@ P —— Probabilistic Modelling and Reasoning Autumn 2025
informatics Tutorial Solutions 4 Michael Gutmann

Exercise 1. Sum-product message passing

The following factor graph represents a Gibbs distribution over four binary variables z; € {0,1}.

O—s :

Pa Pe

Pe

The factors ¢q, dp, pa are defined as follows:

il ¢a 0 0 5 T3 ¢d

0 2 1 0o 2 0 1

1 1 0 1 2 1 2
1 1 6

and ¢c(r1,23,24) = 1 if ©1 = x5 = x4, and is zero otherwise.

For all questions below, justify your answer:

(a) Compute the values of [iz,—¢,(x2) for o =0 and x5 = 1.

Solution. Messages from leaf-variable nodes to factor nodes are equal to one, so that
Pas—ay (x2) = 1 for all zs.
(b) Assume the message iz, —qp.(T4) equals

1 Zf{L'4:0

T Ty) =
ILL4_>¢C(4) {3 fo4:1

Compute the values of ¢pe(x4) for g =0 and x4 = 1.

Solution. Messages from leaf-factors to their variable nodes are equal to the leaf-factors,
and variable nodes with single incoming messages copy the message. We thus have

fge—as(Ta) = Pe(z4) (S.1)
Pas—se(T4) = P —ay (T4)

and hence

N 1 if$4:0
¢e($4)— {3 ifx4:1 (83)

(c) Compute the values of g, —ay (x1) for x1 =0 and 1 = 1.

1 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

(d)

Solution. We first compute fig, 4. (23):

Has— e (T3) = Hog—sas (T3) (S.4)
g 6
The desired message 1.z, (1) is by definition
Pibesar (T1) = Y be(@1, T3, 0a) Hag 60 (€3) 1y 5. (24) (5.6)
3,24

Since ¢¢(x1,x3,x4) is only non-zero if x1 = x3 = x4, where it equals one, the computations
simplify:

Loz (T1 = 0) = $c(0,0,0)pay 6. (0) g, (0) (S.7)
=1-1-1 (S.8)
—1 (S.9)
fgo—ar (T1 = 1) = ¢c(1,1, 1) g s (1) g, (1) (S.10)
=1-2-3 (S.11)
=6 (S.12)

The message iy, —z, (1) equals

7 ifl‘1:0

M“%wxxﬂ::{s if 21 =1

What is the probability that x1 = 1, d.e. p(x;1 =1)7

Solution. The unnormalised marginal p(z1) is given by the product of the three incoming
messages

P(x1) X ppy sz (1) By —a1 (T1) oy (1) (S.13)
With

Higy a1 (T1) Z¢b 1, T2) (S.14)

it follows that
Phy—ar (1 = 0) ZQS(, (0, x2) (S.15)
=5+2 (S.16)
= (S.17)
Loy sy (11 = 1) = j{:<¢b 1,15) (S.18)
:2+6 (5.19)
=8 (S.20)

2 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Hence, we obtain

pr1=0)x2-7-1=14 (S.21)
plxr=1)x1-8-6=48 (S.22)

and normalisation yields the desired result

48 48 24
14448 62 31 0.77 (5.23)

p(z1=1)

Exercise 2. Viterbi: algorithm

For the hidden Markov model

p(hi:,v14) = p(vl|h1)p(h1) HP(Ui|hi)p(hi|hi71)

i=2
assume you have observations for v;, i = 1,...,t. Use the mazx-sum algorithm to derive an iterative
algorithm to compute .
b = argmax p(hu.ifvse) (1)

Ri,...,hy

Assume that the latent variables h; can take K different values, e.g. h; € {0,..., K — 1}. The resulting
algorithm is known as Viterbi algorithm.

Solution. We first form the factors

¢1(h1) = p(vi|h1)p(h1) ¢2(h1, h2) = p(v2|h2)p(halhi) (S.24)
ot(he—1, he) = p(ve|he)p(helhe—1) (S.25)
where the v; are known and fixed. The posterior p(hy,...,hijv1,...,v¢) is then represented by

the following factor graph (assuming t = 4).

b1 b2 ¢3 P4
— () —s—()—=—)

For the max-sum algorithm, we here choose h; to be the “sink”. We thus initialise the algorithm
with v, —p, (h1) = log ¢1(h1) = logp(vi]h1) + logp(h1) and then compute the messages from
left to right, moving from the leaf ¢ to hy.

Since we are dealing with a chain, the variable nodes, much like in the sum-product algorithm,
just copy the incoming messages. It thus suffices to compute the factor to variable messages
shown in the graph, and then backtrack to hj.

o1 2 3 o
N N R e M
) @

3 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

With v, 54, (hi—1) = Y, —h,_, (hi—1), the factor-to-variable update equation is

Vo —hi (hi) = max log ¢i(hi—1, i) + Yn;_y ¢ (hi—1) (S.26)
1—1
= maxlog ¢;(hi—1,hi) + Vg, 1 —ni_1 (hi—1) (S.27)

i—1

To simplify notation, denote v4,_,p,(h;) by Vi(h;). We thus have

Vi(h1) = log p(v1|h1) + logp(h1) (S.28)
Vz(hl) zlglaxloggm(hi_l,hi) +Vi—1(hi—1) 1=2,...,t (829)
i—1
In general, V;(h1) and Vj(h;) are functions that depend on h; and h;, respectively. Assuming
that the h; can take on the values 0,..., K — 1, the above equations can be written as
vy, = log p(v1]k) + log p(k) k=0,...,K—1 (S.30)
Uik :meg}i};{_llog@(m, k) 4+ vi—1,m k=0,.... K -1, i=2,...,t, (S.31)

At the end of the algorithm, we thus have a ¢t x K matrix V with elements v; .

The maximisation can be performed by computing the temporary matrix A (via broadcast-
ing) where the (m,k)-th element is log ¢;(m, k) + vi—1,,. Maximisation then corresponds to
determining the maximal value in each column.

To support the backtracking, when we compute V;(h;) by maximising over h;_1, we compute at
the same time the look-up table

;i (hi) = argmaxlog ¢;(hi—1, ki) + Vic1(hi—1) (S.32)

hi—1

When h; takes on the values 0,..., K — 1, this can be written as

e = argmax logéi(m, k) + v 1m (S.33)
meo0,...,.K—1

This is the (row) index of the maximal element in each column of the temporary matrix A.

After computing v; and 7}, we then perform backtracking via

hy = argmax vy i (S.34)
k
}:fyjﬂ’ﬁiﬂ i=t—1,...,1 (S.35)
This gives recursively h = (hy, ..., h) = argmaxy, p, P(h1t|v1:).

4 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

