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Exercise 1. Sum-product message passing

The following factor graph represents a Gibbs distribution over four binary variables xi ∈ {0, 1}.
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The factors ϕa, ϕb, ϕd are defined as follows:

x1 ϕa

0 2
1 1

x1 x2 ϕb

0 0 5
1 0 2
0 1 2
1 1 6

x3 ϕd

0 1
1 2

and ϕc(x1, x3, x4) = 1 if x1 = x3 = x4, and is zero otherwise.

For all questions below, justify your answer:

(a) Compute the values of µx2→ϕb
(x2) for x2 = 0 and x2 = 1.

Solution. Messages from leaf-variable nodes to factor nodes are equal to one, so that
µx2→ϕb

(x2) = 1 for all x2.

(b) Assume the message µx4→ϕc
(x4) equals

µx4→ϕc(x4) =

{
1 if x4 = 0

3 if x4 = 1

Compute the values of ϕe(x4) for x4 = 0 and x4 = 1.

Solution. Messages from leaf-factors to their variable nodes are equal to the leaf-factors,
and variable nodes with single incoming messages copy the message. We thus have

µϕe→x4(x4) = ϕe(x4) (S.1)

µx4→ϕc(x4) = µϕe→x4(x4) (S.2)

and hence

ϕe(x4) =

{
1 if x4 = 0

3 if x4 = 1
(S.3)

(c) Compute the values of µϕc→x1
(x1) for x1 = 0 and x1 = 1.
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Solution. We first compute µx3→ϕc(x3):

µx3→ϕc(x3) = µϕd→x3(x3) (S.4)

=

{
1 if x3 = 0

2 if x3 = 1
(S.5)

The desired message µϕc→x1(x1) is by definition

µϕc→x1(x1) =
∑
x3,x4

ϕc(x1, x3, x4)µx3→ϕc(x3)µx4→ϕc(x4) (S.6)

Since ϕc(x1, x3, x4) is only non-zero if x1 = x3 = x4, where it equals one, the computations
simplify:

µϕc→x1(x1 = 0) = ϕc(0, 0, 0)µx3→ϕc(0)µx4→ϕc(0) (S.7)

= 1 · 1 · 1 (S.8)

= 1 (S.9)

µϕc→x1(x1 = 1) = ϕc(1, 1, 1)µx3→ϕc(1)µx4→ϕc(1) (S.10)

= 1 · 2 · 3 (S.11)

= 6 (S.12)

(d) The message µϕb→x1(x1) equals

µϕb→x1
(x1) =

{
7 if x1 = 0

8 if x1 = 1

What is the probability that x1 = 1, i.e. p(x1 = 1)?

Solution. The unnormalised marginal p(x1) is given by the product of the three incoming
messages

p(x1) ∝ µϕa→x1(x1)µϕb→x1(x1)µϕc→x1(x1) (S.13)

With

µϕb→x1(x1) =
∑
x2

ϕb(x1, x2) (S.14)

it follows that

µϕb→x1(x1 = 0) =
∑
x2

ϕb(0, x2) (S.15)

= 5 + 2 (S.16)

= 7 (S.17)

µϕb→x1(x1 = 1) =
∑
x2

ϕb(1, x2) (S.18)

= 2 + 6 (S.19)

= 8 (S.20)
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Hence, we obtain

p(x1 = 0) ∝ 2 · 7 · 1 = 14 (S.21)

p(x1 = 1) ∝ 1 · 8 · 6 = 48 (S.22)

and normalisation yields the desired result

p(x1 = 1) =
48

14 + 48
=

48

62
=

24

31
= 0.774 (S.23)

Exercise 2. Viterbi algorithm

For the hidden Markov model

p(h1:t, v1:t) = p(v1|h1)p(h1)

t∏
i=2

p(vi|hi)p(hi|hi−1)

assume you have observations for vi, i = 1, . . . , t. Use the max-sum algorithm to derive an iterative
algorithm to compute

ĥ = argmax
h1,...,ht

p(h1:t|v1:t) (1)

Assume that the latent variables hi can take K different values, e.g. hi ∈ {0, . . . ,K − 1}. The resulting
algorithm is known as Viterbi algorithm.

Solution. We first form the factors

ϕ1(h1) = p(v1|h1)p(h1) ϕ2(h1, h2) = p(v2|h2)p(h2|h1) (S.24)

. . . ϕt(ht−1, ht) = p(vt|ht)p(ht|ht−1) (S.25)

where the vi are known and fixed. The posterior p(h1, . . . , ht|v1, . . . , vt) is then represented by
the following factor graph (assuming t = 4).
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For the max-sum algorithm, we here choose ht to be the “sink”. We thus initialise the algorithm
with γϕ1→h1(h1) = log ϕ1(h1) = log p(v1|h1) + log p(h1) and then compute the messages from
left to right, moving from the leaf ϕ1 to ht.

Since we are dealing with a chain, the variable nodes, much like in the sum-product algorithm,
just copy the incoming messages. It thus suffices to compute the factor to variable messages
shown in the graph, and then backtrack to h1.
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With γhi−1→ϕi
(hi−1) = γϕi−1→hi−1

(hi−1), the factor-to-variable update equation is

γϕi→hi
(hi) = max

hi−1

log ϕi(hi−1, hi) + γhi−1→ϕi
(hi−1) (S.26)

= max
hi−1

log ϕi(hi−1, hi) + γϕi−1→hi−1
(hi−1) (S.27)

To simplify notation, denote γϕi→hi
(hi) by Vi(hi). We thus have

V1(h1) = log p(v1|h1) + log p(h1) (S.28)

Vi(hi) = max
hi−1

log ϕi(hi−1, hi) + Vi−1(hi−1) i = 2, . . . , t (S.29)

In general, V1(h1) and Vi(hi) are functions that depend on h1 and hi, respectively. Assuming
that the hi can take on the values 0, . . . ,K − 1, the above equations can be written as

v1,k = log p(v1|k) + log p(k) k = 0, . . . ,K − 1 (S.30)

vi,k = max
m∈0,...,K−1

log ϕi(m, k) + vi−1,m k = 0, . . . ,K − 1, i = 2, . . . , t, (S.31)

At the end of the algorithm, we thus have a t×K matrix V with elements vi,k.

The maximisation can be performed by computing the temporary matrix A (via broadcast-
ing) where the (m, k)-th element is log ϕi(m, k) + vi−1,m. Maximisation then corresponds to
determining the maximal value in each column.

To support the backtracking, when we compute Vi(hi) by maximising over hi−1, we compute at
the same time the look-up table

γ∗i (hi) = argmax
hi−1

log ϕi(hi−1, hi) + Vi−1(hi−1) (S.32)

When hi takes on the values 0, . . . ,K − 1, this can be written as

γ∗i,k = argmax
m∈0,...,K−1

log ϕi(m, k) + vi−1,m (S.33)

This is the (row) index of the maximal element in each column of the temporary matrix A.

After computing vt,k and γ∗t,k, we then perform backtracking via

ĥt = argmax
k

vt,k (S.34)

ĥi = γ∗
i+1,ĥi+1

i = t− 1, . . . , 1 (S.35)

This gives recursively ĥ = (ĥ1, . . . , ĥt) = argmaxh1,...,ht
p(h1:t|v1:t).
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