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Recap
Learning and inference often involves intractable sums or integrals,
e.g.
▶ Marginalisation

p(x) =
∫

y
p(x, y)dy

▶ Expectations

E [g(x) | yo] =
∫

g(x)p(x|yo)dx

for some function g .
▶ For unobserved variables, likelihood and gradient of the log lik

L(θ) = p(D; θ) =
∫

u
p(u, D; θ)du,

∇θℓ(θ) = Ep(u|D;θ) [∇θ log p(u, D; θ)]
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Recap

▶ For unnormalised models with intractable partition functions

L(θ) = p̃(D; θ)∫
x p̃(x; θ)dx

∇θℓ(θ) ∝ m(D; θ) − Ep(x;θ) [m(x; θ)]

▶ Combined case of unnormalised models with intractable
partition functions and unobserved variables.

▶ We have seen variational inference as an approach to deal
with intractable marginalisations and likelihoods due to
unobserved variables.

▶ Here: methods to approximate integrals and expectations
using sampling.
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Program

1. Monte Carlo integration

2. Sampling
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Program

1. Monte Carlo integration
Approximating expectations by averages
Importance sampling
Effective sample size

2. Sampling
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Averages with iid samples

▶ (From exercises): For Gaussians, the sample average is an
estimate (MLE) of the mean (expectation) E[x ]

x̄ = 1
n

n∑
i=1

xi ≈ E[x ]

▶ Gaussianity not needed: assume xi are iid observations of
x ∼ p(x).

E[x ] =
∫

xp(x)dx ≈ x̄n x̄n = 1
n

n∑
i=1

xi

▶ Subscript n reminds us that we used n samples to compute
the average.

▶ Approximating integrals by means of sample averages is called
Monte Carlo integration.
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Averages with iid samples
▶ Sample average is unbiased

E [x̄n] = 1
n

n∑
i=1

E[xi ]
∗= n

nE[x ] = E[x ]

(∗: “identically distributed” assumption is used, not
independence)

▶ Variability

V [x̄n] = 1
n2V

[ n∑
i=1

xi

]
∗= 1

n2

n∑
i=1

V[xi ] = 1
nV[x ]

(∗: independence assumption used)
▶ Expected squared error decreases as 1/n

E
[
(x̄n − E[x ])2

]
= V [x̄n] = 1

nV[x ]
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Averages with iid samples

▶ Weak law of large numbers:

P (|x̄n − E[x ]| ≥ ϵ) ≤ V[x ]
nϵ2

▶ As n → ∞, the probability for the sample average to deviate
from the expected value goes to zero if the variance is finite.

▶ We say that sample average converges in probability to the
expected value.

▶ Speed of convergence depends on the variance V[x ].
▶ Different “laws of large numbers” exist that make different

assumptions.
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Chebyshev’s inequality

▶ Weak law of large numbers follows from Chebyshev’s
inequality: Let s be some random variable with mean E[s] and
variance V[s].

P (|s − E[s]| ≥ ϵ) ≤ V[s]
ϵ2

▶ Setting s = x̄n gives the weak law of large numbers.
▶ This means that for all random variables with finite mean and

variance:
▶ probability to deviate more than three standard deviation from

the mean is less than 1/9 ≈ 0.11
(set ϵ = 3

√
V(s))

▶ Probability to deviate more than 6 standard deviations:
1/36 ≈ 0.03.

These are conservative values; for many distributions, the
probabilities will be smaller.

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 9 / 45

https://creativecommons.org/licenses/by/4.0/


Proofs (not examinable)

▶ Chebyshev’s inequality follows from Markov’s inequality.
▶ Markov’s inequality: For a random variable y ≥ 0

P(y ≥ t) ≤ E[y ]
t (t > 0)

▶ Chebyshev’s inequality is obtained by setting y = |s − E[s]|

P (|s − E[s]| ≥ t) = P
(
(s − E[s])2 ≥ t2

)
≤ E

[
(s − E[s])2]

t2 .

Chebyshev’s inequality then follows with t = ϵ because
E[(s − E[s]2)] is the variance V[s] of s.
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Proofs (not examinable)

Proof for Markov’s inequality: Let t be an arbitrary positive number and
y a one-dimensional non-negative random variable with pdf p.
We can decompose the expectation of y using t as split-point,

E[y ] =
∫ ∞

0
up(u)du =

∫ t

0
up(u)du +

∫ ∞

t
up(u)du.

Since u ≥ t in the second term, we obtain the inequality

E[y ] ≥
∫ t

0
up(u)du +

∫ ∞

t
tp(u)du.

The second term is t times the probability that y ≥ t, so that

E[y ] ≥
∫ t

0
up(u)du + tP(y ≥ t)

≥ tP(y ≥ t),
where the second line holds because the first term in the first line is
non-negative. This gives Markov’s inequality

P(y ≥ t) ≤ E(y)
t (t > 0)
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Averages with correlated samples

▶ When computing the variance of the sample average

V [x̄n] = V[x ]
n

we assumed the samples are identically and independently
distributed.

▶ The variance shrinks with increasing n and the average
becomes more and more concentrated around E[x ].

▶ Corresponding results exist for the case of statistically
dependent samples xi . Known as “ergodic theorems”.

▶ Out of scope for PMR but important for the theory of Markov
chain Monte Carlo methods.
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More general expectations

▶ So far, we have considered

E[x ] =
∫

xp(x)dx ≈ 1
n

n∑
i=1

xi

where xi ∼ p(x)
▶ This generalises

E[g(x)] =
∫

g(x)p(x)dx ≈ 1
n

n∑
i=1

g(xi)

where xi ∼ p(x)
▶ Variance of the approximation if the xi are iid is 1

nV[g(x)]
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Example (Based on a slide from Amos Storkey)

E[g(x)] =
∫

g(x)N (x ; 0, 1)dx ≈ 1
n

n∑
i=1

g(xi) (xi ∼ N (x ; 0, 1))

for g(x) = x and g(x) = x2

Left: sample average as a function of n
Right: Variability (0.5 quantile: solid, 0.1 and 0.9 quantiles: dashed)
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Example (Based on a slide from Amos Storkey)

E[g(x)] =
∫

g(x)N (x ; 0, 1)dx ≈ 1
n

n∑
i=1

g(xi) (xi ∼ N (x ; 0, 1))

for g(x) = exp(0.6x2)

Left: sample average as a function of n
Right: Variability (0.5 quantile: solid, 0.1 and 0.9 quantiles: dashed)
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Example

▶ Indicators that something is wrong:
▶ Strong fluctuations in the sample average as n increases.
▶ Large non-declining variability.

▶ Note: integral is not finite:∫
exp(0.6x2)N (x ; 0, 1)dx = 1√

2π

∫
exp(0.6x2) exp(−0.5x2)dx

= 1√
2π

∫
exp(0.1x2)dx

= ∞

but for any n, the sample average is finite and may be
mistaken for a good approximation.

▶ Check variability when approximating the expected value by a
sample average!
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Importance sampling to approximate integrals
▶ If the integral does not correspond to an expectation, we can

smuggle in a pdf q to rewrite it as an expected value with
respect to q

I =
∫

g(x)dx =
∫

g(x)q(x)
q(x)dx (assume q(x) > 0 when |g(x)| > 0)

=
∫ g(x)

q(x)q(x)dx

= Eq(x)

[g(x)
q(x)

]
≈ 1

n

n∑
i=1

g(xi)
q(xi)

with xi ∼ q(x) (iid)
▶ This is the basic idea of importance sampling.
▶ q is called the importance (or proposal) distribution
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Choice of the importance distribution

▶ Call the approximation În,

În = 1
n

n∑
i=1

g(xi)
q(xi)

, xi
iid∼ q(x)

▶ În is unbiased by construction

E[̂In] = Eq(x)

[g(x)
q(x)

]
=

∫ g(x)
q(x)q(x)dx =

∫
g(x)dx = I

▶ Variance

V
[̂
In

]
= 1

nV
[g(x)

q(x)

]
= 1

nEq(x)

[(g(x)
q(x)

)2]
− 1

n

(
Eq(x)

[g(x)
q(x)

])2

︸ ︷︷ ︸
I2

Depends on the second moment.
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Choice of the importance distribution

▶ The second moment is

Eq(x)

[(g(x)
q(x)

)2]
=

∫ (g(x)
q(x)

)2
q(x)dx =

∫ g(x)2

q(x) dx

=
∫

|g(x)| |g(x)|
q(x) dx

▶ Bad: q(x) is small when |g(x)| is large. Gives large variance.
▶ Good: q(x) is large when |g(x)| is large.
▶ Optimal q equals

q∗(x) = |g(x)|∫
|g(x)|dx

▶ Optimal q cannot be computed, but justifies the heuristic that
q(x) should be large when |g(x)| is large, or that the ratio
|g(x)|/q(x) should be approximately constant.
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Proof (not examinable)

Since the variance of a random variable |x | is non-negative and can
be written as

V[|x |] = E[x2] − (E[|x |])2,

we have
E[x2] ≥ E[|x |]2

The smallest second moment achieves equality. We now verify that
this is the case for q∗(x), i.e.

Eq∗(x)

[( g(x)
q∗(x)

)2]
= Eq∗(x)

[∣∣∣∣ g(x)
q∗(x)

∣∣∣∣]2
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Proof (not examinable)

Indeed, for the optimal q, we have

Eq∗(x)

[( g(x)
q∗(x)

)2]
=

∫ g(x)2

q∗(x)dx

=
∫

|g(x)|dx
∫ g(x)2

|g(x)|dx

=
∫

|g(x)|dx
∫

|g(x)|dx

=
(∫

|g(x)|dx
)2

and

Eq∗(x)

[∣∣∣∣ g(x)
q∗(x)

∣∣∣∣]2
=

(∫ ∣∣∣∣ g(x)
q∗(x)

∣∣∣∣q∗(x)dx
)2

=
(∫

|g(x)|dx
)2

,

which concludes the proof.
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Importance sampling to approximate the partition function

We can use importance sampling to approximate the partition
function for unnormalised models p̃(x; θ).

Z (θ) =
∫

p̃(x; θ)dx

=
∫

p̃(x; θ)q(x)
q(x)dx (assume q(x) > 0 when p̃(x) > 0)

=
∫ p̃(x; θ)

q(x) q(x)dx

= Eq(x)

[ p̃(x; θ)
q(x)

]
≈ 1

n

n∑
i=1

p̃(xi ; θ)
q(xi)

(xi ∼ q(x) iid)
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Example
Approximating the log partition function of the unnormalised
beta-distribution

p̃(x ; α, β) = xα−1(1 − x)β−1, x ∈ [0, 1]
for β fixed to β = 2.

Importance distribution: uniform distribution on [0, 1]
Left: n = 10, right: n = 100.
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Importance sampling to approximate expectations

▶ Assume you would like to approximate Ep(x)[g(x)] by a
sample average but sampling from p(x) is difficult.

▶ We can write

Ep(x)[g(x)] =
∫

g(x)p(x)dx

=
∫

g(x)p(x)
q(x)q(x)dx (assume q(x) > 0 when |g(x)p(x)| > 0)

= Eq(x)

[
g(x)p(x)

q(x)

]
≈ 1

n

n∑
i=1

g(xi)
p(xi)
q(xi)

where xi ∼ q(x) (iid)
▶ The wi = p(xi)/q(xi) are called the importance weights.
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Self/auto-normalised importance sampling
▶ We can combine the above ideas to approximate

Ep(x)[g(x)] =
∫

g(x)p(x)dx

by importance sampling even if we only know p̃(x) ∝ p(x),
and

p(x) = p̃(x)∫
p̃(x)dx

▶ Write ∫
g(x)p(x)dx =

∫
g(x)p̃(x)dx∫

p̃(x)dx

=
∫

g(x) p̃(x)
q(x)q(x)dx∫ p̃(x)

q(x)q(x)dx

=
Eq(x)

[
g(x) p̃(x)

q(x)

]
Eq(x)

[
p̃(x)
q(x)

]
PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 25 / 45

https://creativecommons.org/licenses/by/4.0/


Self/auto-normalised importance sampling
▶ Since ∫

g(x)p(x)dx =
Eq(x)

[
g(x) p̃(x)

q(x)

]
Eq(x)

[
p̃(x)
q(x)

]
=

Eq(x)
[
g(x) p̃(x)

q̃(x)

]
Eq(x)

[
p̃(x)
q̃(x)

]
we only need to know the importance distribution q(x) up to
its normalisation constant.

▶ Approximate both expectations by a sample average
∫

g(x)p(x)dx ≈
1
n

∑n
i=1 g(xi) p̃(xi )

q̃(xi )
1
n

∑n
i=1

p̃(xi )
q̃(xi )

=
∑n

i=1 g(xi)wi∑n
i=1 wi

where wi = p̃(xi )
q̃(xi ) and xi ∼ q(x) (iid)
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Self/auto-normalised importance sampling

wi = p̃(xi )
q̃(xi ) , xi

iid∼ q(x)

▶ Called self-normalised or auto-normalised importance sampling∫
g(x)p(x)dx ≈

n∑
i=1

Wig(xi) Wi = wi∑n
k=1 wk

Note:
∑n

i=1 Wi = 1
▶ Interpretation in terms of a Dirac-delta approximation of p(x),

p(x) ≈
n∑

i=1
Wiδ(x − xi) xi

iid∼ q(x)

(≡ mixture of Gaussians with mixture probabilities Wi , means xi , and
infinitesimally small variances)

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 27 / 45

https://creativecommons.org/licenses/by/4.0/


Effective sample size
wi = p̃(xi )

q̃(xi ) , xi
iid∼ q(x)

▶ If the weights wi are constants, the weighted average∑n
i=1 Wig(xi) becomes the standard average

Wi = wi∑n
k=1 wk

wi =c= = c∑n
k=1 c = 1

n
▶ But the wi are typically not all equal, so that some xi

contribute more to the average than others, e.g.

w1 = 106, wk = 1, k > 1 =⇒ W1 ≈ 1, Wk ≈ 0, k > 1

We would effectively “average” over 1 data point!
▶ When working with a weighted average, always compute

the“effective sample size” (ESS),

ESS = (
∑n

i=1 wi)2∑n
i=1 w2

i
= 1∑n

i=1 W 2
i

∈ [1, n]

Small ESS means the average is unreliable (high variance).
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Program

1. Monte Carlo integration
Approximating expectations by averages
Importance sampling
Effective sample size

2. Sampling
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Program

1. Monte Carlo integration

2. Sampling
Simple univariate sampling
Rejection sampling
Ancestral sampling
Gibbs sampling
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Assumption

▶ We assume that we are able to generate iid samples from the
uniform distribution on [0, 1].

▶ How to do that: see e.g.
https://statweb.stanford.edu/~owen/mc/Ch-unifrng.pdf
(not examinable)
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Sampling for univariate discrete random variables

(Based on a slide from David Barber)

▶ Consider the one dimensional discrete distribution p(x) with
x ∈ {1, 2, 3}, with

p(x) =


0.6 x = 1
0.1 x = 2
0.3 x = 3

▶ Divide [0, 1] into chunks [0, 0.6), [0.6, 0.7), [0.7, 1]
1 × 2 3

▶ We then draw a sample u uniformly from [0, 1]
▶ We return the label of the partition in which u fell.
▶ Example: if u = 0.53, we return the sample “1”
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Sampling for univariate continuous random variables

▶ A similar method as the one above exists for continuous
random variables.

▶ Called inverse transform sampling.
▶ Recall: the cumulative distribution function (cdf) of a random

variable x with pdf px is

Fx (α) = P(x ≤ α) =
∫ α

−∞
px (v)dv

▶ To generate n iid samples xi ∼ px :
▶ calculate the inverse F −1

x
▶ sample n iid random variables uniformly distributed on [0, 1]:

ui ∼ U(0, 1), i = 1, . . . , n.
▶ transform each sample by F −1

x : xi = F −1
x (ui), i = 1, . . . , n.
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Why does it work?

▶ For simplicity, assume that Fx is continuous and strictly
increasing, and hence invertible.

▶ Let u ∼ U(0, 1). The cdf of the transformed random variable
Fx

−1(u) is

P(Fx
−1(u) ≤ α) = P(u ≤ Fx (α)) = Fx (α) (1)

where we have used that P(u ≤ β) = β if u ∼ U(0, 1).
▶ Hence for u ∼ U(0, 1), Fx

−1(u) has cdf Fx , meaning
Fx

−1(u) ∼ px .
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Basic principle of rejection sampling
▶ Assume you can draw iid samples xi ∼ q(x).
▶ For each sampled xi , you draw a Bernoulli random variable

yi ∈ {0, 1} whose success probability depends on xi

P(yi = 1|xi) = f (xi)
▶ You get samples (yi , xi) with joint distribution

q(x)f (x)y (1 − f (x))(1−y)

▶ Conditional pdf of x|y = 1 is proportional to q(x)f (x)
▶ Keep/“accept” the xi with yi = 1, “reject” those with yi = 0.
▶ Accepted samples (those with yi = 1) follow

xi ∼ q(x)f (x)∫
q(x)f (x)dx

▶ Denominator equals the marginal probability of acceptance∫
q(x)f (x)dx =

∫
q(x)P(y = 1|x)dx = Eq(x)P(y = 1|x) = P(y = 1)
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Sampling from the posterior by rejection sampling

▶ Conditional acceptance probability f (x) ∈ [0, 1] can be used
to shape the distribution of the samples from q(x)

▶ Consider Bayesian inference: prior p(θ), likelihood L(θ)
▶ Using L(θ)/(max L(θ)) as acceptance probability f transforms

the samples θi from the prior into samples from the posterior.
▶ Accepted parameters follow

θi ∼ p(θ)L(θ)∫
p(θ)L(θ)dθ

= p(θ|D)

▶ More likely parameter configurations are more likely accepted.
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Sampling from the posterior by rejection sampling

▶ For discrete random variables L(θ) = P(x = D; θ) ∈ [0, 1].

▶ Accepting a θi with probability L(θ) can be implemented by
checking whether data simulated from the model with
parameter value θi equals the observed data.

▶ Samples from the posterior = samples from the prior that
produce data equal to the observed one.
(see slides “Basic of Model-Based Learning”)

Side-note (not examinable): enables Bayesian inference when the
likelihood is intractable (e.g. due to unobserved variables) but sampling
from the model is possible. Forms the basis of a set of methods called
approximate Bayesian computation, for an introductory review paper see
https://michaelgutmann.github.io/assets/papers/Lintusaari2017.pdf.
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Standard formulation of rejection sampling

▶ Rejection sampling is typically presented (slightly) differently.
▶ Goal is to generate samples from p(x) when being able to

sample from q(x).
▶ Since accepted samples follow

xi ∼ q(x)f (x)∫
q(x)f (x)dx

choose conditional acceptance probability f (x) ∝ p(x)/q(x)
▶ To determine the proportionality factor, note that f (x) must

be ≤ 1 since it is a conditional probability. Hence:

f (x) = 1
M

p(x)
q(x) M = max

x
p(x)
q(x)

▶ Acceptance probability: P(y = 1) =
∫

q(x)f (x)dx = 1
M .
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Multivariate by univariate sampling

▶ Rejection sampling may scale poorly because M increases with
dimensionality so that acceptance probability goes down.

▶ Sampling from high-dimensional multivariate distributions is
generally difficult.

▶ One way to approach the problem of multivariate sampling is
to translate it into the task of solving several lower
dimensional sampling problems.

▶ Examples:
▶ Ancestral sampling
▶ Gibbs sampling
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Ancestral sampling

▶ Factorisation provides a recipe for data generation / sampling
from p(x)

▶ Example:
p(x1, . . . , x5) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x2)

▶ We can generate samples from the joint distribution
p(x1, x2, x3, x4, x5) by sampling

1. x1 ∼ p(x1)
2. x2 ∼ p(x2)
3. x3 ∼ p(x3|x1, x2)
4. x4 ∼ p(x4|x3)
5. x5 ∼ p(x5|x2)

x1 x2

x3

x4

x5

▶ Sets of univariate sampling problems.
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Gibbs sampling
(Based on a slide from David Barber)
▶ Gibbs sampling also reduces the problem of multivariate

sampling to the problem of univariate sampling.
▶ Goal: generate samples x(k) from p(x) = p(x1, . . . , xd).
▶ By product rule

p(x) = p(xi |x1, . . . , xi−1, xi+1, . . . , xd)p(x1, . . . , xi−1, xi+1, . . . , xd)
= p(xi |x\i)p(x\i)

▶ Given a joint initial state x(1) from which we can read off the
‘parental’ state x(1)

\i

x(1)
\i = (x (1)

1 , . . . , x (1)
i−1, x (1)

i+1, . . . , x (1)
d ),

we can draw a sample x (2)
i from p(xi |x(1)

\i ).
▶ We assume this distribution is easy to sample from since it is

univariate.
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Gibbs sampling
(Based on a slide from David Barber)

▶ Call the new joint sample in which only xi has been updated
x(2),

x(2) = (x (1)
1 , . . . , x (1)

i−1, x (2)
i , x (1)

i+1, . . . , x (1)
d ).

▶ Next, select another variable xj to sample and, by continuing
this procedure, generate a set x(1), . . . , x(n) of samples in
which each x(k+1) differs from x(k) in only a single component.

▶ Since p(xi |x\i) = p(xi |MB(xi)), we can sample from
p(xi |MB(xi)) which is easier. (MB(xi ) is the Markov blanket of xi )

▶ Samples x(i) are not independent. Can be shown to converge
to samples from p(x) (see e.g. Robert and Casella, 2004, “Monte Carlo
Statistical Methods”. Out of scope of PMR).

▶ Gibbs sampling is an example of a Markov chain Monte Carlo
method for sampling (see Barber 27.4 and 27.3.1, and the
exercises, not examinable).
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Gibbs sampling for unnormalised models

▶ In each step, we need to sample from p(xi |x\i) for some
variable xi .

▶ We assume that we can do that, e.g. using one of the
univariate methods discussed.

▶ What to do if p(x) = p̃(x)/Z and computing Z is intractable?
▶ Z cancels out when computing p(xi |x\i)

p(xi |x\i) = p(x)
p(x\i)

= p(x)∫
p(x)dxi

= p̃(x)∫
p̃(x)dxi

(2)

▶ Requires computing the one-dimensional integral (sum) over
xi , which is typically feasible numerically.
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Pros and cons of Gibbs sampling

▶ Pros:
▶ no step-size or tuning required
▶ no need for normalised models
▶ can handle distributions where some variables are continuous

and others discrete
▶ can exploit independencies via the Markov blanket

▶ Cons:
▶ conditionals must be sampleable
▶ inner one-dimensional integral (sum) to compute
▶ can mix (converge) slowly since only one dimension is changed

at a time, leads to zig-zaggy sampling paths for correlated
variables

▶ For high-dimensional or strongly correlated posteriors, use
other Markov chain Monte Carlo methods, e.g. Hybrid
(Hamiltonian) Monte Carlo if gradients ∇x log p(x) can be
computed (see e.g., https://arxiv.org/abs/1206.1901, not examinable)
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Program recap

1. Monte Carlo integration
Approximating expectations by averages
Importance sampling
Effective sample size

2. Sampling
Simple univariate sampling
Rejection sampling
Ancestral sampling
Gibbs sampling
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