
Probabilistic Modelling and Reasoning

Tutorial Solutions 4
Autumn 2025

Michael Gutmann

Exercise 1. Sum-product message passing

The following factor graph represents a Gibbs distribution over four binary variables xi ∈ {0, 1}.

ϕa

x1

ϕb

x2

ϕc

x3

x4

ϕd

ϕe

The factors ϕa, ϕb, ϕd are defined as follows:

x1 ϕa

0 2
1 1

x1 x2 ϕb

0 0 5
1 0 2
0 1 2
1 1 6

x3 ϕd

0 1
1 2

and ϕc(x1, x3, x4) = 1 if x1 = x3 = x4, and is zero otherwise.

For all questions below, justify your answer:

(a) Compute the values of µx2→ϕb
(x2) for x2 = 0 and x2 = 1.

Solution. Messages from leaf-variable nodes to factor nodes are equal to one, so that
µx2→ϕb

(x2) = 1 for all x2.

(b) Assume the message µx4→ϕc
(x4) equals

µx4→ϕc(x4) =

{
1 if x4 = 0

3 if x4 = 1

Compute the values of ϕe(x4) for x4 = 0 and x4 = 1.

Solution. Messages from leaf-factors to their variable nodes are equal to the leaf-factors,
and variable nodes with single incoming messages copy the message. We thus have

µϕe→x4(x4) = ϕe(x4) (S.1)

µx4→ϕc(x4) = µϕe→x4(x4) (S.2)

and hence

ϕe(x4) =

{
1 if x4 = 0

3 if x4 = 1
(S.3)

(c) Compute the values of µϕc→x1
(x1) for x1 = 0 and x1 = 1.

1 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Solution. We first compute µx3→ϕc(x3):

µx3→ϕc(x3) = µϕd→x3(x3) (S.4)

=

{
1 if x3 = 0

2 if x3 = 1
(S.5)

The desired message µϕc→x1(x1) is by definition

µϕc→x1(x1) =
∑
x3,x4

ϕc(x1, x3, x4)µx3→ϕc(x3)µx4→ϕc(x4) (S.6)

Since ϕc(x1, x3, x4) is only non-zero if x1 = x3 = x4, where it equals one, the computations
simplify:

µϕc→x1(x1 = 0) = ϕc(0, 0, 0)µx3→ϕc(0)µx4→ϕc(0) (S.7)

= 1 · 1 · 1 (S.8)

= 1 (S.9)

µϕc→x1(x1 = 1) = ϕc(1, 1, 1)µx3→ϕc(1)µx4→ϕc(1) (S.10)

= 1 · 2 · 3 (S.11)

= 6 (S.12)

(d) The message µϕb→x1(x1) equals

µϕb→x1
(x1) =

{
7 if x1 = 0

8 if x1 = 1

What is the probability that x1 = 1, i.e. p(x1 = 1)?

Solution. The unnormalised marginal p(x1) is given by the product of the three incoming
messages

p(x1) ∝ µϕa→x1(x1)µϕb→x1(x1)µϕc→x1(x1) (S.13)

With

µϕb→x1(x1) =
∑
x2

ϕb(x1, x2) (S.14)

it follows that

µϕb→x1(x1 = 0) =
∑
x2

ϕb(0, x2) (S.15)

= 5 + 2 (S.16)

= 7 (S.17)

µϕb→x1(x1 = 1) =
∑
x2

ϕb(1, x2) (S.18)

= 2 + 6 (S.19)

= 8 (S.20)

2 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Hence, we obtain

p(x1 = 0) ∝ 2 · 7 · 1 = 14 (S.21)

p(x1 = 1) ∝ 1 · 8 · 6 = 48 (S.22)

and normalisation yields the desired result

p(x1 = 1) =
48

14 + 48
=

48

62
=

24

31
= 0.774 (S.23)

Exercise 2. Viterbi algorithm

For the hidden Markov model

p(h1:t, v1:t) = p(v1|h1)p(h1)

t∏
i=2

p(vi|hi)p(hi|hi−1)

assume you have observations for vi, i = 1, . . . , t. Use the max-sum algorithm to derive an iterative
algorithm to compute

ĥ = argmax
h1,...,ht

p(h1:t|v1:t) (1)

Assume that the latent variables hi can take K different values, e.g. hi ∈ {0, . . . ,K − 1}. The resulting
algorithm is known as Viterbi algorithm.

Solution. We first form the factors

ϕ1(h1) = p(v1|h1)p(h1) ϕ2(h1, h2) = p(v2|h2)p(h2|h1) (S.24)

. . . ϕt(ht−1, ht) = p(vt|ht)p(ht|ht−1) (S.25)

where the vi are known and fixed. The posterior p(h1, . . . , ht|v1, . . . , vt) is then represented by
the following factor graph (assuming t = 4).

ϕ1

h1

ϕ2

h2

ϕ3

h3

ϕ4

h4

For the max-sum algorithm, we here choose ht to be the “sink”. We thus initialise the algorithm
with γϕ1→h1(h1) = log ϕ1(h1) = log p(v1|h1) + log p(h1) and then compute the messages from
left to right, moving from the leaf ϕ1 to ht.

Since we are dealing with a chain, the variable nodes, much like in the sum-product algorithm,
just copy the incoming messages. It thus suffices to compute the factor to variable messages
shown in the graph, and then backtrack to h1.

ϕ1

h1

ϕ2

h2

ϕ3

h3

ϕ4

h4
→ → → →

3 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

With γhi−1→ϕi
(hi−1) = γϕi−1→hi−1

(hi−1), the factor-to-variable update equation is

γϕi→hi
(hi) = max

hi−1

log ϕi(hi−1, hi) + γhi−1→ϕi
(hi−1) (S.26)

= max
hi−1

log ϕi(hi−1, hi) + γϕi−1→hi−1
(hi−1) (S.27)

To simplify notation, denote γϕi→hi
(hi) by Vi(hi). We thus have

V1(h1) = log p(v1|h1) + log p(h1) (S.28)

Vi(hi) = max
hi−1

log ϕi(hi−1, hi) + Vi−1(hi−1) i = 2, . . . , t (S.29)

In general, V1(h1) and Vi(hi) are functions that depend on h1 and hi, respectively. Assuming
that the hi can take on the values 0, . . . ,K − 1, the above equations can be written as

v1,k = log p(v1|k) + log p(k) k = 0, . . . ,K − 1 (S.30)

vi,k = max
m∈0,...,K−1

log ϕi(m, k) + vi−1,m k = 0, . . . ,K − 1, i = 2, . . . , t, (S.31)

At the end of the algorithm, we thus have a t×K matrix V with elements vi,k.

The maximisation can be performed by computing the temporary matrix A (via broadcast-
ing) where the (m, k)-th element is log ϕi(m, k) + vi−1,m. Maximisation then corresponds to
determining the maximal value in each column.

To support the backtracking, when we compute Vi(hi) by maximising over hi−1, we compute at
the same time the look-up table

γ∗i (hi) = argmax
hi−1

log ϕi(hi−1, hi) + Vi−1(hi−1) (S.32)

When hi takes on the values 0, . . . ,K − 1, this can be written as

γ∗i,k = argmax
m∈0,...,K−1

log ϕi(m, k) + vi−1,m (S.33)

This is the (row) index of the maximal element in each column of the temporary matrix A.

After computing vt,k and γ∗t,k, we then perform backtracking via

ĥt = argmax
k

vt,k (S.34)

ĥi = γ∗
i+1,ĥi+1

i = t− 1, . . . , 1 (S.35)

This gives recursively ĥ = (ĥ1, . . . , ĥt) = argmaxh1,...,ht
p(h1:t|v1:t).

4 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

