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Exercise 1. Adjustment for direct causes

We would like to compute p(y;do(x) = a) for the models represented by the following three causal DAGs.
Assume that all variables are discrete.

(=) (=)
(@ () (©)

(a) For the causal DAG in (a), specify the factorization of p(x,vy, z;do(x) = a) and derive p(y; do(x) =
a) in terms of the conditional probability distributions p(x;|pa;) of the graphical model defined the
DAG.

Solution. Intervening on x deletes all incoming edges into node x, so in this case, this
is the edge z — x, which gives the graph

p(z,y, z;do(x) = a) = p(2)p(ylz, 2)6(x — a) (S.1)

Thus we have

with

5(x—a):{1 ifo=a (S.2)

0 otherwise

To obtain p(y; do(z) = a) we marginalise out x and z, which gives

p(y; do(z Zp p(ylz, 2)0(x — a) (5.3)

= Zp(Z) Zp(ylx, 2)d(z — a) (S.4)
= Zp (ylx = a,z) (S.5)

(b) For the causal DAG in (b), specify the factorization of p(x,y, z, w;do(x) = a) and derive p(y; do(x) =
a) in terms of the conditional probability distributions p(x;|pa;) of the graphical model defined by
the DAG.
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Solution. As in (a) we delete all incoming edges into x to model the intervention. This
gives

We read out the factorisation, using that the interventional distribution is p’(z) = §(z —a),

p(x,y, 2, w;do(x) = a) = p(2)0(z — a)p(wl|z)p(y|z, w, 2) (S.6)

We next sum out z, z, w to obtain the desired result:

p(y:do(z) = a) = 3 p(2)d(z — a)p(wlz)p(ylz, w, 2) (S.7)
=Y p(@)p(wlz = a)p(ylz = a,w, 2) (S.8)

=Y p(2) Y _p(wlz = a)ply|lz = a,w,2) (S.9)

The same result could have been obtained from the general formula

py;do(z) = a) = Eypa,) [P(y|lz = a, pa,)] (S.10)

where pa, denotes the parents of x, which is here z. The distribution p(y|x = a, z) can be
obtained as

plylz =a,2) = Zp(y,w|x =a,z) (S.11)
=3 pyle = a,w, 2)p(wle = a, 2) (S.12)

From the original graph (before intervening on x), we see that w 1L z|x, hence p(w|z =
a,z) = p(w|z = a) so that

plyle = a,z) = Zw:p(ylx = a,w, 2)p(w|z = a) (S.13)
and
p(y;do(z) = a) = Eypa,) [P(ylz = a, pa,)] (S.14)
= Z:p(Z) Ew:p(y!w = a,w, 2)p(w|z = a) (S.15)
as in (S.9)

(c) Answer the same questions for the causal DAG in (c).
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Solution. The graph modelling the intervention on z is given by

()

We read out the factorisation, using that the interventional distribution is p’(z) =

p(x,y, 2, w;do(z) = a) = p(2)d(x — a)p(w|z, y)p(y|z, 2)

We next sum out z, z, w to obtain the desired result:

ply;do(x) = a) = Y p(2)d(x — a)p(wlz, y)p(y|z, 2)

x,z,w

—Zp p(wlz = a,y)p(yle = a, 2)
—Zp plylz = a, 2) prlx—ay)

—Zp p(yle = a,z)

For the interventional distribution, we can also start from

p(y§ d0($> = a) = IEp(paLgE) [p(y|$ = aapaz)]

d(z—a),

(S.16)

(S.17)
(S.18)

(S.19)

(S.20)

(S.21)

with pa, = z. Since the distribution p(y|z = a,2) equals p(y|pa,) (with = set to a) we

thus have

(y,dO Zp y|x—a .CC)

as before.

Exercise 2. Intervening and conditioning

Consider the following graph G:

For each question below, provide an answer and a brief justification.

(a) Do we have p(xg; do(x1)) = p(we|r1)?

(S.22)
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Solution. We need to check whether there are open backdoor paths from xq to zg. For
that we first form the graph G, obtained by removing all outgoing edges from z:

o’

We next check whether g I 21 holds for G,,. If so, all backdoor path are closed in G.
Given that z3 is in a collider configuration and we do not condition on it, or any of its
descendants, the independency holds. We can thus exchange observation and action, and
p(ze; do(x1)) = p(z¢|z1) holds.

(b) Do we have p(xg|zs;do(x1)) = p(xelar, xz3)?

Solution. Here, we need to check whether x¢ 1L x1|z3 holds for G, - Since we condition
on the collider node x3, the independency does not hold. Hence, there is an open backdoor
path and p(xg|zs; do(z1)) # p(xe|x1, x3).

(¢) Do we have p(wg|zs, x2; do(21)) = p(we|rs) ?

Solution. We first determine whether p(zg|xs, z2; do(21)) = p(zs|s, x2, 1) holds. For
that we check whether zg L x1|z5, 79 for Gy,. As in (a), the collider node z3 blocks the
path from z; to zg and conditioning on x5 or xo does not change that.

Next, we check whether xg 1 {z2,z1}|z5 holds in G. We have two paths from zg to
{z9,z1}. The first one goes via x3 which is blocked (collider node and we do not condition
on it or its descendants). The second goes via x5, which is blocked because x5 is in a head-
tail configuration and we condition on it. Hence, we have that p(xg|zs, z2, 1) = p(z¢|xs)
and p(zg|zs, x2; do(z1)) = p(xs|xs) holds.

Exercise 3. Reject option

[Murphy PML1 (2022) Ex 5.1] Consider a K-class discrete variable Y with labels Y = {1,...,C}.
The actions are A =Y U {0}, where a = 0 denotes the reject option, and choosing action a =1 for
1 € Y denotes selecting label i. Define the loss function as follows:

0 ifi=jandac{l,...,C}
ly=ja=1)=< )\ ifa=0 (1)
Ae  otherwise,

where A, is the cost of a reject, A, the cost of an error.

Given information x we obtain the posterior p(Y|x). Show that the minimum posterior risk is
obtained for the following decision rule: we decide Y = j if p(Y = j|x) > p(Y = k|x) for all k (i.e.
J is the most probable label) and if p(Y = j|x) > 1 — \./ A, otherwise we decide to reject.
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Solution. The posterior risk for the action a =i for ¢ = 1,...,C is given by
R(a =i|x) = Zp =k|x)Y =k,a=1)

=pY =ilx) -0+ A Zp = k|x)
k#i
— (1= p(Y = ).

This risk is minimized by choosing the most probable label j. On the other hand, the risk
for the rejection option (a = 0) is R(a = 0|x) = A,. We choose not to reject if

R(a = 0|x) > R(a = j|x),i.e.
Ar 2 Ae(1 = p(Y = j[x)),
which can be rearranged to give p(Y = jlx) > 1 — A\;/\.. Hence, the minimal risk is
obtained for the following decision rule: decide Y = j if p(Y = j|x) > p(Y = k|x) for all

k (i.e. j is the most probable label) and if p(Y = j|x) > 1 — A/, otherwise decide to
reject.
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