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Exercise 1. Cancer-asbestos-smoking example: MLE

Consider the model specified by the DAG

a s

c

The distribution of a and s are Bernoulli distributions with parameter (success probability) θa and θs,
respectively, i.e.

p(a; θa) = θaa(1− θa)
1−a p(s; θs) = θss(1− θs)

1−s, (1)

and the distribution of c given the parents is parameterised as specified in the following table

p(c = 1|a, s; θ1c , . . . , θ4c )) a s

θ1c 0 0
θ2c 1 0
θ3c 0 1
θ4c 1 1

The free parameters of the model are (θa, θs, θ
1
c , . . . , θ

4
c ).

Assume we observe the following iid data (each row is a data point).

a s c

0 1 1
0 0 0
1 0 1
0 0 0
0 1 0

(a) Determine the maximum-likelihood estimates of θa and θs.

Solution. The maximum likelihood estimate (MLE) θ̂a is given by the fraction of times
that a is 1 in the data set. Hence θ̂a = 1/5. Similarly, the MLE θ̂s is 2/5.

(b) Determine the maximum-likelihood estimates of θ1c , . . . , θ
4
c .

Solution. The maximum likelihood estimate of the conditional is the fraction of times
c = 1 among the data points that satisfy the constraints given by the conditioning set.

• For θ1c , we have two observations where (a, s) = (0, 0), and among them, c = 1 never
occurs. Hence, the MLE θ̂1c = p̂(c = 1|a = 0, s = 0) is zero.

• For θ2c , we have one observation where (a, s) = (1, 0), and for that data point c = 1.
Hence, the MLE θ̂2c = p̂(c = 1|a = 1, s = 0) is one.
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• For θ̂3c , we have two data points with (a, s) = (0, 1). Among them c = 1 occurs once,
hence θ̂3c = p̂(c = 1|a = 0, s = 1) = 1/2.

• For θ̂4c , there are no data points where (a, s) = (1, 1), which means that the MLE is
not defined.

In summary, we thus obtain the following maximum likelihood estimates:

p̂(c = 1|a, s) a s

θ̂1c = 0 0 0

θ̂2c = 1 1 0

θ̂3c = 1/2 0 1

θ̂4c not defined 1 1

The example illustrates some issues with maximum likelihood estimates: We may get
extreme probabilities, zero or one, or if the parent configuration does not occur in the
observed data, the estimate is undefined.

Exercise 2. Cancer-asbestos-smoking example: Bayesian inference

We here perform Bayesian inference for the model from Question 1.

We assume that the prior over the parameters of the model, (θa, θs, θ
1
c , . . . , θ

4
c ), factorises and is given

by Beta distributions with hyperparameters α0 = 1 and β0 = 1 (same for all parameters). The posterior
then factorises too, with each parameter i following a Beta distribution with hyperparameters equal to

αk
i,n = αk

i,0 + nk
xi=1, βk

i,n = βk
i,0 + nk

xi=0. (2)

Here xi is the random variable associated with the parameter, e.g. a for θa or c for θkc , and k enumerates
the possible configurations of its parents. nk

xi=1 denotes the number of times variable xi equals 1 when its
parents are in configuration k, and nk

xi=0 is defined analogously.

(a) Determine the posteriors for θa and θs.

Solution. We count the number of times a variable equals 1 or 0 in the data set. This
gives us the counts nxi=1 and nxi=0. To obtain the posterior hyperparameters, we then
add one to them since the prior hyperparameters are α0 = 1 and β0 = 1.

• We have na=1 = 1 and na=0 = 4. Hence θa ∼ B(2, 5).
• We have ns=1 = 2 and ns=0 = 3. Hence θs ∼ B(3, 4).

(b) Determine the posteriors for θkc , k = 1, . . . , 4.

Solution. We proceed as in the previous question, just restricting the counts to the
different parent configurations. This gives the following results table:

Configuration k a s nk
c=1 nk

c=0 Posterior

1 0 0 0 2 θ1c ∼ B(1, 3)
2 1 0 1 0 θ2c ∼ B(2, 1)
3 0 1 1 1 θ3c ∼ B(2, 2)
4 1 1 0 0 θ4c ∼ B(1, 1)
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Since the configuration (a, s) = (1, 1) does not occur in the data, the posterior for θ4c is
the same as the prior.

(c) Determine the posterior predictive probabilities p(a = 1|D), p(s = 1|D), and p(c = 1|pa,D) for all
possible parent configurations.

Solution. We compute the posterior predictive probability for a generic Bernoulli-distributed
random variable x. Given data D, let B(α, β) be the posterior distribution of success pa-
rameter θ. We then have

p(x = 1|D) =

∫ 1

0
p(x = 1, θ|D)dθ (sum rule) (S.1)

=

∫ 1

0
p(x = 1|θ,D)p(θ|D)dθ (product rule) (S.2)

=

∫ 1

0
p(x = 1|θ)p(θ|D)dθ (x ⊥⊥ D|θ) (S.3)

=

∫ 1

0
θp(θ|D)dθ (Bernoulli model) (S.4)

= E[θ|D] (S.5)

Hence the posterior predictive probability for x = 1 equals the posterior mean of θ. As
the mean of B(α, β) = α/(α+ β), we have

p(x = 1|D) =
α

α+ β
(S.6)

Plugging-in the values for α and β computed in the previous question gives:

p(a = 1|D) = E(θa|D) =
2

2 + 5
=

2

7
(S.7)

p(s = 1|D) = E(θs|D) =
3

3 + 4
=

3

7
(S.8)

and

p(c = 1|a, s,D) a s

1/(1 + 3) = 1/4 0 0
2/(2 + 1) = 2/3 1 0
2/(2 + 2) = 1/2 0 1
1/(1 + 1) = 1/2 1 1

Compared to the MLE solution in Exercise (b) question (b), we see that the estimates
are less extreme. This is because they are a combination of the prior knowledge and the
observed data. Moreover, when we do not have any data, the posterior predictive equals
the prior predictive probability, unlike for the MLE where the estimate is not defined.

Exercise 3. Independent component analysis

The two scatter plots below show two-dimensional data v = (v1, v2)
⊤ that were generated by sampling

from the noise-free square ICA model
v = Ah, (3)

3 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/


where A is a 2 × 2 matrix and h = (h1, h2)
⊤ contains the independent sources. Both h1 and h2 were

sampled from a uniform distribution of mean zero and variance one.

For each scatter plot, select among the following 4 mixing matrices the one that has most likely generated
the data. Justify your answer.

A1 =

(
0 2
1 0

)
A2 =

(
1 0
0 3

)
A3 =

(
2 2
1 2

)
A4 =

(
−1 2
1 2

)
(4)
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Solution. The generative model v = Ah can be written as v = a1h1 + a2h2 where a1 and
a2 are the first and second column of A, respectively. Since h1 and h2 are independent and
uniformly distributed, the edges of the data-parallelogram correspond to a1 and a2. This is
shown in the following figures.
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The data-parallelogram shown in Figure (a) is aligned with the axes, with the data being spread
out twice as much along the v1 axis than along the v2 axis. This means that we are looking for
vectors a1 and a2 that are multiples of the unit vectors, that are orthogonal to each other, and
where one vector has an element in the first slot that is roughly twice as large as the element in
the second slot. The correct mixing matrix for Figure (a) thus is A1. Matrix A2 is not correct
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because it would assert that the spread along the v2 axis is three times as large as the spread
along the v1. Matrices A3 and A4 are not correct because they rotate the data parallelogram.

The data-parallelogram shown in Figure (b) is not aligned with the axes, which excludes ma-
trices A1 and A2. We also see that top-right and bottom-left edge of the data-parallelogram
corresponds to a column vector with a negative element in the first slot. The correct mixing
matrix for figure (b) thus is A4.
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