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Exercise 1. Gaussian mean field variational inference

Assume random variables y1, y2, x are generated according to the following process

y1 ∼ N (y1; 0, 1) y2 ∼ N (y2; 0, 1) (1)

n ∼ N (n; 0, 1) x = y1 + y2 + n (2)

where y1, y2, n are statistically independent.

(a) y1, y2, x are jointly Gaussian. Determine their mean and their covariance matrix, and hence their
joint distribution.

Solution. The expected value of y1 and y2 is zero. By linearity of expectation, the
expected value of x is

E(x) = E(y1) + E(y2) + E(n) = 0 (S.1)

The mean of the joint is thus zero. The variance of y1 and y2 is 1. Since y1, y2, n are
statistically independent,

V(x) = V(y1) + V(y2) + V(n) = 1 + 1 + 1 = 3. (S.2)

The covariance between y1 and x is

cov(y1, x) = E((y1 − E(y1))(x− E(x))) = E(y1x) (S.3)

= E(y1(y1 + y2 + n)) = E(y21) + E(y1y2) + E(y1n) (S.4)

= 1 + E(y1)E(y2) + E(y1)E(n) (S.5)

= 1 + 0 + 0 (S.6)

where we have used that y1 and x have zero mean and the independence assumptions.

The covariance between y2 and x is computed in the same way and equals 1 too.

We thus obtain the covariance matrix ΣΣΣ,

ΣΣΣ =

1 0 1
0 1 1
1 1 3

 (S.7)

The distribution thus is p(y1, y2, x) = N ((y1, y2, x);0,ΣΣΣ).

(b) The conditional p(y1, y2|x) is Gaussian with mean m and covariance C,

m =
x

3

(
1
1

)
C =

1

3

(
2 −1
−1 2

)
(3)

Since x is the sum of three random variables that have the same distribution, it makes intuitive
sense that, given x, the conditional mean of y1, y2 is 1/3 of the observed value of x. Moreover, y1
and y2 are negatively correlated since an increase in y1 must be compensated with a decrease in y2.

We now approximate the posterior p(y1, y2|x) with mean field variational inference. Denoting the
variational distribution by q(y|x) = q(y1|x)q(y2|x), derive the update rules for the marginals q(yi|x).
Hints:
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1. For a model p(v,h) on observed variables v and unobserved variables h, in mean-field varia-
tional inference, each qi is iteratively updated as

qi(hi|v) =
1

Z
exp

[
Eq(h\i|v) [log p(v,h)]

]
(4)

where q(h\i|v) =
∏

j ̸=i qj(hj |v) is the product of all marginals without marginal qi(hi|v).
2. You may use that

p(y1, y2, x) = N ((y1, y2, x);0,ΣΣΣ) ΣΣΣ =

1 0 1
0 1 1
1 1 3

 ΣΣΣ−1 =

 2 1 −1
1 2 −1
−1 −1 1

 (5)

Solution. With the hint, the variational distributions q1(y1|x) and q2(y2|x) are itera-
tively updated as

q1(y1|x) =
1

Z
exp

[
Eq2(y2|x) [log p(y1, y2, x)]

]
(S.8)

q2(y2|x) =
1

Z
exp

[
Eq1(y1|x) [log p(y1, y2, x)]

]
(S.9)

Given the provided equation for p(y1, y2, x), we have that

log p(y1, y2, x) = −1

2

y1
y2
x

⊤ 2 1 −1
1 2 −1
−1 −1 1

y1
y2
x

+ const (S.10)

= −1

2

(
2y21 + 2y22 + x2 + 2y1y2 − 2y1x− 2y2x

)
+ const (S.11)

Let us start with the equation for q1(y1|x). It is easier to work in the logarithmic domain,
where we obtain:

log q1(y1|x) = Eq2(y2|x) [log p(y1, y2, x)] + const (S.12)

= −1

2
Eq2(y2|x)

[
2y21 + 2y22 + x2 + 2y1y2 − 2y1x− 2y2x

]
+ const (S.13)

= −1

2

(
2y21 + 2y1Eq2(y2|x)[y2]− 2y1x

)
+ const (S.14)

= −1

2

(
2y21 + 2y1m2 − 2y1x

)
+ const (S.15)

= −1

2

(
2y21 − 2y1(x−m2)

)
+ const (S.16)

where we have absorbed all terms not involving y1 into the constant. Moreover, we set
Eq2(y2|x)[y2] = m2.

Note that an arbitrary Gaussian density N (y;m,σ2) with mean m and variance σ2 can be
written in the log-domain as

logN (y;m,σ2) = −1

2

(y −m)2

σ2
+ const (S.17)

= −1

2

(
y2

σ2
− 2y

m

σ2

)
+ const (S.18)

Comparison with (S.16) shows that q1(y1|x) is Gaussian with variance and mean equal to

σ2
1 =

1

2
m1 =

1

2
(x−m2) (S.19)
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Note that we have not made a Gaussianity assumption on q1(y1|x). The variational dis-
tribution q1(y1|x) turns out to be Gaussian because the model p(y1, y2, x) is Gaussian.

The equation for q2(y2|x) gives similarly

log q2(y2|x) = Eq1(y1|x) [log p(y1, y2, x)] + const (S.20)

= −1

2
Eq1(y1|x)

[
2y21 + 2y22 + x2 + 2y1y2 − 2y1x− 2y2x

]
+ const (S.21)

= −1

2

(
2y22 + 2Eq1(y1|x)[y1]y2 − 2y2x

)
+ const (S.22)

= −1

2

(
2y22 + 2m1y2 − 2y2x

)
+ const (S.23)

= −1

2

(
2y22 − 2y2(x−m1)

)
+ const (S.24)

where we have absorbed all terms not involving y2 into the constant. Moreover, we set
Eq1(y1|x)[y1] = m1. With (S.18), this is defines a Gaussian distribution with variance and
mean equal to

σ2
2 =

1

2
m2 =

1

2
(x−m1) (S.25)

Hence the marginal variational distributions q1(y1|x) and q2(y2|x) are both Gaussian with
variance equal to 1/2 and their means are iteratively updated as

m1 =
1

2
(x−m2) m2 =

1

2
(x−m1) (S.26)

(c) In this example, the update rules result in two equations for two unknowns that can be solved
in closed form. Derive the closed-form expression for the optimal mean-field approximation and
compare it with the true conditional p(y1, y2|x).

Solution. We found that the marginal variational distributions q1(y1|x) and q2(y2|x) are
Gaussian with variance equal to 1/2 and their means being iteratively updated as

m1 =
1

2
(x−m2) m2 =

1

2
(x−m1) (S.27)

We note that the update rule involves two unknowns, m1 and m2 and two equations. We
can thus solve them, which gives

2m1 = x−m2 (S.28)

= x− 1

2
(x−m1) (S.29)

4m1 = 2x− x+m1 (S.30)

3m1 = x (S.31)

m1 =
1

3
x (S.32)

Hence

m2 =
1

2
x− 1

6
x =

2

6
x =

1

3
x (S.33)

In summary, we thus have

q1(y1|x) = N
(
y1;

x

3
,
1

2

)
q2(y2|x) = N

(
y2;

x

3
,
1

2

)
(S.34)
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and the optimal variational distribution q(y1, y2|x) = q1(y1|x)q2(y2|x) is Gaussian. We
have made the mean field (independence) assumption but not the Gaussianity assumption.
Gaussianity of the variational distribution is a consequence of the Gaussianity of the model
p(y1, y2, x).

Comparison with the true posterior shows that the mean field variational distribution
q(y1, y2|x) has the same mean but ignores the correlation and underestimates the marginal
variances. The true posterior and the mean field approximation are shown in Figure 1.

y1
-2 0 2

y
2

-2

0

2

Figure 1: In blue: correlated true posterior. In red: mean field approximation.

Exercise 2. Variational posterior approximation

We have seen that maximising the evidence lower bound (ELBO) with respect to the variational distribu-
tion minimises the Kullback-Leibler divergence to the true posterior. We here investigate the nature of
the approximation if the family of variational distributions does not include the true posterior.

(a) Assume that the true posterior for x = (x1, x2) is given by

p(x) = N (x1; 0, σ
2
1)N (x2; 0, σ

2
2) (6)

and that our variational distribution q(x; 0, λ2) is

q(x;λ2) = N (x1; 0, λ
2)N (x2; 0, λ

2), (7)

where λ > 0 is the variational parameter. Provide an equation for

J(λ) = KL(q(x;λ2)||p(x)), (8)

where you can omit additive terms that do not depend on λ.
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Solution. We write

KL(q(x;λ2)||p(x)) = Eq

[
log

q(x;λ2)

p(x)

]
(S.35)

= Eq log q(x;λ
2)− Eq log p(x) (S.36)

= Eq logN (x1; 0, λ
2) + Eq logN (x2; 0, λ

2)

− Eq logN (x1; 0, σ
2
1)− Eq logN (x2; 0, σ

2
2) (S.37)

We further have

Eq logN (xi; 0, λ
2) = Eq log

[
1√
2πλ2

exp

[
− x2i
2λ2

]]
(S.38)

= log

[
1√
2πλ2

]
− Eq

[
x2i
2λ2

]
(S.39)

= − log λ− λ2

2λ2
+ const (S.40)

= − log λ− 1

2
+ const (S.41)

= − log λ+ const (S.42)

where we have used that for zero mean xi, Eq[x
2
i ] = V(xi) = λ2.

We similarly obtain

Eq logN (xi; 0, σ
2
i ) = Eq log

 1√
2πσ2

i

exp

[
− x2i
2σ2

i

] (S.43)

= log

 1√
2πσ2

i

− Eq

[
x2i
2σ2

i

]
(S.44)

= − log σi −
λ2

2σ2
i

+ const (S.45)

= − λ2

2σ2
i

+ const (S.46)

We thus have

KL(q(x;λ2||p(x)) = −2 log λ+ λ2

(
1

2σ2
1

+
1

2σ2
2

)
+ const (S.47)

(b) Determine the value of λ that minimises J(λ) = KL(q(x;λ2)||p(x)). Interpret the result and relate
it to properties of the Kullback-Leibler divergence.

Solution. Taking derivatives of J(λ) with respect to λ gives

∂J(λ)

∂λ
= − 2

λ
+ λ

(
1

σ2
1

+
1

σ2
2

)
(S.48)

Setting it zero yields

1

λ2
=

1

2

(
1

σ2
1

+
1

σ2
2

)
(S.49)
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so that

λ2 = 2
σ2
1σ

2
2

σ2
1 + σ2

2

(S.50)

or

λ =
√
2

√
σ2
1σ

2
2

σ2
1 + σ2

2

(S.51)

This is a minimum because the second derivative of J(λ)

∂2J(λ)

∂λ2
=

2

λ2
+

(
1

σ2
1

+
1

σ2
2

)
(S.52)

is positive for all λ > 0.

The result has an intuitive explanation: the optimal variance λ2 is the harmonic mean of
the variances σ2

i of the true posterior. In other words, the optimal precision 1/λ2 is given
by the average of the precisions 1/σ2

i of the two dimensions.

If the variances are not equal, e.g. if σ2
2 > σ2

1, we see that the optimal variance of the
variational distribution strikes a compromise between two types of penalties in the KL-
divergence: the penalty of having a bad fit because the variational distribution along
dimension two is too narrow; and along dimension one, the penalty for the variational
distribution to be nonzero when p is small.
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