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Assumptions

Model: p(v,h; 8)

Data: D = {vy,...,vp}, v; e Ds

» The model is a latent variable model: we have observations
for all dimensions of v but no observations of the latents h.

» For each observation v;, there is a latent h;.

» Because of iid assumption,
p(vl,...,vn,hl,...,hn;H):Hp(v,-,h,-;@) (1)
i=1

» \We do not deal with the case of unobserved variables due to
missing data, i.e. incomplete observations of v. (For VI work on
this topic, see e.g. Simkus et al, Variational Gibbs Inference for Statistical Model

Estimation from Incomplete Data, Journal of Machine Learning Research, 2023)
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Program

1. Scalable generic variational learning of latent variable models

2. Deep latent variable models and variational autoencoders
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Program

1. Scalable generic variational learning of latent variable models
o ELBO for iid data
o Amortised variational inference
o Reparameterisation and stochastic optimisation
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Lower bound on the likelihood for iid data

» We had
Ex(q) — IBjq(y|x) [|Og p(X7 y)] (2)
qg(y|x)
» Substitute
X—)(V]_,...,Vn) P(X,Y)%HP(Vi,hi;H) (3)
i=1
y — (hg,...,hp) (4)
» Since the true conditional factorises, we use
Q(hl,...,hn‘vl,...,vn):HQ(h,"V,’) (5)
i=1

» \We have one conditional variational distribution g(h|v).
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Lower bound on the likelihood for iid data

» The ELBO Lp for iid data D = {v1,...,v,} becomes a sum
of per data-point ELBOs L,, denoted by L;:

Lo(0.9) = £,(6.q) (6)
i=1
Vi, hi; 9
['1(97 q) — EQ(hi|Vi) [lOg pE](h,‘V,) )] (7)

» From the basic properties of the ELBO, we have

Li(0,q) = log p(vi; 8) — KL(q(hi|v;)||p(hj|vi;0)) (8)

» This gives
Lp(0,q) =D [log p(vi; 8) — KL(q(hj|vi)||p(hi|vi; 8))] (9)
i=1
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Lower bound on the likelihood for iid data

» With /(0) = >_.log p(v;; @) we obtain
£0(6.q) = 48) — S KL(q(hi v |p(hilvs: 6))
i=1

» Maximum likelihood estimation

max £(0) = max Lp(0, q)
0 0.,q
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Key technical difficulties

» We have to maximise Lp(8,q) = >.7_1 Li(0, q) with respect
to @ and the conditional g(h|v).

» We had (vi.h;: 6)
P\Vi, Nj,
Li(0,q9) =E h v [Iog ] 12
(6.9) athivi) q(hi|vi) (12)
Analytical closed form expression only available in special
cases.

» We do not want to restrict the model class but solve the
optimisation problem for large n and generic p(v, h; 8).
» Key technical difficulties are:

1. Learning of conditional variational distribution g(h|v)
2. Maximisation when the objective involves the Eqp, v,
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Issue 1: Learning the conditional variational distribution

» |earning the conditional g(h|v) is hard since we have to
effectively learn infinitely many pdfs/pmfs (one for each v!).

» L; only involves g(h;|v;). Hence we could optimise Lp by
optimising each L; with respect to gj(h;) = g(h;|v;)

max Lp(0,q) < max Li(0,q;)) fori=1,....n (13)

» We typically make some parametric assumptions. Let g;(h) be
parameterised as g;(h; \;) € Q;.

» Different g;(h; A;) may belong to different parametric families.

» Optimisation with respect to g; then becomes optimisation
with respect to A;.
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Issue 1: Learning the conditional variational distribution

» Closed form solution typically not available. This means that
we have to iteratively optimise L£; with respect to A; for all

data points.
» Feasible if nis very small. But too costly otherwise.
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Amortisation

» Let us parameterise the conditional distribution g(h|v) directly

as
q(h|v) = gg(h|v) = g(h; Ag(v)) (14)

where Ay (v) is a nonlinear function parameterised by ¢. It is
called inference or encoder network, or simply encoder.

» This means that we assume that each g(h|v) belongs to the
same parametric family Q = {q(h; \)}a.

» The function Ag(v) maps each v to its corresponding
parameter value A\.

» Note: X\ are the parameters of the variational distribution
while ¢ are the parameters of the encoder network.

» Denote £;(0,q4) by Li(0,¢) and Lp(60,qe) by LD(6, @).

» We learn ¢ by maximising

i=1
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Amortisation (example)

» A popular choice for q¢(h\v) is

o(hlv) = Hqcb (hk|v) (16)

qe(hilv) = N(hk:uk(V: o)), 0% (v; %) (17)

¢ denotes parameters needed to parameterise all mean and var functions.
» Often used for variational autoencoders (see later).
» Makes both an independence and parametric assumption.

» This means that @ = {q(h; A)} equals the factorised
Gaussian family with parameters

A= (1, i, 05, ..., 0%) (18)
» The mapping Ay(v) maps v to the means and variances,
(i1, 1,02 0%) = Ag() (19)
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Amortisation gap

» Lp is maximised if all individual per data-point £; are
maximised.

» When learning ¢, we hope that after learning

q(hi; Ag(vi)) = argmax £;(0, q;) for all i (20)
qi€Qi

» The optimisation argmax,. L; maps v; to the optimal g;, and
the idea of amortised inference is to approximate this
mapping.

» However, the approximation will not be perfect because

» Ap(v) is learned by maximising the sum ). £;(0, ¢) and not a
single L£;(0, ¢) for a given v;.

» We assume that all g(h|v) belong to the same parametric
family, i.e. Q = Q; for all i, which may not be the case.

» The approximation will be better for some v; than for others.
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Amortisation gap

» The approximation error due to amortisation is

g (hilvi) — q(hi; Ag(vi)),  q;(hilvi) = aTgax Li(0,qi) (21)
qic<i

(If @ = Qj, we can also compare the amortised with the optimal parameter \)

» Difference between corresponding ELBOs is called the
amortisation gap

Ei(ea ql*) R L,‘(H, é\b) with &5 — argmax [’D(Hv ¢) (22)
¢

> After learning, the encoder network Aj(v) can be applied to
test inputs viest thereby bypassing an optimisation of the
ELBO L,,...

» The approximation error and amortisation gap will likely be
larger for viest than for the training data vy,...,v,.
For methods to reduce the amortisation gap, see e.g. Marino et al, lterative
amortised inference, ICML 2018, https://arxiv.org/abs/1807.09356
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Amortisation gap

» Example in two dimensions where g; is assumed Gaussian with
parameters A = (1, p12).
The contour plot shows £;(8, g;) as a function of A

vy

The blue line shows the gradient ascent optimisation path
when the ELBO is optimised without amortisation.

> The cyan diamond shows the amortised estimate A (v;).
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Figure 1 from Marino et al, ICML 2018.
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Issue 2: Maximisation

» The optimisation problem is

0, ¢ = argmax Lp(0, @) (23)
0,0
where
i=1

” P\Vi, hi; 0
p— ZEQ¢(hi|Vi) [|Og ( )] (25)

i—1 q¢(h,-\v,-)

» We would like to solve it using gradient ascent.

» Difficulties:

1. We generally cannot compute the expectations in closed form.
2. The parameter ¢ occurs in the expectation so that we cannot
pull V4 inside.
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Reparameterisation

» \We can approximate the expectation as a sample average, but
we have to keep track of the ¢-dependency of the samples.

» For that, let us consider variational distributions g (h|v) that
can be obtained via a transformation of a random variable €
that we can sample from.

h ~ ge(h|v) S h=ty(e,v), €~ ple) (26)

» Examples:
> h~ N(h;u(v),c?(v)) & h= pu(v)+o(v)e with e ~ N(e,0,1).
» Inverse transform sampling
» Factor analysis or ICA model where factor or mixing matrix
depends on v.

» Normalising flows (not covered in this course)
> ...
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Reparameterisation

» By the law of the unconscious statistician, we then obtain

P(Vi, hi; 0)
gp(hilvi)

p(V,', t¢(€i7 Vi); 9)

Gp(tey(€isvi)|v;)
(27)

g (hilvi) [Iog ] = Ep(er) [Iog

» We can now pull the gradients inside

Vo,6Eq, (hilv:) [ 1= VogEpe) [ -] = Ep(e) [Vog -]

» The gradient can then be computed via auto-differentiation.

» Note: Alternative to reparameterisation is to use an approach
called score function gradient estimation (not examinable).
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Stochastic optimisation

» The gradient of Lp(60, ¢) thus becomes

p(vi,ty(€i,vi); 0)
o (te(€is vi)|vi)

Vo,sLp(0,0) =) Eye | Vo,glog (28)
=1

| =

» We can approximate K, ) with a sample average (Monte
Carlo integration) with S samples.

» For large n and S, evaluation of the gradient is expensive.

» Computing the gradient for all v; and using a large S is not
necessary. We can use stochastic optimisation instead.

» This means we only evaluate the gradient for a random subset
(minibatch) of the v; and set S to a small number (e.g. 1!).

We gloss over technical details here; for an introduction to stochastic optimisation, see
Introduction to Stochastic Search and Optimization by James Spall.

Eq (28) can be manipulated to reduce the variance of the stochastic gradient, see Roeder et al,

Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference, NeuRIPS 2017.
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Program

1. Scalable generic variational learning of latent variable models
o ELBO for iid data
o Amortised variational inference
o Reparameterisation and stochastic optimisation
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Program

2. Deep latent variable models and variational autoencoders
o Deep latent variable model
o Variational autoencoder (VAE)
o Gaussian and Bernoulli VAE
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Deep directed graphical models

» Parametric directed graphical models are sets of pdfs/pmfs
that factorise as

d

p(x;0) = | [ p(xk|pay; 6) (29)
k=1

where pa, denotes the parents of x, in a given directed
acyclic graph (DAG).

» We say that the model is a deep directed graphical model if

pOxk[pay: 0) = p(xiim)  with  my = ng(pay) (30

where p(xx;n) is a parametric model and n§(pay) a
parameterised nonlinear function (deep neural network) that
maps the parents pa, to the model-parameters 7.
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Example

» Chain rule p(x; 0) = []{_; p(xk|pres; 6) with

p(xk|preg; 0) = N(xk; ik, 0%)s (ks o) = mg(prey)

X

K

This is one of the autoregressive models from the slides Basic
Assumptions for Efficient Model Representation.

» Markov chain p(x; 0) = [[¢_; p(xk|xc_1; @) with

p(Xk|Xk—1;9) :N(Xk;:u/ﬁgi)v (,LLk,O'i) — ng(Xk—l)
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Deep latent variable model

» A deep (directed) latent variable model is a deep directed
graphical model with latent variables.

» Often (but not always), they are models of the form

p(v, h; 8) = p(v|h; 8)p(h) (31)
where p(h) does not depend on @ and p(vlh; 8) is
d
p(vh; 0) = ] p(vklpay, h; 0) (32)
k=1

with pa, denoting the parents of v, without h.
» The conditional is given by

p(vk|Pa, h;0) = p(viine)  mx = ng(pag,h)  (33)

» Note: parameterised models p(h; 8) may also be used.
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Graphical model for variational autoencoders

Reconsider the directed acyclic graph for FA and ICA:

» The visibles v = (v1, ..., vy) are independent from each other
given the latents h = (hy, ..., hy).

» Different assumptions on p(vk|h) and p(h) give different
methods, e.g. FA and ICA.

» Working with H < d and p(vklh; 0) = p(vk;ny), where
N = ng(h), gives variational autoencoders (VAE).

» The function 1, = n(h) is called the decoder or decoder
network.
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VAE: overview

» Depending on the data, different parametric families are
chosen for the univariate distributions p(vy; 1)

» For example:
» Gaussian pdf for v, € R: Here i, = (my,s;) are the mean and

variance.
» Bernoulli pmf for v, € {0,1}: Here 1, = pi is the probability
for vi, = 1.

» Note: The parametric families may be simple but the
parameter 7, is a nonlinear transformation of h, n, = n5(h),
giving rise to a flexible class of models.
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Example: Gaussian VAE

Nonlinear mean function (NN with random
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VAE: overview

» The variational distribution gg(h|v) is often assumed to be a
factorised Gaussian.

» Variational distribution g (h|v) goes under several names:
encoder, inference model, or recognition model are used; the
model p(vl|h; @) is called the decoder or generative model.

» Note: the encoder/decoder names may refer to the
distribution or the mapping to their parameters.
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VAE: learning

» We now derive the ELBO for the VAE using that:
> p(v,h;0) = p(v|h; 8)p(h) with p(h) = N(h;0,1)
» Factorised Gaussian for the variational distribution g¢(h|v)

» As before:

H
ge(hlv) = ][ q(hklv) (34)
p

de(hiv) = N (he; p(v), o (v)) (35)

That is, Agp(v) maps v to (1, ..., KH, o%,...,0%).

(¢-dependency of i (v), ai(v) is suppressed.)

» With the Gaussianity assumption on p(h) and g4(h|v), part of
the ELBO can be computed in closed form.
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VAE: learning

» We use the following form of the ELBO
Li=Eq,(nv;) [log p(vilhi; 6)]—KL(ge (hi|v;)[|V (h;; 0,1))

First term: reconstruction /fit; second term: regularisation
» The KL-divergence between two Gaussians has a closed-form
expression.

> KL(gg(hi|v;)[[NV(h;; 0,1) equals

! Z (R () + 1 (vi) — 1~ log(of(v))  (36)

» Hence
Ei — qub(h,-\v,-) [log p(vl‘hh 6)]
1 H
+5 3 (1+log(a7 (wi) — o7 (wi) — riz(vi))  (37)
k=1
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VAE: learning

» With the conditional independence assumption for p(v|h; 8):

d
Eqs(hiv) 108 p(vilhi: 0)] = 3 Eq, v, |log p(vic: nf(hy)]
k=1

where v;, denotes the k-th element of v;.
» We thus have for the VAE:

d
Li(0,0)=> Eq,hiv) [log p(Vik; n’é(hi))} +
k=1

H
+ % > (1 + log(o(vi)) — oe(vi) — Mi(vi)) (38)
k=1

» Optimisation problem

N N

6, = argmax Lp(0, §) = argmax » Li(6,¢)  (39)
0,¢ 0.0 =1

» Solved with stochastic gradient ascent and the reparam. trick.

PMR 2025 ©OGutmann, University of Edinburgh CC BY 4.0 31/ 34


https://creativecommons.org/licenses/by/4.0/

Gaussian VAE

» The Gaussian VAE is obtained for

p(vilh; 0) = N'(vi; mi, ;) (mi,si) =mg(h)  (40)

» Generative model p(v|h; @) equivalent to

my(h) s1(h)
V= ; + n, n~N(n;0,1)
mD(h) SD(h)
> FA obtained for m = (my,...,mp)' = Fh+c and s2 = V,.

» Gaussian VAE is a nonlinear generalisation of FA.
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Bernoulli VAE

» The Bernoulli VAE with v, € {0,1} is obtained for

p(vlh; 8) = p(L = p )™ p=mg(h)  (41)

» This is often also used for v, € [0, 1]. While the ELBO can be
evaluated, it is formally wrong since vy is not binary.

» For v, € [0,1], use the so-called continuous Bernoulli
distribution or the beta distribution instead.
(see Loaiza-Ganem and Cunningham, The continuous Bernoulli: fixing a

pervasive error in variational autoencoders, NeuRIPS 2019)
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Program recap

1. Scalable generic variational learning of latent variable models
e ELBO for iid data

e Amortised variational inference
@ Reparameterisation and stochastic optimisation

2. Deep latent variable models and variational autoencoders
@ Deep latent variable model

o Variational autoencoder (VAE)
e Gaussian and Bernoulli VAE
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