Probabilistic Modelling and Reasoning — Course Recap —

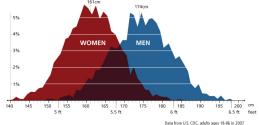
Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, The University of Edinburgh

Autumn Semester 2025

Course recap

- ► We started the course with the basic observation that variability is part of nature.
- Variability leads to uncertainty when analysing or drawing conclusions from data.
- ► This motivates taking a probabilistic approach to modelling and reasoning.



Course recap

- Probabilistic modelling:
 - ▶ Identify the quantities that relate to the aspects of reality that you wish to capture with your model.
 - Consider them to be random variables, e.g. x, y, z, with a joint pdf (pmf) p(x, y, z).
- Probabilistic reasoning:
 - ightharpoonup Assume you know that $\mathbf{y} \in \mathcal{E}$ (measurement, evidence)
 - Probabilistic reasoning about x then consists in computing

$$p(\mathbf{x}|\mathbf{y}\in\mathcal{E})$$

or related quantities like its maximiser or posterior expectations.

Course recap

- Principled framework but direct implementation quickly runs into computational issues.
- ► For example,

$$p(\mathbf{x}|\mathbf{y}_o) = \frac{\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{y}_o, \mathbf{z})}{\sum_{\mathbf{x}, \mathbf{z}} p(\mathbf{x}, \mathbf{y}_o, \mathbf{z})}$$

cannot be computed if $\mathbf{x}, \mathbf{y}, \mathbf{z}$ each are d = 500 dimensional, and if each element of the vectors can take K = 10 values.

- ► The course had five main topics.
 - 1. Representation
 - 2. Exact inference
 - 3. Actions and decision making
 - 4. Learning
 - 5. Approximate inference and learning

Topic 1: Representation

We discussed reasonably weak assumptions to efficiently represent $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$.

- ► Two classes of assumptions: independence and parametric assumptions.
- They are orthogonal to each other and can be combined.
- Directed and undirected graphical models
- Independencies encoded by the graphs. Their expressive power.
- Connection between independencies and the factorisation of the pdf/pmf.
- The chain rule and autoregressive models.

Topic 2: Exact inference

We have seen that the independence assumptions allow us, under certain conditions, to efficiently compute conditional /posterior distributions or derived quantities.

- Factor graphs to represent factorisations
- Variable elimination for general factor graphs
- Inference when the model can be represented as a factor tree (message passing algorithms)
- Application to Hidden Markov models

Topic 3: Actions and decision making

We then discussed how to turn (conditional) distributions into actions.

- We modelled actions as interventions in directed graphical models and used decision theory to derive optimal actions.
- Causal DAGs and how interventions change their structure
- ► Methods to compute the effect of interventions, i.e. the postinterventional distribution.
- ► Turning beliefs into actions by minimising the expected loss.
- Standard loss functions and the corresponding optimal actions.

Topic 4: Learning

Inference and decision making requires probabilistic models. We discussed methods to learn them from data.

- Learning by Bayesian inference
- Learning by parameter estimation
- Likelihood function
- Factor analysis and independent component analysis

Topic 5: Approximate inference and learning

We discussed computational intractabilities in inference and learning: intractable integrals often preclude exact inference and likelihood-based learning.

- Intractable integrals may be due to unobserved variables or intractable partition functions.
- Variational approaches to learning and inference, including mean-field VI and the EM algorithm
- Application of the EM algorithm to Hidden Markov Models
- Learning of deep latent variable models and variational autoencoders
- Monte Carlo integration and sampling