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Exercise 1. Ordered and local Markov properties, d-separation

Consider the graph below:
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(a) The ordering (z, h, a, q, e) is topological to the graph. What are the independencies that follow from
the ordered Markov property?

Solution. We proceed as in the lecture slides: The predecessor sets are

prez = ∅, preh = {z},prea = {z, h},preq = {z, h, a}, pree = {z, h, a, q}

The parent sets are independent from the topological ordering chosen. In the lecture, we
have seen that they are:

paz = ∅,pah = {z},paa = ∅,paq = {a, z},pae = {q},

The ordered Markov property reads xi ⊥⊥ (prei \ pai) | pai where the xi refer to the ordered
variables, e.g. x1 = z, x2 = h, x3 = a, etc.

With

preh \ pah = ∅ prea \ paa = {z, h} preq \ paq = {h} pree \ pae = {z, h, a}

we thus obtain

h ⊥⊥ ∅ | z a ⊥⊥ {z, h} q ⊥⊥ h | {a, z} e ⊥⊥ {z, h, a} | q

The relation h ⊥⊥ ∅ | z should be understood as “there is no variable from which h is
independent given z” and should thus be dropped from the list. Compared to the relations
obtained for the orderings in the lecture, the new one here is a ⊥⊥ {z, h}. Generally,
having a variable later in the topological ordering allows one to possibly obtain a stronger
independence relation because the set pre \ pa can only increase when the predecessor set
pre becomes larger.

(b) What are the independencies that follow from the local Markov property?

Solution. The non-descendants are

nondesc(a) = {z, h} nondesc(z) = {a} nondesc(h) = {a, z, q, e}

nondesc(q) = {a, z, h} nondesc(e) = {a, q, z, h}
With the parent sets as before, the independencies that follow from the local Markov
property are xi ⊥⊥ (nondesc(xi) \ pai) | pai, i.e.

a ⊥⊥ {z, h} z ⊥⊥ a h ⊥⊥ {a, q, e} | z q ⊥⊥ h | {a, z} e ⊥⊥ {a, z, h} | q
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(c) The independency relations obtained via the ordered and local Markov property include q ⊥⊥ h |
{a, z}. Verify the independency using d-separation.

Solution. The only trail from q to h goes through z which is in a tail-tail configuration.
Since z is part of the conditioning set, the trail is blocked and the result follows.

(d) Use d-separation to check whether a ⊥⊥ h | e holds.

Solution. The trail from a to h is shown below in red together with the default states
of the nodes along the trail.
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Conditioning on e opens the q node since q in a collider configuration on the path.
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The trail from a to h is thus active, which means that the relationship does not hold
because a ⊥̸⊥ h | e for some distributions that factorise over the graph.

(e) Assume all variables in the graph are binary. How many numbers do you need to specify, or learn

from data, in order to fully specify the probability distribution?

Solution. The graph defines a set of probability mass functions (pmf) that factorise as

p(a, z, q, h, e) = p(a)p(z)p(q|a, z)p(h|z)p(e|q)

To specify a member of the set, we need to specify the (conditional) pmfs on the right-hand
side. The (conditional) pmfs can be seen as tables, and the number of elements that we
need to specified in the tables are:
- 1 for p(a)
- 1 for p(z)
- 4 for p(q|a, z)
- 2 for p(h|z)
- 2 for p(e|q)
In total, there are 10 numbers to specify. This is in contrast to 25−1 = 31 for a distribution
without independencies. Note that the number of parameters to specify could be further
reduced by making parametric assumptions.
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Exercise 2. Flipping arrows

Consider the following graph:
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(a) How does the corresponding directed graphical model factorise?

Solution. p(u, x, y, z) = p(u)p(x|u)p(y|x)p(z|y, u)

(b) List all independencies encoded by the graph.

Solution. Variable u cannot be independent of x and z since they are connected. Since
z is in a collider configuration, we have that u ⊥⊥ y|x.
Variable x cannot be independent of y (and u) since they are connected. Conditioning on
u and y makes x independent of z: x ⊥⊥ z|u, y

(c) How do the independencies change when we flip the arrow from x to y so that it points the other
way around, i.e. y → x.?

Solution. With the change, we obtain the following graph
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which has two colliders blocking all paths between u and y. Hence u ⊥⊥ y. However,
conditioning on x would open the path so that u ⊥̸⊥ y|x. The independency x ⊥⊥ z|u, y
still holds.

Exercise 3. Independencies in directed graphical models

Consider the following directed acyclic graph.
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For each of the statements below, determine whether it holds for all probabilistic models that factorise
over the graph. Provide a justification for your answer.

(a) p(x7|x2) = p(x7)

Solution. Yes, it holds. x2 is a non-descendant of x7, pa(x7) = ∅, and hence, by the
local Markov property, x7 ⊥⊥ x2, so that p(x7|x2) = p(x7).

(b) x1 ⊥̸⊥ x3

Solution. No, does not hold. x1 and x3 are d-connected, which only implies indepen-
dence for some and not all distributions that factorise over the graph. The graph generally
only allows us to read out independencies and not dependencies.

(c) p(x1, x2, x4) ∝ ϕ1(x1, x2)ϕ2(x1, x4) for some non-negative functions ϕ1 and ϕ2.

Solution. Yes, it holds. The statement is equivalent to x2 ⊥⊥ x4 | x1. There are three
trails from x2 to x4, which are all blocked:

1. x2 − x1 − x4: this trail is blocked because x1 is in a tail-tail connection and it is
observed, which closes the node.

2. x2 − x3 − x6 − x5 − x4: this trail is blocked because x3, x6, x5 is in a collider configu-
ration, and x6 is not observed (and it does not have any descendants).

3. x2 − x3 − x6 − x8 − x7 − x4: this trail is blocked because x3, x6, x8 is in a collider
configuration, and x6 is not observed (and it does not have any descendants).

Hence, by the global Markov property (d-separation), the independency holds.

(d) x2 ⊥⊥ x9 | {x6, x8}

Solution. No, does not hold. Conditioning on x6 opens the collider node x4 on the trail
x2 − x1 − x4 − x7 − x9, so that the trail is active.

(e) x8 ⊥⊥ {x2, x9} | {x3, x5, x6, x7}

Solution. Yes, it holds. {x3, x5, x6, x7} is the Markov blanket of x8, so that x8 is inde-
pendent of remaining nodes given the Markov blanket.

(f) E[x2 · x3 · x4 · x5 · x8 | x7] = 0 if E[x8 | x7] = 0
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Solution. Yes, it holds. {x2, x3, x4, x5} are non-descendants of x8, and x7 is the parent
of x8, so that x8 ⊥⊥ {x2, x3, x4, x5} | x7. This means that E[x2 · x3 · x4 · x5 · x8 | x7] =
E[x2 · x3 · x4 · x5 | x7]E[x8 | x7] = 0.
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