## Exercise 1. Sum-product message passing

The following factor graph represents a Gibbs distribution over four binary variables  $x_i \in \{0, 1\}$ .



The factors  $\phi_a, \phi_b, \phi_d$  are defined as follows:

|             |   | $x_1$ | $x_2$ | $\phi_b$ |   |       |          |
|-------------|---|-------|-------|----------|---|-------|----------|
| $x_1  \phi$ | a | 0     | 0     | 5        | - | $x_3$ | $\phi_d$ |
| 0 2         |   | 1     | 0     | 2        |   | 0     | 1        |
| 1 1         |   | 0     | 1     | 2        |   | 1     | 2        |
|             |   | 1     | 1     | 6        |   |       |          |

and  $\phi_c(x_1, x_3, x_4) = 1$  if  $x_1 = x_3 = x_4$ , and is zero otherwise.

For all questions below, justify your answer:

- (a) Compute the values of  $\mu_{x_2 \to \phi_b}(x_2)$  for  $x_2 = 0$  and  $x_2 = 1$ .
- (b) Assume the message  $\mu_{x_4 \to \phi_c}(x_4)$  equals

$$\mu_{x_4 \to \phi_c}(x_4) = \begin{cases} 1 & \text{if } x_4 = 0\\ 3 & \text{if } x_4 = 1 \end{cases}$$

Compute the values of  $\phi_e(x_4)$  for  $x_4 = 0$  and  $x_4 = 1$ .

- (c) Compute the values of  $\mu_{\phi_c \to x_1}(x_1)$  for  $x_1 = 0$  and  $x_1 = 1$ .
- (d) The message  $\mu_{\phi_b \to x_1}(x_1)$  equals

$$\mu_{\phi_b \to x_1}(x_1) = \begin{cases} 7 & \text{if } x_1 = 0\\ 8 & \text{if } x_1 = 1 \end{cases}$$

What is the probability that  $x_1 = 1$ , i.e.  $p(x_1 = 1)$ ?

## Exercise 2. Viterbi algorithm

For the hidden Markov model

$$p(h_{1:t}, v_{1:t}) = p(v_1|h_1)p(h_1)\prod_{i=2}^{t} p(v_i|h_i)p(h_i|h_{i-1})$$

assume you have observations for  $v_i$ ,  $i=1,\ldots,t$ . Use the max-sum algorithm to derive an iterative algorithm to compute

$$\hat{\mathbf{h}} = \underset{h_1, \dots, h_t}{\operatorname{argmax}} p(h_{1:t} | v_{1:t}) \tag{1}$$

Assume that the latent variables  $h_i$  can take K different values, e.g.  $h_i \in \{0, ..., K-1\}$ . The resulting algorithm is known as Viterbi algorithm.