (j)

i |hi ; B)
]

= Ep(hi |Dj ;θold)

[
log p(v (j)

i |hi ; B)
]

we do not need the full posterior but only the marginal posteriors
and the joint of the neighbouring variables.
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The EM objective function

With the factorisation (independencies) in the HMM model, the
objective function thus becomes

J(θ, θold) =
n∑

j=1
Ep(h|Dj ;θold) [log p(h, Dj ; θ)]

=
n∑

j=1
Ep(h1|Dj ;θold) [log p(h1; a)]+

n∑
j=1

dj∑
i=2

Ep(hi ,hi−1|Dj ;θold) [log p(hi |hi−1; A)]+

n∑
j=1

dj∑
i=1

Ep(hi |Dj ;θold)
[
log p(v (j)

i |hi ; B)
]

In the derivation so far we have not yet used the assumed
parametrisation of the model. We insert these assumptions next.
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The term for the initial state distribution
▶ We have assumed that

p(h1 = k; a) = ak k = 1, . . . , K

which we can write as

p(h1; a) =
∏
k

a1(h1=k)
k

(like for the Bernoulli model, see slides Basics of Model-Based Learning)
▶ The log pmf is thus

log p(h1; a) =
∑

k
1(h1 = k) log ak

▶ Hence

Ep(h1|Dj ;θold) [log p(h1; a)] =
∑

k
Ep(h1|Dj ;θold) [1(h1 = k)] log ak

=
∑

k
p(h1 = k|Dj ; θold) log ak
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The term for the transition distribution
▶ We have assumed that

p(hi = k|hi−1 = k ′; A) = Ak,k′ k, k ′ = 1, . . . K
which we can write as

p(hi |hi−1; A) =
∏
k,k′

A1(hi =k,hi−1=k′)
k,k′

(see slides Basics of Model-Based Learning)
▶ Further:

log p(hi |hi−1; A) =
∑
k,k′

1(hi = k, hi−1 = k ′) log Ak,k′

▶ Hence Ep(hi ,hi−1|Dj ;θold) [log p(hi |hi−1; A)] equals∑
k,k′

Ep(hi ,hi−1|Dj ;θold)
[
1(hi = k, hi−1 = k ′)

]
log Ak,k′

=
∑
k,k′

p(hi = k, hi−1 = k ′|Dj ; θold) log Ak,k′
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The term for the emission distribution

We can do the same for the emission distribution.

With

p(vi |hi ; B) =
∏
m,k

B1(vi =m,hi =k)
m,k =

∏
m,k

B1(vi =m)1(hi =k)
m,k

we have

Ep(hi |Dj ;θold)
[
log p(v (j)

i |hi ; B)
]

=
∑
m,k

1(v (j)
i = m)p(hi = k|Dj , θold) log Bm,k
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E-step for discrete-valued HMM

▶ Putting all together, we obtain the EM objective function for
the HMM with discrete visibles and hiddens.

J(θ, θold) =
n∑

j=1

∑
k

p(h1 = k|Dj ; θold) log ak+

n∑
j=1

dj∑
i=2

∑
k,k′

p(hi = k, hi−1 = k ′|Dj ; θold) log Ak,k′+

n∑
j=1

dj∑
i=1

∑
m,k

1(v (j)
i = m)p(hi = k|Dj , θold) log Bm,k

▶ The objectives for a, and the columns of A and B decouple.
▶ Does not decouple in separate objectives for all parameters

because of the constraint that the elements of a have to sum
to one, and that the columns of A and B have to sum to one.
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M-step

▶ We discuss the details for the maximisation with respect to a.
The other cases are done equivalently.

▶ Optimisation problem:

max
a

n∑
j=1

K∑
k=1

p(h1 = k|Dj ; θold) log ak

subject to ak ≥ 0
K∑

k=1
ak = 1

▶ The non-negativity constraint could be handled by
re-parametrisation, but the constraint is here not active (the
objective is not defined for ak ≤ 0) and can be dropped.

▶ The normalisation constraint can be handled by using the
methods of Lagrange multipliers (see e.g. Barber Appendix A.6).
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M-step
▶ Lagrangian:∑n

j=1
∑K

k=1 p(h1 = k|Dj ; θold) log ak − λ(
∑K

k=1 ak − 1)
▶ The derivative with respect to a specific ai is

n∑
j=1

p(h1 = i |Dj ; θold) 1
ai

− λ

▶ Gives the necessary condition for optimality

ai = 1
λ

n∑
j=1

p(h1 = i |Dj ; θold)

▶ The derivative with respect to λ gives back the constraint∑
i

ai = 1

▶ Set λ =
∑

i
∑n

j=1 p(h1 = i |Dj ; θold) to satisfy the constraint.
▶ The Hessian of the Lagrangian is negative definite, which

shows that we have found a maximum.
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M-step

▶ Since
∑

i p(h1 = i |Dj ; θold) = 1, we obtain λ = n so that

ak = 1
n

n∑
j=1

p(h1 = k|Dj ; θold)

Average of all posteriors of h1 obtained by message passing.
▶ Equivalent calculations give

Ak,k′ =
∑n

j=1
∑dj

i=2 p(hi = k, hi−1 = k ′|Dj ; θold)∑K
k=1

∑n
j=1

∑dj
i=2 p(hi = k, hi−1 = k ′|Dj ; θold)

average joint proba

normalise: converts
joint to conditionaland

Bm,k =
∑n

j=1
∑dj

i=1 1(v (j)
i = m)p(hi = k|Dj ; θold)∑M

m=1
∑n

j=1
∑dj

i=1 1(v (j)
i = m)p(hi = k|Dj ; θold)

Inferred posteriors obtained by message passing are averaged over
different sequences Dj and across each sequence (stationarity).
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A small simplification

Bm,k =

∑n
j=1

∑dj
i=1

1(v (j)
i =m)p(hi =k|Dj ;θold)∑M

m=1

∑n
j=1

∑dj
i=1

1(v (j)
i =m)p(hi =k|Dj ;θold)

▶ Note that
M∑

m=1

n∑
j=1

dj∑
i=1

1(v (j)
i = m)p(hi = k|Dj ; θold) =

n∑
j=1

dj∑
i=1

M∑
m=1

1(v (j)
i = m)p(hi = k|Dj ; θold)

▶ The only term that involves m is 1(v (j)
i = m), which is 0

unless v (j)
i = m when it is 1.

▶ As v (j)
i must take on a value in {1, . . . , M} and we sum over

all possible values of m, we have
M∑

m=1
1(v (j)

i = m) = 1

▶ The denominator in the expression for Bm,k thus simplifies to
n∑

j=1

dj∑
i=1

p(hi = k|Dj ; θold)
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EM for discrete-valued HMM (Baum-Welch algorithm)

Given parameters θold

1. For each sequence Dj compute the posteriors

p(hi , hi−1 | Dj ; θold) p(hi | Dj ; θold)

using the alpha-beta recursion.
2. Update the parameters

ak = 1
n

n∑
j=1

p(h1 = k|Dj ; θold)

Ak,k′ =
∑n

j=1
∑dj

i=2 p(hi = k, hi−1 = k ′|Dj ; θold)∑K
k=1

∑n
j=1

∑dj
i=2 p(hi = k, hi−1 = k ′|Dj ; θold)

Bm,k =
∑n

j=1
∑dj

i=1 1(v (j)
i = m)p(hi = k|Dj ; θold)∑n

j=1
∑dj

i=1 p(hi = k|Dj ; θold)

Repeat step 1 and 2 using the new parameters for θold. Stop if change in
likelihood or parameters is less than a threshold.
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