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Exercise 1. Gausstan mean field variational inference

Assume random variables y1,ys, T are generated according to the following process

y1 ~N(y1;0,1) Y2 ~ N(y2;0,1) (1)
n~ N(n;0,1) r=y1+y2+n (2)

where y1,y2,n are statistically independent.

(a) y1,y2,x are jointly Gaussian. Determine their mean and their covariance matriz, and hence their
joint distribution.

Solution. The expected value of y; and ys is zero. By linearity of expectation, the
expected value of x is
E(z) = E(y1) + E(y2) + E(n) =0 (S.1)

The mean of the joint is thus zero. The variance of y; and y2 is 1. Since yi,y2,n are
statistically independent,

V(z) =V(y1) +V(y2) +V(n) =14+1+1=3. (S.2)

The covariance between y; and z is

cov(yy,z) = E((y1 — E(y1))(z — E(x))) = E(y12) (S.3)
= E(y1(y1 +y2 +n)) = E(y1) + E(y1y2) + E(y1n) (S.4)
=1+ E(y1)E(y2) + E(y1)E(n) (S.5)
=1+0+0 (S.6)
where we have used that y; and x have zero mean and the independence assumptions.
The covariance between yo and = is computed in the same way and equals 1 too.
We thus obtain the covariance matrix X,
1 0 1
Y=(0 11 (S.7)
1 1 3

The distribution thus is p(y1, y2,2) = N ((y1,y2,x); 0, X).

(b) The conditional p(y1,yz|z) is Gaussian with mean m and covariance C,

n=5 (1) °=5(4 %) ”

Since x is the sum of three random variables that have the same distribution, it makes intuitive
sense that, given x, the conditional mean of y1,y2 is 1/3 of the observed value of x. Moreover, y;
and yo are negatively correlated since an increase in y; must be compensated with a decrease in ys.

We now approximate the posterior p(y1, ya|x) with mean field variational inference. Denoting the
variational distribution by q(y|z) = q(y1|x)q(y2|x), derive the update rules for the marginals q(y;|x).

Hints:
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1. For a model p(v,h) on observed variables v and unobserved variables h, in mean-field varia-
tional inference, each q; is iteratively updated as

1
ai(hilv) =  exb [Eyn,, v llog (v, B)]] (4)
where q(hy;|v) = [1;, ¢;(h;|v) is the product of all marginals without marginal q;(h;|v).

2. You may use that

10 1 2 1 -1
p(y1,y2,2) =N ((y1,52,2);0,8)  E=|0 1 1 sl=(1 2 -1 (5)
11 3 -1 -1 1

Solution. With the hint, the variational distributions qi(y1]|z) and g2(y2|x) are itera-
tively updated as

a(y1|z) = — exp [Eg, (yo12) 108 (Y1, 92, 2)]] (S.8)

NI = N[~

@ (ya2|z) = — exp [Eq, (4, |2) [l0g p(y1, y2, 7)]] (S.9)
Given the provided equation for p(y1, y2, x), we have that

-
1 2 1 -1 Y1

—_

log p(y1,y2, ) = 5 | v 1 2 —1||y2| + const (S.10)
T -1 -1 1 T
_ Lo 2., .2 _ _ .
=73 (297 + 2y3 + 2° + 25192 — 2y12 — 2yox) + const (S.11)

Let us start with the equation for ¢; (y1|z). It is easier to work in the logarithmic domain,
where we obtain:

log 1 (y1|z) = Eg,(ys|2) log p(y1, Y2, )] + const (S.12)

1
= _§qu(yz|f) [2y% =+ 2y% + 22 4 2y1y0 — 2y1 — 2y2$] + const (S.13)

1

=3 (2y% + 201 E gy (g [2] — 2y1x) + const (S.14)
1

= (291 + 2y1ma2 — 2y17) + const (S.15)
1

= =5 (2u1 = 2y1(2 — m2)) + comst (8.16)

where we have absorbed all terms not involving y; into the constant. Moreover, we set
qu(y2|m) [yQ] = ma.

Note that an arbitrary Gaussian density N (y; m, 0?) with mean m and variance 0% can be
written in the log-domain as
1 _ 2
log N (y;m, 0?) = _Q(me) + const (S.17)
o
1 [(y? m
=3 (02 -2 02> + const (S.18)

Comparison with (S.16) shows that g1 (y1|x) is Gaussian with variance and mean equal to

1 1
= B mp = 5(93 —mg) (S.19)
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Note that we have not made a Gaussianity assumption on ¢i(y1|z). The variational dis-
tribution ¢;(y1]z) turns out to be Gaussian because the model p(yi,y2,x) is Gaussian.

The equation for g2(y2|z) gives similarly

log g2(y2]7) = By, (yy]x) log p(y1,y2, )] + const (5-20)
= _%qu(yllw) 207 + 205 + 2° + 2y192 — 2y12 — 2] + const (S.21)
- _% (23 + 2Eq, (y1]) [y1)y2 — 2y22) + const (8-22)
— _% (2y§ + 2myys — 2ysx) + const (S.23)
- _% (23 — 2y2(x — m1)) + const (S.24)

where we have absorbed all terms not involving yo into the constant. Moreover, we set
Eg, (41]2)[y1] = m1. With (S.18), this is defines a Gaussian distribution with variance and
mean equal to

1 1
03 = 5 mo = 5(93 —myq) (S.25)
Hence the marginal variational distributions ¢; (y1|x) and g2(y2|x) are both Gaussian with
variance equal to 1/2 and their means are iteratively updated as
1 1

myp = 5(1’ — ma) me = 5(:6 —mq) (S.26)

(c) In this example, the update rules result in two equations for two unknowns that can be solved
in closed form. Derive the closed-form expression for the optimal mean-field approximation and
compare it with the true conditional p(y1,y2|x).

Solution. We found that the marginal variational distributions ¢; (y1|x) and ga2(y2|z) are
Gaussian with variance equal to 1/2 and their means being iteratively updated as

1 1
my = 5(&: — mg) mo = §(m —mq) (S5.27)
We note that the update rule involves two unknowns, m; and me and two equations. We

can thus solve them, which gives

2my = x — mo (S.28)
1
=z — §(x—m1) (S.29)
dmy =2z —x +my (S.30)
3m =z (S.31)
1
mi =T (S.32)
Hence 1 1 5 1
My = 5T = g% = oT= 3T (S.33)
In summary, we thus have
z 1 z 1
a(ynlr) =N (yl, 3 2) g2 (yalr) = N <1/2a 3 2) (S.34)
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and the optimal variational distribution q(y1,y2|x) = q1(y1]|z)q2(y2|z) is Gaussian. We
have made the mean field (independence) assumption but not the Gaussianity assumption.
Gaussianity of the variational distribution is a consequence of the Gaussianity of the model
p(y1, 92, 7).

Comparison with the true posterior shows that the mean field variational distribution
q(y1,y2|z) has the same mean but ignores the correlation and underestimates the marginal
variances. The true posterior and the mean field approximation are shown in Figure 1.

Figure 1: In blue: correlated true posterior. In red: mean field approximation.

Exercise 2. Variational posterior approrimation

We have seen that mazimising the evidence lower bound (ELBO) with respect to the variational distribu-
tion minimises the Kullback-Leibler divergence to the true posterior. We here investigate the nature of
the approximation if the family of variational distributions does not include the true posterior.

(a) Assume that the true posterior for x = (x1,x2) is given by
p(x) = N(21;0,07)N (220, 03) (6)
and that our variational distribution q(x;0,\?) is
q(x: A?) = N (2130, \*) N (2; 0, %), (7)
where A > 0 is the variational parameter. Provide an equation for
J(A) = KL(q(x: \?)|[p(x)), (8)

where you can omit additive terms that do not depend on .
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Solution. We write

x: 2
KL(q(x: A?)||p(x)) = E, [log q(p{xA) )}

= E,log q(x; \?) — E, log p(x)
=E,log N'(21;0,7\?) + E, log N (z9; 0, \?)
—E,log N (21;0,07) — E,log N (2;0,03)

We further have

1 2
E,log NV (x4;0,\?) = E, log [m exp [— ;}f ”
T

2
= s | ooz = [z
2 A2 T 12x2
)\2
=—log A — 0z + const

1
= —log\— 3 + const
= —log A + const

where we have used that for zero mean z;, E,[2?] = V(z;) = \2.

We similarly obtain

1 a;
Eqlog N (250, 07) = Eglog | ——— exp {_2022}

=log | —— —Eq[ 2}
202 20;

2
= —logo; — —= + const
g0; 2012
2

= ——— + const
201-2

We thus have

1 1
KL(q(x; \?||p(x)) = —2log A + A2 (2 + 2) + const
207 205

(S.35)

(S.36)

(.37)

(S.43)

(S.44)

(S.45)

(S.46)

(S.47)

(b) Determine the value of X that minimises J(\) = KL(q(x; A\?)||p(x)). Interpret the result and relate

it to properties of the Kullback-Leibler divergence.

Solution. Taking derivatives of J(\) with respect to A gives

0J(\) :_2H(1+1>

oA A o2 o2

L _1/1 1
A2 2 o? ' o2

Setting it zero yields

(S.48)

(S.49)
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so that

2 2
A= 1% (S.50)
o1+ 03
or
2 .2
A= V2|2 (S.51)
o1+ 03

This is a minimum because the second derivative of J(\)

PIN) 2 (12+12>

— .52
ON? A2 oi o3 (8:52)

is positive for all A > 0.

The result has an intuitive explanation: the optimal variance A? is the harmonic mean of
the variances o2 of the true posterior. In other words, the optimal precision 1/A? is given
by the average of the precisions 1/ 012 of the two dimensions.

If the variances are not equal, e.g. if a% > o%, we see that the optimal variance of the
variational distribution strikes a compromise between two types of penalties in the KL-
divergence: the penalty of having a bad fit because the variational distribution along
dimension two is too narrow; and along dimension one, the penalty for the variational
distribution to be nonzero when p is small.
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