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Assumptions

▶ Model: p(v, h; θ)
▶ Data: D = {v1, . . . , vn}, vi

iid∼ p∗

▶ The model is a latent variable model: we have observations
for all dimensions of v but no observations of the latents h.

▶ For each observation vi , there is a latent hi .
▶ Because of iid assumption,

p(v1, . . . , vn, h1, . . . , hn; θ) =
n∏

i=1
p(vi , hi ; θ) (1)

▶ We do not deal with the case of unobserved variables due to
missing data, i.e. incomplete observations of v. (For VI work on
this topic, see e.g. Simkus et al, Variational Gibbs Inference for Statistical Model
Estimation from Incomplete Data, Journal of Machine Learning Research, 2023)
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Program

1. Scalable generic variational learning of latent variable models

2. Deep latent variable models and variational autoencoders
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Program

1. Scalable generic variational learning of latent variable models
ELBO for iid data
Amortised variational inference
Reparameterisation and stochastic optimisation

2. Deep latent variable models and variational autoencoders
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Lower bound on the likelihood for iid data

▶ We had

Lx(q) = Eq(y|x)

[
log p(x, y)

q(y|x)

]
(2)

▶ Substitute

x → (v1, . . . , vn) p(x, y) →
n∏

i=1
p(vi , hi ; θ) (3)

y → (h1, . . . , hn) (4)

▶ Since the true conditional factorises, we use

q(h1, . . . , hn|v1, . . . , vn) =
n∏

i=1
q(hi |vi) (5)

▶ We have one conditional variational distribution q(h|v).
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Lower bound on the likelihood for iid data

▶ The ELBO LD for iid data D = {v1, . . . , vn} becomes a sum
of per data-point ELBOs Lvi , denoted by Li :

LD(θ, q) =
n∑

i=1
Li(θ, q) (6)

Li(θ, q) = Eq(hi |vi )

[
log p(vi , hi ; θ)

q(hi |vi)

]
(7)

▶ From the basic properties of the ELBO, we have

Li(θ, q) = log p(vi ; θ) − KL(q(hi |vi)||p(hi |vi ; θ)) (8)

▶ This gives

LD(θ, q) =
n∑

i=1
[log p(vi ; θ) − KL(q(hi |vi)||p(hi |vi ; θ))] (9)
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Lower bound on the likelihood for iid data

▶ With ℓ(θ) =
∑

i log p(vi ; θ) we obtain

LD(θ, q) = ℓ(θ) −
n∑

i=1
KL(q(hi |vi)||p(hi |vi ; θ)) (10)

▶ Maximum likelihood estimation

max
θ

ℓ(θ) = max
θ,q

LD(θ, q) (11)
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Key technical difficulties

▶ We have to maximise LD(θ, q) =
∑n

i=1 Li(θ, q) with respect
to θ and the conditional q(h|v).

▶ We had
Li(θ, q) = Eq(hi |vi )

[
log p(vi , hi ; θ)

q(hi |vi)

]
(12)

Analytical closed form expression only available in special
cases.

▶ We do not want to restrict the model class but solve the
optimisation problem for large n and generic p(v, h; θ).

▶ Key technical difficulties are:
1. Learning of conditional variational distribution q(h|v)
2. Maximisation when the objective involves the Eq(hi |vi )
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Issue 1: Learning the conditional variational distribution

▶ Learning the conditional q(h|v) is hard since we have to
effectively learn infinitely many pdfs/pmfs (one for each v!).

▶ Li only involves q(hi |vi). Hence we could optimise LD by
optimising each Li with respect to qi(hi) = q(hi |vi)

max
q

LD(θ, q) ⇔ max
qi

Li(θ, qi) for i = 1, . . . , n (13)

▶ We typically make some parametric assumptions. Let qi(h) be
parameterised as qi(h; λi) ∈ Qi .

▶ Different qi(h; λi) may belong to different parametric families.
▶ Optimisation with respect to qi then becomes optimisation

with respect to λi .
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Issue 1: Learning the conditional variational distribution

▶ Closed form solution typically not available. This means that
we have to iteratively optimise Li with respect to λi for all
data points.

▶ Feasible if n is very small. But too costly otherwise.
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Amortisation
▶ Let us parameterise the conditional distribution q(h|v) directly

as
q(h|v) = qϕ(h|v) = q(h; λϕ(v)) (14)

where λϕ(v) is a nonlinear function parameterised by ϕ. It is
called inference or encoder network, or simply encoder.

▶ This means that we assume that each q(h|v) belongs to the
same parametric family Q = {q(h; λ)}λ.

▶ The function λϕ(v) maps each v to its corresponding
parameter value λ.

▶ Note: λ are the parameters of the variational distribution
while ϕ are the parameters of the encoder network.

▶ Denote Li(θ, qϕ) by Li(θ, ϕ) and LD(θ, qϕ) by LD(θ, ϕ).
▶ We learn ϕ by maximising

LD(θ, ϕ) =
n∑

i=1
Li(θ, ϕ) (15)
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Amortisation (example)
▶ A popular choice for qϕ(h|v) is

qϕ(h|v) =
H∏
k

qϕ(hk |v) (16)

qϕ(hk |v) = N (hk ; µk(v; ϕµ
k ), σ2

k(v; ϕσ
k ) (17)

ϕ denotes parameters needed to parameterise all mean and var functions.
▶ Often used for variational autoencoders (see later).
▶ Makes both an independence and parametric assumption.
▶ This means that Q = {q(h; λ)}λ equals the factorised

Gaussian family with parameters

λ = (µ1, . . . , µH , σ2
1, . . . , σ2

H) (18)
▶ The mapping λϕ(v) maps v to the means and variances,

(µ1, . . . , µH , σ2
1, . . . , σ2

H) = λϕ(v) (19)
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Amortisation gap

▶ LD is maximised if all individual per data-point Li are
maximised.

▶ When learning ϕ, we hope that after learning

q(hi ; λϕ̂(vi)) ≈ argmax
qi ∈Qi

Li(θ, qi) for all i (20)

▶ The optimisation argmaxqi Li maps vi to the optimal qi , and
the idea of amortised inference is to approximate this
mapping.

▶ However, the approximation will not be perfect because
▶ λϕ(v) is learned by maximising the sum

∑
i Li(θ, ϕ) and not a

single Li(θ, ϕ) for a given vi .
▶ We assume that all q(h|v) belong to the same parametric

family, i.e. Q = Qi for all i , which may not be the case.
▶ The approximation will be better for some vi than for others.
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Amortisation gap
▶ The approximation error due to amortisation is

q∗
i (hi |vi) − q(hi ; λϕ̂(vi)), q∗

i (hi |vi) = argmax
qi ∈Qi

Li(θ, qi) (21)

(If Q = Qi , we can also compare the amortised with the optimal parameter λ)
▶ Difference between corresponding ELBOs is called the

amortisation gap

Li(θ, q∗
i ) − Li(θ, ϕ̂) with ϕ̂ = argmax

ϕ
LD(θ, ϕ) (22)

▶ After learning, the encoder network λϕ̂(v) can be applied to
test inputs vtest thereby bypassing an optimisation of the
ELBO Lvtest .

▶ The approximation error and amortisation gap will likely be
larger for vtest than for the training data v1, . . . , vn.
For methods to reduce the amortisation gap, see e.g. Marino et al, Iterative
amortised inference, ICML 2018, https://arxiv.org/abs/1807.09356
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Amortisation gap
▶ Example in two dimensions where qi is assumed Gaussian with

parameters λ = (µ1, µ2).
▶ The contour plot shows Li(θ, qi) as a function of λ

▶ The blue line shows the gradient ascent optimisation path
when the ELBO is optimised without amortisation.

▶ The cyan diamond shows the amortised estimate λϕ̂(vi).

Approximation
error / 
Amortisation
gap

Figure 1 from Marino et al, ICML 2018.
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Issue 2: Maximisation

▶ The optimisation problem is

θ̂, ϕ̂ = argmax
θ,ϕ

LD(θ, ϕ) (23)

where

LD(θ, ϕ) =
n∑

i=1
Li(θ, ϕ) (24)

=
n∑

i=1
Eqϕ(hi |vi )

[
log p(vi , hi ; θ)

qϕ(hi |vi)

]
(25)

▶ We would like to solve it using gradient ascent.
▶ Difficulties:

1. We generally cannot compute the expectations in closed form.
2. The parameter ϕ occurs in the expectation so that we cannot

pull ∇ϕ inside.
PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 16 / 34

https://creativecommons.org/licenses/by/4.0/


Reparameterisation

▶ We can approximate the expectation as a sample average, but
we have to keep track of the ϕ-dependency of the samples.

▶ For that, let us consider variational distributions qϕ(h|v) that
can be obtained via a transformation of a random variable ϵ
that we can sample from.

h ∼ qϕ(h|v) ⇐⇒ h = tϕ(ϵ, v), ϵ ∼ p(ϵ) (26)

▶ Examples:
▶ h ∼ N (h; µ(v), σ2(v)) ⇔ h = µ(v) + σ(v)ϵ with ϵ ∼ N (ϵ, 0, 1).
▶ Inverse transform sampling
▶ Factor analysis or ICA model where factor or mixing matrix

depends on v.
▶ Normalising flows (not covered in this course)
▶ . . .
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Reparameterisation

▶ By the law of the unconscious statistician, we then obtain

Eqϕ(hi |vi )

[
log p(vi , hi ; θ)

qϕ(hi |vi)

]
= Ep(ϵi )

[
log p(vi , tϕ(ϵi , vi); θ)

qϕ(tϕ(ϵi , vi)|vi)

]
(27)

▶ We can now pull the gradients inside

∇θ,ϕEqϕ(hi |vi ) [· · · ] = ∇θ,ϕEp(ϵi ) [· · · ] = Ep(ϵi ) [∇θ,ϕ · · · ]

▶ The gradient can then be computed via auto-differentiation.
▶ Note: Alternative to reparameterisation is to use an approach

called score function gradient estimation (not examinable).
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Stochastic optimisation

▶ The gradient of LD(θ, ϕ) thus becomes

∇θ,ϕLD(θ, ϕ) =
n∑

i=1
Ep(ϵi )

[
∇θ,ϕ log p(vi , tϕ(ϵi , vi); θ)

qϕ(tϕ(ϵi , vi)|vi)

]
(28)

▶ We can approximate Ep(ϵi ) with a sample average (Monte
Carlo integration) with S samples.

▶ For large n and S, evaluation of the gradient is expensive.
▶ Computing the gradient for all vi and using a large S is not

necessary. We can use stochastic optimisation instead.
▶ This means we only evaluate the gradient for a random subset

(minibatch) of the vi and set S to a small number (e.g. 1!).
We gloss over technical details here; for an introduction to stochastic optimisation, see
Introduction to Stochastic Search and Optimization by James Spall.
Eq (28) can be manipulated to reduce the variance of the stochastic gradient, see Roeder et al,
Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference, NeuRIPS 2017.
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Program

1. Scalable generic variational learning of latent variable models
ELBO for iid data
Amortised variational inference
Reparameterisation and stochastic optimisation

2. Deep latent variable models and variational autoencoders
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Program

1. Scalable generic variational learning of latent variable models

2. Deep latent variable models and variational autoencoders
Deep latent variable model
Variational autoencoder (VAE)
Gaussian and Bernoulli VAE
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Deep directed graphical models

▶ Parametric directed graphical models are sets of pdfs/pmfs
that factorise as

p(x; θ) =
d∏

k=1
p(xk |pak ; θ) (29)

where pak denotes the parents of xk in a given directed
acyclic graph (DAG).

▶ We say that the model is a deep directed graphical model if

p(xk |pak ; θ) = p(xk ; ηk) with ηk = ηk
θ(pak) (30)

where p(xk ; η) is a parametric model and ηk
θ(pak) a

parameterised nonlinear function (deep neural network) that
maps the parents pak to the model-parameters ηk .
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Example

▶ Chain rule p(x; θ) =
∏d

k=1 p(xk |prek ; θ) with

p(xk |prek ; θ) = N (xk ; µk , σ2
k), (µk , σ2

k) = ηk
θ(prek)

x1 x2 x3 x4

This is one of the autoregressive models from the slides Basic
Assumptions for Efficient Model Representation.

▶ Markov chain p(x; θ) =
∏d

k=1 p(xk |xk−1; θ) with

p(xk |xk−1; θ) = N (xk ; µk , σ2
k), (µk , σ2

k) = ηk
θ(xk−1)

x1 x2 x3 x4
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Deep latent variable model

▶ A deep (directed) latent variable model is a deep directed
graphical model with latent variables.

▶ Often (but not always), they are models of the form

p(v, h; θ) = p(v|h; θ)p(h) (31)

where p(h) does not depend on θ and p(v|h; θ) is

p(v|h; θ) =
d∏

k=1
p(vk |p̌ak , h; θ) (32)

with p̌ak denoting the parents of vk without h.
▶ The conditional is given by

p(vk |p̌ak , h; θ) = p(vk ; ηk) ηk = ηk
θ(p̌ak , h) (33)

▶ Note: parameterised models p(h; θ) may also be used.
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Graphical model for variational autoencoders

Reconsider the directed acyclic graph for FA and ICA:

h1 h2 h3

v1 v2 v3 v4 v5

▶ The visibles v = (v1, . . . , vd) are independent from each other
given the latents h = (h1, . . . , hH).

▶ Different assumptions on p(vk |h) and p(h) give different
methods, e.g. FA and ICA.

▶ Working with H < d and p(vk |h; θ) = p(vk ; ηk), where
ηk = ηk

θ(h), gives variational autoencoders (VAE).
▶ The function ηk = ηk

θ(h) is called the decoder or decoder
network.
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VAE: overview

▶ Depending on the data, different parametric families are
chosen for the univariate distributions p(vk ; ηk)

▶ For example:
▶ Gaussian pdf for vk ∈ R: Here ηk = (mk , s2

k ) are the mean and
variance.

▶ Bernoulli pmf for vk ∈ {0, 1}: Here ηk = pk is the probability
for vk = 1.

▶ Note: The parametric families may be simple but the
parameter ηk is a nonlinear transformation of h, ηk = ηk

θ(h),
giving rise to a flexible class of models.
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Example: Gaussian VAE
Nonlinear mean function (NN with random weights and ReLu), constant variance:

x1
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Nonlinear mean and variance functions:

x1
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VAE: overview

▶ The variational distribution qϕ(h|v) is often assumed to be a
factorised Gaussian.

▶ Variational distribution qϕ(h|v) goes under several names:
encoder, inference model, or recognition model are used; the
model p(v|h; θ) is called the decoder or generative model.

▶ Note: the encoder/decoder names may refer to the
distribution or the mapping to their parameters.
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VAE: learning

▶ We now derive the ELBO for the VAE using that:
▶ p(v, h; θ) = p(v|h; θ)p(h) with p(h) = N (h; 0, I)
▶ Factorised Gaussian for the variational distribution qϕ(h|v)

▶ As before:

qϕ(h|v) =
H∏
k

q(hk |v) (34)

qϕ(hk |v) = N (hk ; µk(v), σ2
k(v)) (35)

That is, λϕ(v) maps v to (µ1, . . . , µH , σ2
1, . . . , σ2

H).
(ϕ-dependency of µk(v), σ2

k(v) is suppressed.)

▶ With the Gaussianity assumption on p(h) and qϕ(h|v), part of
the ELBO can be computed in closed form.
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VAE: learning
▶ We use the following form of the ELBO

Li = Eqϕ(hi |vi ) [log p(vi |hi ; θ)]−KL(qϕ(hi |vi)||N (hi ; 0, I))

First term: reconstruction/fit; second term: regularisation
▶ The KL-divergence between two Gaussians has a closed-form

expression.
▶ KL(qϕ(hi |vi)||N (hi ; 0, I) equals

1
2

H∑
k=1

(
σ2

k(vi) + µ2
k(vi) − 1 − log(σ2

k(vi))
)

(36)

▶ Hence

Li = Eqϕ(hi |vi ) [log p(vi |hi ; θ)]

+ 1
2

H∑
k=1

(
1 + log(σ2

k(vi)) − σ2
k(vi) − µ2

k(vi)
)

(37)
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VAE: learning
▶ With the conditional independence assumption for p(v|h; θ):

Eqϕ(hi |vi ) [log p(vi |hi ; θ)] =
d∑

k=1
Eqϕ(hi |vi )

[
log p(vik ; ηk

θ(hi))
]

where vik denotes the k-th element of vi .
▶ We thus have for the VAE:

Li(θ, ϕ) =
d∑

k=1
Eqϕ(hi |vi )

[
log p(vik ; ηk

θ(hi))
]

+

+ 1
2

H∑
k=1

(
1 + log(σ2

k(vi)) − σ2
k(vi) − µ2

k(vi)
)

(38)

▶ Optimisation problem

θ̂, ϕ̂ = argmax
θ,ϕ

LD(θ, ϕ) = argmax
θ,ϕ

n∑
i=1

Li(θ, ϕ) (39)

▶ Solved with stochastic gradient ascent and the reparam. trick.
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Gaussian VAE

▶ The Gaussian VAE is obtained for

p(vk |h; θ) = N (vk ; mk , s2
k ) (mk , s2

k ) = ηk
θ(h) (40)

▶ Generative model p(v|h; θ) equivalent to

v =

m1(h)
...

mD(h)

 +

s1(h)
. . .

sD(h)

 n, n ∼ N (n; 0, I)

▶ FA obtained for m = (m1, . . . , mD)⊤ = Fh + c and s2
k = Ψk .

▶ Gaussian VAE is a nonlinear generalisation of FA.
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Bernoulli VAE

▶ The Bernoulli VAE with vk ∈ {0, 1} is obtained for

p(vk |h; θ) = pvk
k (1 − pk)(1−vk) pk = ηk

θ(h) (41)

▶ This is often also used for vk ∈ [0, 1]. While the ELBO can be
evaluated, it is formally wrong since vk is not binary.

▶ For vk ∈ [0, 1], use the so-called continuous Bernoulli
distribution or the beta distribution instead.
(see Loaiza-Ganem and Cunningham, The continuous Bernoulli: fixing a
pervasive error in variational autoencoders, NeuRIPS 2019)
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Program recap

1. Scalable generic variational learning of latent variable models
ELBO for iid data
Amortised variational inference
Reparameterisation and stochastic optimisation

2. Deep latent variable models and variational autoencoders
Deep latent variable model
Variational autoencoder (VAE)
Gaussian and Bernoulli VAE
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