
Probabilistic Modelling and Reasoning

Tutorial Solutions 3
Autumn 2025

Michael Gutmann

Exercise 1. Moralisation: Converting DAGs to undirected minimal I-maps

In the lecture, we had the following recipe to construct undirected minimal I-maps for I(p):

• Determine the Markov blanket for each variable xi

• Construct a graph where the neighbours of xi are given by its Markov blanket.

We can adapt the recipe to construct an undirected minimal I-map for the independencies I(G) encoded
by a DAG G. What we need to do is to use G to read out the Markov blankets for the variables xi rather
than determining the Markov blankets from the distribution p.

Show that this procedure leads to the following recipe to convert DAGs to undirected minimal I-maps:

1. For all immoralities in the graph: add edges between all parents of the collider node.

2. Make all edges in the graph undirected.

The first step is sometimes called “moralisation” because we “marry” all the parents in the graph that are
not already directly connected by an edge. The resulting undirected graph is called the moral graph of G,
sometimes denoted by M(G).

Solution. The Markov blanket of a variable x is the set of its parents, children, and co-parents,
as shown in the graph below in sub-figure (a). The parents and children are connected to x
in the directed graph, but the co-parents are not directly connected to x. Hence, according to
“Construct a graph where the neighbours of xi are its Markov blanket.”, we need to introduce
edges between x and all its co-parents. This gives the intermediate graph in sub-figure (b).

Now, considering the top-left parent of x, we see that for that node, the Markov blanket includes
the other parents of x. This means that we need to connect all parents of x, which gives the
graph in sub-figure (c). This is sometimes called “marrying” the parents of x. Continuing in
this way, we see that we need to “marry” all parents in the graph that are not already married.

Finally, we need to make all edges in the graph undirected, which gives sub-figure (d).

A simpler approach is to note that the DAG specifies the factorisation p(x) =
∏

i p(xi|pai). We
can consider each conditional p(xi|pai) to be a factor ϕi(xi, pai) so that we obtain the Gibbs
distribution p(x) =

∏
i ϕi(xi|pai). Visualising the distribution by connecting all variables in the

same factor ϕi(xi|pai) leads to the “marriage” of all parents of xi. This corresponds to the first
step in the recipe because xi is in a collider configuration with respect to the parent nodes.
Not all parents form an immorality but this does not matter because those that do not form an
immorality are already connected by a covering edge in the first place.

Exercise 2. Moralisation exercise

Consider the DAG G:

1 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

x

(a) DAG

x

(b) Intermediate step 1

x

(c) Intermediate step 2

x

(d) Undirected graph

Figure 1: Answer to Exercise 1: Illustrating the moralisation process

y

z1 z2

x1 x2 x3 x4 x5 x6

A friend claims that the undirected graph below is the moral graph M(G) of G. Is your friend correct? If
not, state which edges needed to be removed or added, and explain, in terms of represented independencies,
why the changes are necessary for the graph to become the moral graph of G.

y

z1 z2

x1 x2 x3 x4 x5 x6

Solution. The moral graph M(G) is an undirected minimal I-map of the independencies
represented by G. Following the procedure of connecting “unmarried” parents of colliders, we
obtain the following moral graph of G:

y

z1 z2

x1 x2 x3 x4 x5 x6

We can thus see that the friend’s undirected graph is not the moral graph of G.

2 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

The edge between x1 and x6 can be removed. This is because for G, we have e.g. the indepen-
dencies x1 ⊥⊥ x6|z1, x1 ⊥⊥ x6|z2, x1 ⊥⊥ x6|z1, z2 which is not represented by the drawn undirected
graph.

We need to add edges between x1 and x3, and between x4 and x6. Otherwise, the undirected
graph makes the wrong independency assertion that x1 ⊥⊥ x3|x2, z1 (and equivalent for x4 and
x6).

Exercise 3. Choice of elimination order in factor graphs

We would like to compute the marginal p(x1) by variable elimination for a joint pmf represented by the
following factor graph. All variables xi can take K different values.

x1

ϕa

x2

ϕb

x3

ϕc

x4

x5

ϕd

x6

ϕe

x7

ϕf

(a) A friend proposes the elimination order x4, x5, x6, x7, x3, x2, i.e. to do x4 first and x2 last. Explain
why this is computationally inefficient.

Solution. According to the factor graph, p(x1, . . . , x7) factorises as

p(x1, . . . , x7) ∝ ϕa(x1, x4)ϕb(x2, x4)ϕc(x3, x4)ϕd(x5, x4)ϕe(x6, x4)ϕf (x7, x4) (S.1)

If we choose to eliminate x4 first, i.e. compute

p(x1, x2, x3, x5, x6, x7) =
∑
x4

p(x1, . . . , x7) (S.2)

∝
∑
x4

ϕa(x1, x4)ϕb(x2, x4)ϕc(x3, x4)ϕd(x5, x4)ϕe(x6, x4)ϕf (x7, x4)

(S.3)

we cannot pull any of the factors out of the sum since each of them depends on x4. This
means the cost to sum out x4 for all combinations of the six variables (x1, x2, x3, x5, x6, x7)
is K7. Moreover, the new factor

ϕ̃(x1, x2, x3, x5, x6, x7) =
∑
x4

ϕa(x1, x4)ϕb(x2, x4)ϕc(x3, x4)ϕd(x5, x4)ϕe(x6, x4)ϕf (x7, x4)

(S.4)
does not factorise anymore so that subsequent variable eliminations will be expensive too.

(b) Propose an elimination ordering that achieves O(K2) computational cost per variable elimination
and explain why it does so.

3 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Solution. Any ordering where x4 is eliminated last will do. At any stage, elimination of
one of the variables x2, x3, x5, x6, x7 is then a O(K2) operation. This is because e.g.

p(x1, . . . , x6) =
∑
x7

p(x1, . . . , x7) (S.5)

∝ ϕa(x1, x4)ϕb(x2, x4)ϕc(x3, x4)ϕd(x5, x4)ϕe(x6, x4)
∑
x7

ϕf (x7, x4)︸ ︷︷ ︸
ϕ̃7(x4)

(S.6)

∝ ϕa(x1, x4)ϕb(x2, x4)ϕc(x3, x4)ϕd(x5, x4)ϕe(x6, x4)ϕ̃7(x4) (S.7)

where computing ϕ̃7(x4) for all values of x4 is O(K2). Further,

p(x1, . . . , x5) =
∑
x6

p(x1, . . . , x6) (S.8)

∝ ϕa(x1, x4)ϕb(x2, x4)ϕc(x3, x4)ϕd(x5, x4)ϕ̃7(x4)
∑
x6

ϕe(x6, x4) (S.9)

∝ ϕa(x1, x4)ϕb(x2, x4)ϕc(x3, x4)ϕd(x5, x4)ϕ̃7(x4)ϕ̃6(x4), (S.10)

where computation of ϕ̃6(x4) for all values of x4 is again O(K2). Continuing in this
manner, one obtains

p(x1, x4) ∝ ϕa(x1, x4)ϕ̃2(x4)ϕ̃3(x4)ϕ̃5(x4)ϕ̃6(x4)ϕ̃7(x4). (S.11)

where each derived factor ϕ̃ has O(K2) cost. Summing out x4 and normalising the pmf is
again a O(K2) operation.

4 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

