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What?
This course is about bridging the gap between the parallel applications and
algorithms which we can design and describe in abstract terms and the parallel
computer architectures (and their lowest level programming interfaces) which it
is practical to construct.

The challenge is to provide programming mechanisms (whether through language
constructs or libraries) which provide a good balance between

• conceptual simplicity: it should be “easy” to program correctly, and

• performance retention: if our algorithm and architecture are good, we shouldn’t
lose “too much” in the mapping between them.

This is similar to the sequential computing world, but performance is now central.
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Why?
The ability to express parallelism (a.k.a concurrency) concisely, correctly and
efficiently is important in several contexts

• Performance Computing: when parallelism, at various levels in the system,
is the means by which the execution time of computationally demanding
applications can be reduced. In the era of static (or even falling) clock speeds
and increasing core count, this class is now in the computing mainstream.

• Distributed Computing: when concurrency is inherent in the nature of the
system and we have no choice but to express and control it.

• Systems Programming: when it is conceptually simpler to think of a system as
being composed of concurrent components, even though these will actually be
executed by time-sharing a single processor (quaint historical concept ;-)).
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How?

We begin by briefly reviewing the complex capabilities of realistic parallel
architectures, and the conceptual structure and control requirements of a range
of typical parallel applications.

We then examine some of the programming primitives and frameworks which have
been designed to bridge the gap, considering conceptual purpose, implementation
challenges and concrete realisation in real systems.

We will do this first for the two traditional models, shared variable programming,
and message passing programming, before considering other approaches and
variations.
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Parallel Architecture for Dummies
The world of parallel architectures is diverse and complex. We will focus on the
mainstream, and note a key division into two architectural classes.

• Shared Memory architectures in which all processors can physically address the
whole memory, usually with support for cache coherency (for example, a quad
or oct core chip, or more expensive machines with tens or hundreds of cores)

• Multicomputer architectures in which processors can only physically address
their “own” memory, and interact with messages across a network (for example
a cluster of PCs)

Increasingly, systems will span both classes (eg cluster of manycore, or network-on-
chip manycores) and incorporate other specialized, constrained parallel hardware
such as GPUs.
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Shared Memory Architectures
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One address space, shared by all CPUs. Green box shows memory addressable
by any CPU. Uniform Memory Access (UMA) architectures have all memory
“equidistant” from all CPUs. For NUMA (N for “non”) performance varies with
data location. NUMA is also confusingly called Distributed Shared Memory as
memory is physically distributed but logically shared.
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Shared Memory Architectures
Caches improve performance as usual, but raise a memory consistency challenge,
which is not present in simple sequential cache systems: roughly speaking, when,
and in what order should updates to memory made by one processor become
visible to others?

[x==0, y==0]

x = 2; LD R1,#2

ST R1,x [only goes to cache]

y = 1; LD R1,#1

ST R1,y [only goes to to cache]

other stuff not

touching x or y causes write-back of y -> memory

if (x<=y) LD R1,x [from cache]

LD R2,y [memory back to cache]

BGT R1,R2,target

print("Yes");
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Shared Memory Architectures
At the branch, processor sees x==2, y==1, even though main memory contains
x==0, y==1.

Does this matter? Not sequentially, but consider this (now parallel).

[shared x==0, shared flag==0]

P0 P1

lots of work(&x); while (flag == 0) ; //spinning

flag = 1; y = f(x);

Exactly what and when it is permissible for each processor to see is defined by
the consistency model.
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Shared Memory Architectures
The consistency model (which is effectively a contract between hardware and
software) must be respected by application programmers (and compiler/library
writers) to ensure program correctness. Different consistency models trade off
conceptual simplicity against cost (time/hardware complexity). There have been
many schemes, for example:

Sequential consistency, every processor “sees” the same sequential interleaving of
the basic reads and writes. This is very intuitive, but expensive to implement.

Release consistency: writes are only guaranteed to be visible after program-
specified synchronization points (triggered by special machine instructions).
Even the ordering as written by one processor between such points may be
seen differently by other processors. This is less intuitive, but allows faster
implementations.
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Shared Memory Architectures

Shared memory architectures also raise tricky performance issues. The unit of
transfer between memory and cache is a cache-line or block, containing several
words. False sharing occurs when two logically unconnected variables share the
same cache-line. Updates to one cause remote copies of the line, including
the other variable, to be invalidated, creating very expensive, but semantically
undetectable, “ping-pong” effects.

shared int x, y;

P0 P1

for 1000000 iterations { for 1000000 iterations {

x = ....not touching y ..... y = ....not touching x .....

} }

These look nicely independent, but may not be physically independent at the level
of cache blocks.
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Multicomputer Architectures
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The same block diagram as for NUMA shared memory! The difference is the lack
of any hardware integration between cache/memory system and the interconnect.
Each processor only accesses its own physical address space, so no consistency
issues. Information is shared by explicit, co-operative message passing.
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Multicomputer Architectures
Performance/correctness issues include the semantics of synchronization and
constraints on message ordering.

For example, consider the following producer-consumer behaviour

P0 P1

while (whatever) { recv(y, P0);

x = ...; while (y!=-1) {

send (x, P1); ...= ....y....;

} recv(y, P0);

send(-1, P1); }

OK as long as the underlying implementation of messaging guarantees order.
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Multicomputer Architectures
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Summary: Real parallel machines are complex, with unforseen semantic and
performance traps. We need to provide programming tools which simplify things,
but without sacrificing too much performance.
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Parallel Applications and Algorithms

To help understand and design good parallel programming models, we must
understand the requirements of typical parallel algorithms.

We will shortly introduce, with examples, three well-known parallel patterns: Bag
of Tasks, Pipeline and Interacting Peers. All could be implemented for either
architectural model, but we will consider only one version of each.

There is a circularity here - want to examine the patterns to understand control
requirements, but to explain the patterns we need some control notation! So, we
will first introduce some simple notation and an idealised execution model.

NB This is not a real programming language, just a concise way of
expressing what we will need mechanisms to say in real languages and
libraries.
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The co Notation

The co notation (for “concurrent”) indicates creation of a set of parallel activities,
for the duration of the enclosed block, with synchronization across all activities
at the end of the block. This is sometimes called “fork-join” parallelism. The
parallel activities in a simple co statement are separated by // (so we use ##
to indicate comments - sorry!).

co

a=1; // b=2; // c=3; ## all at the same time

oc

We will also use co statements with indices.

co [i = 0 to n-1] {

a[i] = a[i] + 1; ## all at the same time

}
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The co Notation

Things get more interesting when the statements within a co access the same
locations.

co

a=1; // a=2; // a=3; ## What is a afterwards?

oc

To resolve this, we need to define our memory consistency model. For our toy
language examples we assume sequential memory consistency (SC). We will think
about the implications of weakening this model as we go along, and particularly
when we turn to real languages which typically don’t support it.
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Sequential Memory Consistency Model (SC)

A program executed with an SC model will produce a result which is consistent
with these rules (i.e. the result must look as though the rules were used):

1. ordering of atomic actions (particularly reads and writes to memory) from any
one thread have to occur in normal program order

2. atomic actions from different threads are interleaved arbitrarily (ie in an
unpredictable sequential order, subject only to rule 1), with every thread seeing
the same overall ordering

We will return to the question of what an “atomic action” is in a moment. We
will also assume that in an interleaving, no thread is ever permanently excluded
from having a turn, but there is no bound on how far apart turns might be.
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Sequential Memory Consistency Model (SC)
We can think of SC execution as being like a random switch, allowing threads to
access memory one at at time.

Memory

P1P0 Pn

NB It is crucial to understand that this doesn’t mean that SC programs have to
be executed sequentially! It only means that the results we get must be the same
as if the program had been executed in this way.
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Sequential Memory Consistency Model (SC)
An SC execution of

co

a=1; // a=2; // a=3; ## all at the same time What is a?

oc

can result in a having any of the three written values. How about

a=0;

co

a=1; // a=2; // b=a+a; ## all at the same time What is b?

oc

To answer this we need to decide what the “atomic actions” are. For our toy
notation (and exercises), we will think of individual reads and writes of single
variables as being atomic. Each value accessed in an expression is a read. Each
assignment is a write. Thus, in our example, b could 0, 1, 2, 3, or 4.
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Atomic Actions
Even such a simple example can illustrate the complications introduced for real
languages, compilers and architectures. A sensible compiler would implement
b=a+a with one read of a, in which case the outcomes which produce an odd
value for b would never happen.

We shouldn’t rely on such unknown factors. It is therefore useful to have a means
of specifying that certain blocks of code are to be treated as atomic. In our
notation, statements enclosed in < > must appear to be atomic, i.e. they must
appear to execute as a single indivisible step with no visible intermediate states.

a=0;

co

a=1; // a=2; // <b=a+a;> ## all at the same time What is b?

oc

Now the only outcomes for b are 0, 2 or 4.
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Atomic Actions and Interleavings
As another example, consider this attempt to increment the variable count twice
(which distills what might happen inside some more complex code)

co

count++; // count++;

oc

where each statement corresponds to a sequence of three actions (read, compute,
write). Even with sequential consistency, there are twenty possible interleavings,
of which only two match the intended semantics.

What we really meant was

co

<count++;> // <count++;>

oc
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Atomic Actions and Interleavings

Consider this attempt to reverse the contents of an array in parallel. Can you see
what might go wrong?

co [i = 0 to n-1] {

a[i] = a[n-i-1]; ## try to reverse a in parallel

}

Here is another flawed attempt. What’s wrong this time?

co [i = 0 to n-1] {

<a[i] = a[n-i-1];> ## try to reverse a in parallel

}

Can you produce a correct version?
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The await Notation
The await notation < await (B) S > allows us to indicate that S must
appear to be delayed until B is true, and must be executed within the same
atomic action as a successful check of B. For example, the code below results in
x having a value of 25.

a=0; flag=0;

co

{a=25; flag=1;}

//

<await (flag==1) x=a;>

oc

In terms of the SC interleaving, think of an await as being eligible for execution
when its condition is true.
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The await Notation
However, note that an await is not guaranteed to execute immediately simply
because its condition is true. If other atomic actions make the condition false
again, before the await executes, it will have to wait for another chance (if there
is one). For example, the program

a=0; b=0;

co

{a=1; other stuff; a=0;}

//

<await (a==1) b=a;>

oc

could either terminate, with a being 0 and b being 1, or could fail to terminate
because there is a valid SC execution in which a is set to 1 and then back to 0
before the await statement executes.
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Adaptive Quadrature
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a b
�
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Figure 1.4 The quadrature problem.

Copyright © 2000 by Addison Wesley Longman, Inc.

Compute an approximation to the shaded integral by partitioning until the
trapezoidal approximation is “good enough”.
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Adaptive Quadrature
double quad(double left, double right, double fleft,

double fright, double lrarea) {

double mid, fmid, larea, rarea;

mid = (left + right) / 2;

fmid = f(mid);

larea = (fleft + fmid) * (mid - left) / 2;

rarea = (fmid + fright) * (right - mid) / 2;

if( fabs((larea + rarea) - lrarea) > EPSILON ) {

larea = quad(left, mid, fleft, fmid, larea);

rarea = quad(mid, right, fmid, fright, rarea);

}

return (larea + rarea);

}
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Adaptive Quadrature

To compute the whole approximation we call

area = quad (a, b, f(a), f(b), (f(a)+f(b))*(b-a)/2);

Noting that the recursive calls to quad do not interfere with each other, we can
trivially parallelize the program by changing the calls to

co

larea = quad(left, mid, fleft, fmid, larea);

//

rarea = quad(mid, right, fmid, fright, rarea);

oc

The synchronization inherent in co ensures that both larea and rarea have
been computed before being added together and returned.
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The Bag of Tasks Pattern
Getting a little more practical, we note that there is very little work directly
involved in each call to quad. The reality of typical systems is that the work
involved in creating and scheduling a process or thread is substantial (much worse
than a simple function call), and our program may be swamped by this overhead.

The Bag of Tasks pattern suggests an approach which may be able to reduce
overhead, while still providing the flexibility to express such dynamic, unpredictable
parallelism.

In bag of tasks, a fixed number of worker processes/threads maintain and process
a dynamic collection of homogeneous “tasks”. Execution of a particular task may
lead to the creation of more task instances.
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The Bag of Tasks Pattern
place initial task(s) in bag;

co [w = 1 to P] {

while (all tasks not done) {

get a task;

execute the task;

possibly add new tasks to the bag;

}

}

The pattern is naturally load-balanced: each worker will probably complete a
different number of tasks, but will do roughly the same amount of work overall.

For AQ, a task corresponds roughly to one call of quad in the original
algorithm, described by the corresponding parameters and either adds its local area
approximation to the total, or creates two more tasks for a better approximation.
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bag.insert (a, b, f(a), f(b), approxarea);

shared int size = 1, idle = 0; ## tasks in the bag, idle threads

shared double total = 0.0;

co [w = 1 to P] {

while (true) {

< idle++; > ## I’m idle now

< await ( size > 0 || idle == P )

if (size > 0) { ## get a task

bag.remove (left, right ...); size--; idle--;

} else break; > ## the work is done

mid = (left + right)/2; ..etc.. ## compute larea, etc

if (fabs (larea + rarea - lrarea) > EPSILON) { ## create new tasks

< bag.insert (left, mid, fleft, fmid, larea);

bag.insert (mid, right, fmid, fright, rarea);

size = size + 2; >

} else < total = total + larea + rarea; >

}

}
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Implementing the Bag
The challenge is to make accessing the bag much cheaper than creating a new
thread. With shared variables, a simple implementation would make the bag an
atomically accessed shared data structure.

T
T

T
TT

W

W
W

A more sophisticated implementation (with less contention) might internally have
a collection of bags, perhaps one per worker, with task-stealing to distribute the
load as necessary.
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Implementing the Bag
Similarly, with message passing, a simple scheme might allocate an explicit
“farmer” node to maintain the bag.

T
T

T
TT

F

W W W

Again, a more sophisticated implementation could distribute the bag and the
farmer, with task-stealing and termination checking via messages. For AQ, we
would also have to rethink our strategy for gathering the result.
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The Pipeline Pattern

The Sieve of Eratosthenes provides a simple example of the pipeline pattern.

The object is to find all prime numbers in the range 2 to N. The gist of the
original algorithm was to write down all integers in the range, then repeatedly
remove all multiples of the smallest remaining number. Before each removal
phase, the new smallest remaining number is guaranteed to be prime (try it!)

We will sketch a message passing, pipelined, parallel version with a generator
process and a sequence of sieve processes, each of which does the work of one
removal phase. The pipeline grows dynamically, creating new sieves on demand,
as unsieved numbers emerge from the pipeline.
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33main () { # the generator

spawn the first sieve process;

for (i=2; i<=N; i++) {

send i to first sieve;

}

send -1 to first sieve; # a "stop" signal

}

sieve () {

int myprime, candidate;

receive myprime from predecessor and record it;

do {

receive candidate from predecessor;

if (candidate == -1) {send -1 to successor if it exists}

else if (myprime doesn’t divide candidate exactly) {

if (no successor yet) spawn successor sieve process;

send candidate to successor sieve process;

}

} while (candidate != -1)

}
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The Pipeline Pattern
Pipelines are composed of a sequence of producer-consumer relationships in which
each consumer (except the last) becomes a producer for a further consumer, and
so on.

Items of data flow from one end of the pipeline to the other, being transformed
by and/or transforming the state of the pipeline stage processes as they go.

Stage 1 Stage 2 Stage n

Our prime finding program has the interesting property that construction of
pipeline stages is dynamic and data-dependent.
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Producers-Consumers
The producers-consumers relationships (which make up the pipeline) arise in
general when a group of activities generate data which is consumed by another
group of activities.

The key characteristic is that the conceptual data flow is all in one direction, from
producer(s) to consumer(s).

In general, we want to allow production and consumption to be loosely
synchronized, so we will need some buffering in the system.

The programming challenges are to ensure that no producer overwrites a buffer
entry before a consumer has used it, and that no consumer tries to consume an
entry which doesn’t really exist (or re-use an already consumed entry).
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Producers-Consumers
Depending upon the model, these challenges motivate the need for various
facilities. For example, with a buffer in shared address space, we may need atomic
actions and condition synchronization (ie await).

CP

Similarly, in a distributed implementation we want to avoid tight synchronization
between sends to the buffer and receives from it.

P C
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The Interacting Peers Pattern

In the interacting peers pattern data is exchanged in both directions (unlike
producers-consumers), within a multidimensional fixed structure.

Typically, all processes execute more or less the same code, but on distinct
partitions of the data. This programming style is sometimes also called SPMD,
for “Single Program Multiple Data”.

Often there is no “root” or “controller” process, except possibly at the very
beginning and end to distribute and gather data and results.
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The Interacting Peers Pattern

repeat

local = f (neighbours old value);

until (all agree to stop);

Interaction could be through messages or shared variables.
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The Interacting Peers Pattern
Models of physical phenomena are often expressed as a system of partial differential
equations. These can be approximately solved by “finite difference methods”
which involve iteration on a matrix of points, in an interacting peers pattern.

The matrix is surrounded by a fixed fringe, representing the boundary conditions.

The “compute” step usually involves only a small number of neighbouring points.
The termination test looks for convergence, i.e. small difference in point values
from one iteration to the next, indicating approximate solution of the pdes.

In this version, we use a duplicate grid and barriers to enforce correct
synchronization between iterations.

In contrast, in a message passing version we could remove the barriers and
synchronize “naturally” with local synchronous messages only. The termination
test would require us to collate local termination decisions somehow.
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Finite Difference Methods - Jacobi
shared real grid[n+2, n+2], newgrid[n+2, n+2];

shared bool converged; local real diff;

co [i = 1 to n, j = 1 to n] {

initialise grid;

do {

barrier(); ## before resetting test

converged = true; ## provisionally

newgrid[i,j] = (grid[i-1,j] + grid[i+1,j] +

grid[i,j-1] + grid[i,j+1])/4; ## compute new value

diff = abs (newgrid[i,j] - grid[i,j]); ## compute local change

barrier(); ## before converged update

if (diff > EPSILON) converged = false; ## any one will do

grid[i,j] = newgrid[i,j]; ## copy back to real grid

barrier(); ## before global check

} while (not converged);

}
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Summary
Examining just a few simple examples has uncovered a range challenges to be
addressed by real programming frameworks.

• creation of activities, both statically and dynamically

• local and global synchronization

• atomic (mutually excluding) actions

• conditional synchronization

• asynchronous message exchange

• collective communication patterns and agglomerations
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Other Patterns
There is considerable literature on gathering collections of parallel programming
patterns as a means of better understanding and communicating ideas about
parallel software design.

Other candidate patterns include MapReduce (originally by Google), Scan, Divide
& Conquer, Farm as well as application domain specific operations.

Some programming models try to support patterns directly, through polymorphic
library operations (eg Intel’s C++ Threading Building Blocks, Microsoft’s Task
Parallel Library, the SkePU library).
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Shared Variable Programming
We now consider a range of programming concepts and constructs which have
been suggested to assist the correct programming of machines with a shared
address space.

In the first part of this phase of the course we will introduce these within
our toy language, assuming an SC memory model. We will use < > and
< await (B) S > to specify the intended behaviour, and think about how they
might be implemented with simpler primitives, still under SC.

Later in this phase we will see how real shared variable languages and libraries
have provided similar constructs and how they allow correct control of parallelism
in the absence of SC. After that we will turn to message passing parallelism.
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Shared Variable Synchronization

We have already seen that there are two fundamental kinds of synchronization in
shared variable programming:

• Mutual Exclusion is more like anti-synchronization! We want to prevent two
or more threads from being active concurrently for some period, because their
actions may interfere incorrectly. For example, we might require updates to a
shared counter (e.g., count++) to execute with mutual exclusion.

• Condition Synchronization occurs when we want to delay an action until some
condition (on the shared variables such as in producer-consumer, or with
respect to the progress of other threads such as in a barrier) becomes true.

We consider a range of concepts which help express these in different situations.
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Critical Sections
A simple pattern of mutual exclusion occurs in the critical section problem. This
occurs when n threads execute code of the following form, in which it is essential
that at most one thread is executing statements within the critical section at a
time (because of potentially unsafe access to shared variables)

co [i = 1 to n] {

while (something) {

critical section; ## one thread at a time

non-critical section;

}

}

We must design code to execute before (entry protocol) and after (exit protocol)
the critical section to ensure this behaviour.
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Important Properties

Mutual Exclusion. At most one thread is executing the critical section at a time.

Absence of Deadlock (or Livelock). If two or more threads are trying to enter the
critical section, at least one succeeds.

Absence of Unnecessary Delay. If a thread is trying to enter the critical section
and the other threads are executing non-critical sections, or have terminated, the
first thread is not prevented from entering the critical section.

Eventual Entry (or No Starvation). A thread that is attempting to enter the
critical section will eventually succeed.

The first three are always essential. Eventual entry may not matter in some
“performance parallel” programs - as long as we are making progress elsewhere.
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Critical Sections & Locks
The entry and exit protocol code obviously has to operate upon one or more
shared variables. Conventionally we call such variables locks, and the protocol
code sequences locking and unlocking. Shared variable libraries will often abstract
these as functions.

co [i = 1 to n] {

while (something) {

lock(l);

critical section;

unlock(l);

non-critical section;

}

}
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Implementing Locks

A simple approach is to implement each lock with a shared boolean variable.

If the variable has value false then one locking thread can set it and be allowed
to proceed. Other attempted locks must be forced to wait.

To unlock the lock, the lock-holding thread simply sets the lock to false.

We can specify this behaviour with our < await () > notation.
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Implementing Locks

lock_t l = false;

co [i = 1 to n] {

while (something) {

< await (!l) l = true; >

critical section;

l = false;

non-critical section;

}

}

(recall that our model assumes that the l = false; write is already atomic)
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Note: Why is Consistency Model Important?
Consider again the code from the last slide

lock_t l = false;

co [i = 1 to n] {

while (something) {

< await (!l) l = true; >

critical section;

l = false;

non-critical section;

}

}

This might fail if the model is more relaxed than SC. Why? (Hint: what if writes
in the “critical section” and l = false; in the exit protocol are re-ordered?)
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Implementing Locks
To implement the detail, we rely on some simpler atomic primitive, implemented
with hardware support. There are many possibilities, including “Fetch-and-Add”,
“Test-and-Set” and the “Load-Linked, Store-Conditional” pairing.

A Test-and-Set (TS) instruction implements the following effect. We think of
this behaving like a call-by-reference function, so that the variable passed in is
read from and written to, but in reality it is a single machine instruction.

bool TS (bool v) {

< bool initial = v;

v = true;

return initial; >

}

The key feature is that this happens (or at least, appears to happen) atomically.
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Implementing Locks
lock_t l = false;

co [i = 1 to n] {

while (something) {

while (TS(l)) ; ## i.e. spin

critical section;

l = false;

non-critical section;

}

}

This guarantees mutual exclusion, absence of deadlock and absence of delay,
but does not guarantee eventual entry. It is called a spin lock because of the
behaviour of threads which fail to gain access immediately.
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Simple spin locks don’t make good use of the cache (those spinning Test-And-Sets
play havoc with contention and coherence performance). A pragmatically better
solution is known as Test-and-Test-and-Set (though it still uses Test-and-Set).

lock_t l = false;

co [i = 1 to n] {

while (something) {

do {

while (l) ; ## spin until lock seems free

} while (TS(l)); ## actual atomic locking

critical section;

l = false;

non-critical section;

}

}
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We simply “Test” (i.e. read) until there is a chance that a Test-and-Set might
succeed. Using a C style lazy || operator, we express this more concisely:

lock_t l = false;

co [i = 1 to n] {

while (something) {

while (l || TS(l)) ; ## only TS if l was false

critical section;

l = false;

non-critical section;

}

}
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Lamport’s Bakery Algorithm
This simplified version of Lamport’s algorithm implements critical sections using
only simple atomic reads and writes (i.e. no need for special instructions, and
the full version even allowed reads and writes to be non-atomic!). The algorithm
assumes sequential memory consistency. Finally, Lamport’s algorithm has the
strong property of guaranteeing eventual entry. The algorithm is very inefficient
compared to spin locks, but is a great conceptual achievement.

There are two phases to the entry protocol. Firstly a thread calculates when its
“turn” will be (as an integer), by looking at other threads’ turns. A thread sets
its turn to be one more than any other turn currently claimed. Threads not at
the critical section have a turn of 0. Secondly, the thread waits until its turn
comes up, by waiting until it has a lower turn than each of the other competing
threads.
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Lamport’s Bakery Algorithm
int turn[n] = [0, 0, ... 0];

co [i=1 to n] {

while (true) {

< turn[i] = max (turn[1..n]) + 1; >

for (j = 1 to n except i) {

<await (turn[j]==0 or turn[i]<turn[j]) ;>

}

critical section;

turn[i] = 0;

noncritical section;

}

}

This is “obviously” correct, but how can we get rid of the atomic section?
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Lamport’s Bakery Algorithm
Just drop the atomic, and use the obvious spinning implementation of await?

int turn[n] = [0, 0, ... 0];

co [i=1 to n] {

while (true) {

turn[i] = max (turn[1..n]) + 1;

for (j = 1 to n except i) {

while ((turn[j]!=0 and (turn[i] > (turn[j])) ;

}

critical section;

turn[i] = 0;

noncritical section;

}

}
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Lamport’s Bakery Algorithm

There are two problems with this.

Firstly, there is possibility that a thread can claim a lower turn than another
thread which enters the critical section before it!

Secondly, if turn setting is not atomic then there is a possibility that two (or
more) threads will claim the same turn.

The following slide shows an instance of the first problem.
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Lamport’s Bakery Algorithm
[Thread 3 is in CS, with turn[3] == 9, other turns == 0]

Thr 2 sees turn[1] == 0

Thr 2 sees turn[3] == 9

Thr 3 sets turn[3] = 0

Thr 1 sees turn[2] == 0

Thr 1 sees turn[3] == 0

Thr 2 sets turn[2] = 10

Thr 2 sees turn[1] == 0

Thr 2 sees turn[3] == 0

Thr 2 enters CS

Thr 1 sets turn[1] = 1

Thr 1 sees turn[1] < turn[2]

Thr 1 sees turn[3] == 0

Thr 1 enters CS
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Lamport’s Bakery Algorithm

We can fix the first problem by adding the statement turn[i] = 1; to the entry
protocol.

A turn value of 1 now indicates that a thread is in the process of setting its
turn. It distinguishes the thread (or to be precise, its turn), from those which
are not attempting to enter the critical section. Notice that now, no thread will
ever have a “real” turn value of 1.

This fixes the first problem: the artficially low turn of 1 will stop any other
thread in the second phase from entering the CS until the turn setting of the first
thread is complete.

The following slides show the improved code and fixed behaviour.
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Lamport’s Bakery Algorithm
int turn[n] = [0, 0, ... 0];

co [i=1 to n] {

while (true) {

turn[i] = 1; turn[i] = max (turn[1..n]) + 1;

for (j = 1 to n except i) {

while ((turn[j]!=0 and (turn[i] > turn[j])) ;

}

critical section;

turn[i] = 0;

noncritical section;

}

}

Solves the first problem (but what about duplicate turns?)
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Lamport’s Bakery Algorithm
[Thread 3 is in CS, with turn[3] == 9, other turns == 0]

Thr 2 sets turn[2] = 1

Thr 2 sees turn[1] == 0

Thr 2 sees turn[3] == 9

Thr 3 sets turn[3] = 0

Thr 1 sets turn[1] = 1

Thr 1 sees turn[2] == 1

Thr 1 sees turn[3] == 0

Thr 2 sets turn[2] = 10

Thr 2 sees turn[1] == 1 and can’t enter CS.....

Thr 1 sets turn[1] = 2

Thr 1 sees turn[1] < turn[2]

Thr 1 sees turn[3] == 0

Thr 1 enters CS

Thr 2 is stuck until Thr 1 leaves CS
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Lamport’s Bakery Algorithm

The duplicate turn problem occurs when threads end up choosing the same turn
(because choosing is no longer atomic).

This is much easier to deal with. We simply need an artificial and systematic way
of deciding which of two equal turns will be treated as though it were smaller
than the other.

We do this by using the thread ids (which are definitely distinct). In the case of
duplicate turns, the thread with the lower id “wins” (i.e. is treated as having a
“lower” turn).

In the code, we write (x,y) > (a,b) to mean (x>a) || (x==a && y>b).
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Lamport’s Bakery Algorithm
int turn[n] = [0, 0, ... 0];

co [i=1 to n] {

while (true) {

turn[i] = 1; turn[i] = max (turn[1..n]) + 1;

for (j = 1 to n except i) {

while ((turn[j]!=0 and (turn[i], i) > (turn[j], j)) ;

}

critical section;

turn[i] = 0;

noncritical section;

}

}

This is the complete correct bakery algorithm!
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Lamport’s Bakery Algorithm
Here is another example which demonstrates the importance of both the new
turn[i]=1 statement and the added tie-breaking mechanism. Without the new
statement, but with tie-breaking, the following bad behaviour is possible:

[Both threads outside critical section, with turns of 0 ]

Thr 1 sees turn[2] == 0

Thr 2 sees turn[1] == 0

Thr 2 sets turn[2] = 1 ## ie 0+1

Thr 2 enters CS because turn[1]==0

Thr 1 sets turn[1] = 1

Thr 1 sees turn[2] == 1

Thr 1 enters CS because (1,1) < (1, 2)

and both threads are in the CS!
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Lamport’s Bakery Algorithm
On the other hand, with the complete correct code:

[Both threads outside critical section, with turns of 0 ]

Thr 1 sets turn[1] = 1 ## NEW

Thr 1 sees turn[2] == 0

Thr 2 sets turn[2] = 1 ## NEW

Thr 2 sees turn[1] == 1 ## not 0

Thr 2 sets turn[2] = 2 ## ie 1+1

Thr 2 doesn’t enter, because turn[1]<turn[2]

Thr 1 sets turn[1] = 2 ## 1+1

Thr 1 sees turn[2] == 2

Thr 1 enters CS because (2,1) < (2,2)

Later, thread 1 will reset turn[1] = 0 and thread 2 will enter.
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Why the Bakery Algorithm Works
We need to show no two threads can enter the CS at the same time.

Two competing threads can only make inconsistent entry decisions (eg both
enter) if they see different values for each other’s turn values in the testing
phase, because this, together with fixed thread id’s, is the only data used in the
head-to-head checks.

We now see that this can’t happen: there is no way for two competing threads
to see inconsistent values for their respective turns.

The key is to consider the points at which each thread checks (reads) the other’s
turn value during the testing phase.
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Why the Bakery Algorithm Works
Suppose A checks (reads) B’s turn first (the reverse is symmetric):

• if A sees 0, then B hasn’t set it’s turn yet, and so B will later see A’s chosen
turn correctly. This will be lower than B’s eventual turn. A enters, B waits.

• if A sees 1, then B is setting its turn, A is forced to wait until B’s turn is set
(because 1 beats any real turn), at which point they will both see the same
final values for each other’s turn (and so will decide who goes first consistently)

• if A sees a larger value, this is B’s settled turn, and so again, B must also see
A’s already settled turn. Once again, they are deciding entry based on the
same data, and so make consistent decisions.

There are no other possibilties, and hence no chance of inconsistent decisions!
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Barriers
Many algorithms have the following structure

co [i = 1 to n] {

while (something) {

do some work;

wait for all n workers to get here;

}

}

This kind of computation-wide waiting is called barrier synchronization. It is an
example of a particular pattern of condition synchronization.
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Counter Barriers

shared int count = 0;

co [i = 1 to n] {

do some work;

## now the barrier

<count = count + 1;>

<await (count == n);>

}

This is fine as a single-use barrier, but things get more complex if (as is more
likely) we need the barrier to be reusable.
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Reusable Counter Barrier - Wrong!

shared int count = 0;

co [i = 1 to n] {

while (something) { ## NB looping now

do some work;

## now the barrier

<count = count + 1;>

<await (count == n); count = 0;>

}

}

Can you see why this doesn’t work?
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Sense Reversing Barrier - Correct

shared int count = 0; shared boolean sense = false;

co [i = 1 to n] {

private boolean mySense = !sense; ## one per thread

while (something) {

do some work;

< count = count + 1;

if (count == n) { count = 0; sense = mySense; }

>

while (sense != mySense); ## wait

mySense = !mySense;

}

}
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Sense Reversing Barrier

The shared variable sense is at the core of the synchronization. Its value is
flipped after each use of the barrier to indicate that all threads may proceed.

The local variable mySense allows each thread to remember whether to wait for
a true or false value in sense in its current iteration (because the “meaning”
of sense reverses from one iteration to the next).

Flipping the sense value simultaneously drops the barrier for one iteration while
raising it for the next.

In the previous failed attempt at implementing a barrier (two slides before this)
the count variable on its own couldn’t correctly both control threads still leaving
one use of the barrier and threads already arriving at the next use.
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Symmetric Barriers

Symmetric barriers are designed to avoid the bottleneck at the counter.

Overall synchronization is achieved transitively from a carefully chosen sequence
of pairwise synchronizations. Each thread executes the same code, choosing
partners for the pairwise synchs as a function of its own identifier and the internal
iteration. For n a power of two, we have the butterfly pattern.

Workers 1 2 3 4 5 6
�

7 8
�

Stage 1

Stage 2

Stage 3

Figure 3.15 Butterfly barrier for 8 processes.

Copyright © 2000 by Addison Wesley Longman, Inc.
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Symmetric Barriers

To synchronize between a pair of threads myid and friend (where each sees the
other as its friend), both could execute

<await (arrive[myid] == 0);>

arrive[myid] = 1;

<await (arrive[friend] == 1);>

arrive[friend] = 0;

The first line avoids race problems caused by previous uses of the barrier.

However, when used as a step within a multistage symmetric barrier, there is an
additional problem.
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Symmetric Barriers
for [s = 0 to stages-1] {

<await (arrive[myid] == 0);>

arrive[myid] = 1;

work out who my friend is at stage s;

<await (arrive[friend] == 1);>

arrive[friend] = 0;

}

Consider the case with four threads (and thus two stages). Suppose thread 1
arrives at its first level barrier as normal, but that thread 2 will never arrive.
Meanwhile threads 3 and 4 synchronize quickly. Thread 3 then “sees” that thread
1 is at a pairwise barrier (but unfortunately, not that it is the “wrong” one!), and
proceeds, resetting arrive[1]. Thread 3 leaves the barrier, even though thread
2 will never arrive!
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Symmetric Barriers
We can fix this by having distinct variables for each stage of the barrier.

for [s = 0 to stages-1] { ## there will be log_2 p stages

<await (arrive[myid][s] == 0);>

arrive[myid][s] = 1;

work out who my friend is at this stage;

<await (arrive[friend][s] == 1);>

arrive[friend][s] = 0;

}

Thread 3 can now only synchronize with thread 1 after thread 1 has synchronized
with thread 2. Since this now won’t happen in our “bad” scenario, thread 3 will
be prevented from leaving the barrier incorrectly.
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Dissemination Barriers
What can we do if n isn’t a power of 2? The dissemination barrier approach is
similar to the symmetric approach, but instead of pairwise synchs, we have two
partners at each stage, one incoming and one outgoing. The code is the same:
an arrow in the diagram from X to Y means that Y waits for X to signal that it
has arrived (ie X is Y’s “friend” in the code).

Workers 1 2 3 4 5
�

6
�

Stage 1

Stage 2

Stage 3

Figure 3.16 Dissemination barrier for 6 processes.

Copyright © 2000 by Addison Wesley Longman, Inc.
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Structured Primitives

The mechanisms we have designed so far have all been implemented directly in the
user-address space (probably hidden inside a library, but nonetheless “invisible”
to the OS).

In contrast, a number of more structured primitives have been devised for
implementation with the assistance of the operating system, so that threads can
be directly suspended and resumed.

We will look at two of the most common, semaphores and monitors. These include
capabilities which facilitate the expression of both types of synchronization.
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Semaphores
A semaphore is a special shared variable, accessible only through two atomic
operations, P and V, defined by

P(s): <await (s>0) s=s-1;>

V(s): <s=s+1;>

Notice that if a semaphore is initialised to have a non-negative value, then it can
never become negative subsequently. A semaphore whose usage is organised to
only ever take the value 0 or 1 is called a binary semaphore.

In a typical implementation, a thread executing P on a 0 valued semaphore will
be suspended on a queue until after some other thread has executed a V.

[The names come from Dijkstra’s native Dutch words Probeer (Try) and Verhoog
(Increase), but you don’t need to learn that :)]
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Using Semaphores
A semaphore provides an easy solution to the critical section problem

sem mutex = 1;

co [i = 1 to n] {

while (whatever) {

P(mutex);

critical section;

V(mutex);

noncritical section;

}

}
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Using Semaphores

We can also use semaphores at the core of a symmetric barrier implementation
(in which we have an array of arrive semaphores for each stage).

for [s = 1 to stages] {

V(arrive[myid][s]);

work out who my friend is at stage s;

P(arrive[friend][s]);

}

Notice that with semaphores we no longer need the initial wait for our own
semaphore to be zeroed (as earlier), because our V can’t be “lost”. The
semaphores are being atomically incremented and decremented rather than simply
set to 1 or 0, with all work on our friend semaphore captured by the P operation.
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Using Semaphores

Semaphores offer neat solutions to various producer-consumer buffering problems.

For example, to control access to a single element buffer, with multiple producers
and consumers, we use two semaphores, one to indicate that the buffer is full,
the other to indicate that it is empty.

Since only one of the semaphores will ever have the value one, this is sometimes
called a split binary semaphore.

More generally a semaphore whose value is counting availability of some resource,
is often called a counting semaphore (sometimes “split”).
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T buf; sem empty = 1, full = 0;

co

co [i = 1 to M] {

while (whatever) {

...produce new data locally

P(empty);

buf = data;

V(full);

} }

//

co [j = 1 to N] {

while (whatever) {

P(full);

result = buf;

V(empty);

... handle result locally

} }

oc
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Bounded Buffer

Now suppose that we want to have a multi-space buffer, so that the producers
can run ahead of the consumers (up to some limit).

We implement the buffer itself with an array, and two integer indices, indicating
the current front and rear of the buffer and use arithmetic modulo n (the buffer
size), so that the buffer conceptually becomes circular.

For a single producer and consumer, we protect the buffer with a split “counting”
semaphore, initialised according to the buffer size (so no longer binary). Think of
full as counting how many space in the buffer are full, and empty as counting
how many are empty.

Provided the buffer isn’t empty or full, we should allow producer and consumer
to be active within it simultaneously.
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T buf[n]; int front = 0, rear = 0;

sem empty = n, full = 0;

co ## Producer

while (whatever) {

...produce new data locally

P(empty);

buf[rear] = data; rear = (rear + 1) % n;

V(full);

}

// ## Consumer

while (whatever) {

P(full);

result = buf[front]; front = (front + 1) % n;

V(empty);

... handle result locally

}

oc
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Multiple Producers/Consumers

To allow for multiple producers and consumers, we need two levels of protection.

We use a split counting semaphore to avoid buffer overflow (or underflow), as
previously.

We add a binary semaphore to provide mutual exclusion between producers, and
another to similarly prevent interference between consumers. This allows up to
one consumer and one producer to be actively simultaneously within a non-empty,
non-full buffer.
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sem empty = n, full = 0, mutexP = 1, mutexC = 1;

co

co [i = 1 to M] {

while (whatever) {

...produce new data locally

P(empty);

P(mutexP); buf[rear] = data; rear = (rear + 1) % n; V(mutexP);

V(full);

} }

//

co [j = 1 to N] {

while (whatever) {

P(full);

P(mutexC); result = buf[front]; front = (front + 1) % n; V(mutexC);

V(empty);

... handle result locally

} }

oc
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Multiple Producers/Consumers

Can we further relax this solution to allow several producers and/or consumers to
be active within the buffer simultaneously? This might be useful if the buffered
items are large and take a long time to read/write.

We need to ensure that accesses target distinct buffer locations, so the index
arithmetic will certainly need to be kept atomic.

Can you see what’s wrong with the proposed solution on the next overhead?
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co [i = 1 to M] {

while (whatever) {

...produce new data locally

P(empty);

P(mutexP); myrear = rear; rear = (rear + 1) % n; V(mutexP);

buf[myrear] = data; ## where myrear is a private variable

V(full);

} }

//

co [j = 1 to N] {

while (whatever) {

P(full);

P(mutexC); myfront = front; front = (front + 1) % n; V(mutexC);

result = buf[myfront]; ## where myfront is a private variable

V(empty);

... handle result locally

} }

oc
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The producers are filling distinct slots, but not necessarily completing these fills
in strict order - slot i+1 might finish filling before slot i.

However, consumers only know that a slot has been filled and assume, possibly
incorrectly, that it is the ”next” one.

rear rear rearrear

Full=0 Full=0 Full=0 Full=1
front frontfront front

Can you think of a scheme which avoids this? For example, how could you ensure
that an entry can’t be read until it has been completely filled?
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Monitors
Semaphores are a good idea, but have some drawbacks. For example,

• they still require careful programming: there is no explicit connection in the
program source between “matching” semaphore operations. It is easy to get
things wrong.

• Similarly, there is no obvious indication of how semaphores are being used -
some may be for mutual exclusion, others for condition synchronization. Again
confusion is possible.

The monitor is a more structured mechanism.
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Monitors - Mutual Exclusion

The monitor concept is quite easy to understand from an object-oriented
perspective. A monitor is like an object which encapsulates some data to
which access is only permitted through a set of methods.

When the monitor object exists in a threaded concurrent context, the
implementation ensures that at most one thread is active within the monitor at
any one time (though many threads may be suspended within monitor methods).

The effect is as if the body of each monitor method is implicitly surrounded with
lock and unlock operations on a single (hidden) lock, shared by all methods.
Thus, monitors provide structured mutual exclusion “for free”, and implicitly.
The mechanism for more complex conditional synchronization requires explicit
actions by the program.
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Monitors - Condition Synchronization

A condition variable is a special variable, associated with a monitor, which we
can think of as controlling a queue of delayed threads.

Once inside a monitor method a thread may call the wait(cv) operation, where
cv is a condition variable. This causes the thread both to give up the (implicit)
lock it holds on the monitor, and to be blocked upon the queue of cv.

A blocked thread remains so until some other thread, while active inside the
monitor, calls the operation signal(cv). This causes a previously blocked
thread (normally chosen by a FIFO discipline) to become ready for scheduling
again (ie it becomes blocked on the implicit lock, waiting for this to be released).

The signalling thread continues uninterrupted, hence this scheme is called signal
and continue (SC).
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Monitors - Condition Synchronization

Executing 
in monitorMonitor free

On entry

variable queue
On conditionanother thread

calls signal()

return();

wait();

  queue

signal();

M.op();

State transition diagram for threads using a “signal-and-continue” monitor.
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Monitors - Condition Synchronization

Finally, an operation signal-all(cv) is usually available. This awakens all
(rather than just one) of the waiting threads.

They all become eligible to proceed, once the signalling thread releases the lock,
but only one will be allowed to enter the monitor at a time, in the usual way.

It is important not to confuse these wait() and signal() operations with the
similar sounding (and sometimes identically named!) operations on semaphores.

The key difference is that signal() on a condition variable is not “remembered”
in the way that V() on a semaphore is. If no threads are waiting, then a signal()
is “lost” or “forgotten”, whereas a V() will allow a subsequent P() to proceed.
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Monitors - Condition Synchronization

Monitor semantics mean that when a thread which was previously blocked on
a condition is actually awakened again in the monitor, it often makes sense to
check that the condition it was waiting for is still true.

The point to remember is that when the signal happened, the signalled thread
only became available for actual execution again (ie it was allowed to try to
acquire the monitor lock again). It could be that some other thread acquires the
lock first, and does something which negates the condition again (for example, it
consumes the “new item” from a monitor protected buffer).

Thus it is often necessary, in all but the most tightly constrained situations, to
wrap each conditional variable wait() call in a loop which rechecks the condition.
The following bounded buffer works for arbitrarily many producers and consumers.
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98monitor Bounded_Buffer {

typeT buf[n]; # an array of some type T
int front = 0, # index of first full slot

rear = 0; # index of first empty slot
count = 0; # number of full slots

## rear == (front + count) % n
cond not_full, # signaled when count < n

not_empty; # signaled when count > 0

procedure deposit(typeT data) {
while (count == n) wait(not_full);
buf[rear] = data; rear = (rear+1) % n; count++;
signal(not_empty);

}

procedure fetch(typeT &result) {
while (count == 0) wait(not_empty);
result = buf[front]; front = (front+1) % n; count--;
signal(not_full);

}

}

Figure 5.4 Monitor implementation of a bounded buffer.

Copyright © 2000 by Addison Wesley Longman, Inc.
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Real Shared Variable Programming Systems
We now examine the ways in which the various concepts for shared variable
programming have been embedded in real programming systems. In particular
we look at C’s Posix threads (Pthreads) library and Java’s threads and monitors.
Here’s a possible output from the following Pthreads program.

[gateside]mic: ./test

Hello from the main thread

Hello from thread 3

Hello from thread 0

Hello from thread 5

Hello from thread 6

Hello from thread 1

Hello from thread 7

Hello from thread 2

Hello from thread 4

Goodbye from the main thread
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#include <pthread.h>

#define P 8

void *sayhello (void *id) {

printf("Hello from thread %d\n", (int) id);

}

int main (int argc, char *argv[]) {

int i; pthread_t thread[P];

printf("Hello from the main thread\n");

for (i=0; i<P; i++) {

pthread_create(&thread[i], NULL, sayhello, (void *)i);

}

for (i=0; i<P; i++) {

pthread_join(thread[i], NULL);

}

printf("Goodbye from the main thread\n");

}
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POSIX Threads
The POSIX threads (Pthreads) standard defines an API for thread programming.
Conceptually, a process (whose execution is already a “main” thread) can start,
synchronize with and stop other threads of activity within its address space.

Threads (of type pthread_t) begin by executing a given function, and terminate
when that function exits (or when killed off by another thread).

int pthread_create (pthread_t *tid,

p_thread_attr_t *att, void * (*f) (void *),

void *arg);

The function run (f) has a “lowest common denominator” C prototype, having a
generic pointer as both argument and return type. The actual parameter to the
call of f is passed through the final parameter of pthread_create.
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POSIX Threads
Often the arg parameter is NULL (since the intended effect will be achieved
directly in shared variable space) or perhaps an integer thread identifier, to assist
data partitioning.

int pthread_join (pthread_t t, void ** result);

The calling thread waits for the thread identified by the first parameter to finish,
and picks up its returned result through the second parameter.

The result parameter is often just NULL since the intended effect will have been
achieved directly in shared variable space. Pthreads also has a range of functions
which allow threads to kill each other, and to set properties such as scheduling
priority (e.g. through the second parameter to pthread_create). We will not
discuss these.
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Accidentally Sharing Data
void *sayhello (void *id) {

printf("Hello from thread %d\n", *(int *)id);

}

int main (int argc, char *argv[]) {

int i; pthread_t thread[P];

printf("Hello from the main thread\n");

for (i=0; i<P; i++) {

// Each thread gets a pointer to i, producing a race

pthread_create(&thread[i], NULL, sayhello, &i);

}

for (i=0; i<P; i++) {

pthread_join(thread[i], NULL);

}

printf("Goodbye from the main thread\n");

}
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Intentionally Sharing Data
int target;

void *adderthread (void *arg) {

int i;

for (i=0; i<N; i++) {

target = target+1;

}

}

int main (int argc, char *argv[]) {

int i; pthread_t thread[P];

target = 0;

for (i=0; i<P; i++) {

pthread_create(&thread[i], NULL, adderthread, NULL);

} .....
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Coordinating Shared Accesses
Variable target is accessible to all threads. Its increment is not atomic, so we
may get unpredictable results.

POSIX provides mechanisms to coordinate accesses including semaphores and
building blocks for monitors. Posix semaphores have type sem_t. Operations are

1. sem_init(&sem, share, init), where init is the initial value and share is
a “boolean” (in the C sense) indicating whether the semaphore will be shared
between processes (true) or just threads within a process (false).

2. sem_wait(s), which is the Posix name for P(s)

3. sem_post(s), which is the Posix name for V(s)
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int target;

sem_t lock;

void *adderthread (void *arg)

{

int i;

for (i=0; i<N; i++) {

sem_wait(&lock);

target = target+1;

sem_post(&lock);

}

}

int main (int argc, char *argv[]) {

target = 0;

sem_init(&lock, 0, 1);

.....

}
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Producers & Consumers
sem_t empty, full; // the global semaphores

int data; // shared buffer

int main (int argc, char *argv[]) {

pthread_t pid, cid;

....

sem_init(&empty, 0, 1); // sem empty = 1

sem_init(&full, 0, 0); // sem full = 0

pthread_create(&pid, &attr, Producer, NULL);

pthread_create(&cid, &attr, Consumer, NULL);

pthread_join(pid, NULL);

pthread_join(cid, NULL);

}

Parallel Programming Languages and Systems



108
void *Producer (void *arg) {

int produced;

for (produced = 0; produced < numIters; produced++) {

sem_wait(&empty);

data = produced;

sem_post(&full);

}

}

void *Consumer (void *arg) {

int total = 0, consumed;

for (consumed = 0; consumed < numIters; consumed++) {

sem_wait(&full);

total = total+data;

sem_post(&empty);

}

printf("after %d iterations, the total is %d (should be %d)\n", numIters,

total, numIters*(numIters+1)/2);

}
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Pthreads “Monitors”

Pthreads doesn’t provide the monitor as a built-in programming construct, but
it does provide the building blocks needed to achieve monitor-like effects. It
provides locks, which are of type pthread_mutex_t. These can be

• initialized with pthread_mutex_init(&m, attr), where attr are attributes
concerning scope (as with semaphore creation).

• locked with pthread_mutex_lock(&m), which blocks the locking thread
if already m is already locked. There is also a non-blocking version
pthread_mutex_trylock(&m).

• unlocked with pthread_mutex_unlock(&m). Only a thread which holds a
given lock, should unlock it!
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Pthreads Condition Variables
Pthreads provides condition variables (pthread_cond_t) which can be

• waited on with pthread_cond_wait(&cv, &mut) where cv is a condition
variable, and mut is a lock held by this thread, which is implictly released.

• signalled with pthread_cond_signal(&cv) or pthread_cond_broadcast(&cv)
(which is “signal-all”), by a thread which should (but doesn’t strictly have
to) hold the associated mutex. The semantics are “Signal-and-Continue” as
previously discussed, ie the signalled thread moves back to the entry queue
state (diagram on slide 93) and will be implicitly given the lock back again
when it moves to the executing state.

Apart from the implicit locking/unlocking associated with condition variable
actions the programmer must handle the locks explicitly.
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Spurious Wakeups
For very obscure reasons on some systems, both Pthreads and Java specifications
state that so called spurious wakeups from condition variable wait calls may occur.

These cause a thread to be released from the wait for no apparent reason (e.g.
even though there has been no matching signal!)

Both specifications therefore say that waits should always be guarded with a loop
which checks the condition (in the style of our Bounded Buffer monitor code).
We will adopt this style in the following example.

(The reasons for spurious wakeups are beyond our scope in this course, but there
is lots of non-examinable discussion available online.)

Parallel Programming Languages and Systems



112

Simple Jacobi Example

We round off our examination of Pthreads with a simple Jacobi grid-iteration
program.

This runs the standard Jacobi step for a given fixed number of iterations. To
avoid copying between “new” and “old” grids, each iteration performs two Jacobi
steps. Convergence testing could be added as before.

The code includes the definition of a simple counter barrier, and its use to keep
new point calculation and update safely separated.
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A Re-usable Counter Barrier
struct BarrierData {

pthread_mutex_t barrier_mutex;

pthread_cond_t barrier_cond;

int nthread; // Number of threads that have reached this round of the barrier

int round; // Barrier round id

} bstate;

void barrier_init() {

pthread_mutex_init(&bstate.barrier_mutex, NULL);

pthread_cond_init(&bstate.barrier_cond, NULL);

bstate.nthread = 0; bstate.round = 0;

}
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A Re-usable Counter Barrier
void barrier() {

pthread_mutex_lock(&bstate.barrier_mutex);

bstate.nthread++;

if(bstate.nthread == numWorkers) {

bstate.round++;

bstate.nthread = 0;

pthread_cond_broadcast(&bstate.barrier_cond);

} else {

int lround = bstate.round;

do {

pthread_cond_wait(&bstate.barrier_cond, &bstate.barrier_mutex);

} while(lround == bstate.round);

}

pthread_mutex_unlock(&bstate.barrier_mutex);

}
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Jacobi Main

int main(int argc, char *argv[]) {

pthread_t workerid[MAXWORKERS];

barrier_init();

InitializeGrids();

for (i = 0; i < numWorkers; i++)

pthread_create(&workerid[i], &attr, Worker, (void *) i);

for (i = 0; i < numWorkers; i++)

pthread_join(workerid[i], NULL);

}
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int myid = (int) arg, rowA = myid*rowshare+1, rowB = rowA+rowshare-1;

for (iters = 1; iters <= numIters; iters++) {

for (i = rowA; i <= rowB; i++) {

for (j = 1; j <= gridSize; j++) {

grid2[i][j] = (grid1[i-1][j] + grid1[i+1][j] +

grid1[i][j-1] + grid1[i][j+1]) * 0.25;

}

}

barrier();

for (i = rowA; i <= rowB; i++) {

for (j = 1; j <= gridSize; j++) {

grid1[i][j] = (grid2[i-1][j] + grid2[i+1][j] +

grid2[i][j-1] + grid2[i][j+1]) * 0.25;

}

}

barrier();

}

}
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Memory Consistency
As previously noted, weak consistency models can wreck naive DIY synchronization
attempts! What does Pthreads have to say about this? To enable portability,
Pthreads mutex, semaphore and condition variable operations implicitly act as
memory fences, executing architecture specific instructions.

In effect, the C + Pthreads combination guarantees a weak consistency memory
model, with the only certainties provided at uses of Pthreads primitives. For
example, all writes by a thread which has released some mutex, are guaranteed
to be seen by any thread which then acquires it. Nothing can be assumed about
the visibility of writes which cannot be seen to be ordered by their relationship to
uses of Pthread primitives.

We can be sure that our Jacobi program will execute correctly because the critical
phases are separated by barriers which are implemented with mutex locks.
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Pragmatic Issues

The programmer must also be careful to use only thread-safe code, which works
irrespective of how many threads are active.

Taking care to make your own code thread-safe is one thing, but what about
code from libraries?

Typical problems involve the use of non-local data. For example, imagine a
non-thread safe malloc. Unluckily interleaved calls might break the underlying
free space data structure.

Some libraries will provide thread-safe versions (but of course, which pay an
unnecessary performance penalty when used in a single threaded program).

Parallel Programming Languages and Systems



119

Java Threads

Java was designed from the start to be multithreaded with a synchronization
model based around the monitor concept. We will begin by looking at the thread
programming mechanisms which are built into the Java language itself (rather
than just added through a specialised package).

Then we will look briefly at some of the packages which have been added to
provide additional support for shared variable parallelism.

Like Pthreads, Java comes with an architecture-independent relaxed memory
consistency model (i.e. weaker than sequential consistency), defined around the
use of monitor locks and the volatile keyword, which define a “happens-before”
partial-order on memory actions and their visibility across threads.
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Java Threads
Threads can be created from classes which extend java.lang.Thread

class Simple extends Thread {

public void run() {

System.out.println(‘‘this is a thread’’);

}

}

new Simple().start(); // implicitly calls the run() method

or implement java.lang.Runnable (so we can extend some other class too).

class Bigger extends Whatever implements Runnable {

public void run() { ....

}

}

new Thread( new Bigger (...) ).start();
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Java Threads

As in Pthreads, we can wait to join with another thread.

class Friend extends Thread {

private int me;

public Friend (int i) {

me = i;

}

public void run() {

System.out.println("Hello from thread " + me);

}

}
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Java Threads
class Hello throws java.lang.InterruptedException {

private static final int n = 5;

public static void main(String[] args) {

int i; Friend t[] = new Friend[n];

System.out.println ("Hello from the main thread");

for (i=0; i<n; i++) {

t[i] = new Friend(i);

t[i].start();

}

for (i=0; i<n; i++) {

t[i].join(); // might throw java.lang.InterruptedException

}

System.out.println ("Goodbye from the main thread");

}

}
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Java “Monitors”

Java provides an implementation of the monitor concept (but doesn’t actually
have monitor as a keyword).

Any object in a Java program can provide monitor style behaviour by declaring
methods to be synchronized, or by including synchronized blocks of code.

Each such object is associated with one, implicit lock. A thread executing any
synchronized code must first acquire this lock. This happens implicitly (ie there
is no source syntax). Similarly, upon leaving the synchronized block the lock is
implicitly released. Other methods or code not declared as synchronized do not
use the lock (i.e. are not protected from each other). This is useful, but requires
clear thinking!
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Java “Condition Variables”

Each synchronizable object is associated with a single implicit condition variable.
This is manipulated with methods wait(), notify() and notifyAll() (where
“notify” is just Java-speak for “signal”).

Notice that this means, unlike Pthreads, that we can only have one conditional
variable queue per “built-in” monitor so there is no explicit syntax for the condition
variable itself. We’ll see later that there is also a package for building more flexible
monitors explicitly.

Like Pthreads, Java’s condition variable mechanism uses Signal-and-Continue
semantics.
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Readers & Writers
This problem requires us to control access to some shared resource (imagine a
database, for example), such that there may be many concurrent readers, but
only one writer (with exclusive access) at a time. We will add random delays to
increase the chances of seeing broken behaviour if our code is badly synchronized.

class ReadWrite { // driver program -- two readers and two writers

static Database RW = new Database(); // the monitor object

public static void main(String[] arg) {

int rounds = Integer.parseInt(arg[0],10);

new Reader(rounds, RW).start();

new Reader(rounds, RW).start();

new Writer(rounds, RW).start();

new Writer(rounds, RW).start();

}

}
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class Reader extends Thread {

int rounds; Database RW;

private Random generator = new Random();

public Reader(int rounds, Database RW) {

this.rounds = rounds;

this.RW = RW;

}

public void run() {

for (int i = 0; i<rounds; i++) {

try {

Thread.sleep(generator.nextInt(500)); // random delay for effect!

} catch (java.lang.InterruptedException e) {}

System.out.println("read: " + RW.read());

}

}

}
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class Writer extends Thread {

int rounds; Database RW;

private Random generator = new Random();

public Writer(int rounds, Database RW) {

this.rounds = rounds;

this.RW = RW;

}

public void run() {

for (int i = 0; i<rounds; i++) {

try {

Thread.sleep(generator.nextInt(500)); // random delay for effect!

} catch (java.lang.InterruptedException e) {}

RW.write();

}

}

}
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Readers & Writers

We now implement the “database” itself. Simply making both read and write
operations synchronized is over restrictive - we would like it to be possible for
several readers to be actively concurrently. The last reader to leave the monitor
will signal a waiting writer.

Thus we need to count readers, which implies atomic update of the count. A
reader needs two protected sections to achieve this.

Notice that while readers are actually reading the data they do not hold the lock
(ie they are not executing synchronized code in the Java sense).
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class Database {

private int data = 0; // the data

int nr = 0;

private synchronized void startRead() {

nr++;

}

private synchronized void endRead() {

nr--;

if (nr==0) notify(); // awaken a waiting writer

}

public int read() {

int snapshot;

startRead();

snapshot = data; // this statement is not synchronized

endRead();

return snapshot;

}
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public synchronized void write() {

int temp;

while (nr>0)

try { wait(); } catch (InterruptedException ex) {}

temp = data; // next six lines are the ‘‘database’’ update!

data = 99999; // to simulate an inconsistent temporary state

try {

Thread.sleep(generator.nextInt(500)); // random delay for effect!

} catch (java.lang.InterruptedException e) {}

data = temp+1; // now write a safe state

System.out.println("wrote: " + data);

notify(); // awaken another waiting writer

}

}
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We could express the same effect with synchronized blocks

class Database {

....

public int read() {

int snapshot;

synchronized (this) { nr++; }

snapshot = data; // this statement isn’t synchronized

synchronized (this) {

nr--;

if (nr==0) notify(); // awaken a waiting writer

}

return snapshot;

}

}

Would it be OK to use notifyAll() instead of notify() in read() ?
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A Producer-Consumer Buffer
In good object oriented style, we build on existing classes, e.g. Vector to provide
an extendable buffer, adding synchronization for thread-safety.

// borrowed from Skansholm, Java from the Beginning)

public class Buffer extends Vector {

public synchronized void putLast (Object obj) {

addElement(obj); // Vectors grow implicitly, there is "always" space

notify();

}

public synchronized Object getFirst () {

while (isEmpty())

try {wait();} catch (InterruptedException e) {}

Object obj = elementAt(0); removeElementAt(0);

return obj;

}

}
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Useful Packages

The java.util.concurrent package defines a number of useful classes,
including a re-usable barrier and semaphores (with P() and V() called acquire()

and release()). It also has some thread-safe concurrent data structures (queues,
hash tables).

The java.util.concurrent.atomic package provides implementations of
atomically accessible integers, booleans and so on, with atomic operations like
addAndGet, compareAndSet.

The java.util.concurrent.locks package provides implementations of locks
and condition variables, to allow (like Pthreads) a finer grained, more explicit
control than that provided by the built-in synchronized monitors.
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Programming without Shared Variables

It is possible to provide the illusion of shared variables, even when the
underyling archictecture doesn’t support physically shared memory (for example,
by distributing the OS and virtual memory system).

Alternatively, we can make the disjoint nature of the address spaces apparent to
the programmer, who must make decisions about data distribution and invoke
explicit operations to allow interaction across these.

There are several approaches to abstracting and implementing such a model. We
will focus on message passing, which dominates the performance-oriented parallel
computing world.

We begin by outlinining some key issues. Then we see how these are addressed
in MPI, a popular library for message passing programming.
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Programming with Message Passing

At its core, message passing is characterized as requiring the explicit participation
of both interacting processes, since each address space can only be directly
manipulated by its owner.

The basic requirement is thus for send and receive primitives for transferring data
out of and into local address spaces (variables).

The resulting programs can be hard to read at first, as we have to think from
the perspectives of the individual processess. Programs are often written as
a single program source using Single Program Multiple Data (SPMD) style, in
which processes can follow different paths through the same code, branching with
respect to local data values or their unique process identifier.
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Example: SPMD Compare-Exchange
// assume we have P (an even number) of processes running this code,

// each with its unique integer id in local variable "me"

int a, temp; // private to each process

......

// typical step within a parallel sorting algorithm

if (me%2 == 0) {

send (me+1, a); // send from a to process me+1

recv (me+1, temp); // receive into temp from process me+1

a = (a<=temp) ? a : temp;

} else {

send (me-1, a);

recv (me-1, temp);

a = (a>temp) ? a : temp;

} ......

temp

       a

temp

       a

temp

       a

temp

       a

temp

       a

temp

       a

P0 P1 P2 P3 P4 P5

Parallel Programming Languages and Systems



137

What’s in a Message?
In designing a message passing mechanism we must consider a number of issues.

Synchronization: Must a sending process pause until a matching receive has been
executed (synchronous), or not (asynchronous)? Asynchronous semantics require
the implementation to buffer messages which haven’t yet been, and indeed may
never be, received. The compare-exchange code above will deadlock if we use
synchronous semantics. Can you fix it (still using synchronous messages)?

Addressing: When we invoke a send (or receive) do we have to specify a unique
destination (or source) process or can we use wild-cards? Do we require flat
program-wide process naming, or can we create process groups and aliases?

Collective Operations: Do we restrict the programmer to single-source, single-
destination point-to-point messages, or do we provide abstractions of more
complex data exchanges involving several partners?
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Collectives: Broadcast

Everyone gets a copy of the same value.
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Collectives: Scatter

Data is partitioned and spread across the group.
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Collectives: Gather

Data is gathered from across the group.
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Collectives: Reduction

Combine the gathered values with an associative operation.
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Collectives: Scan (Prefix)

Reduce and also compute all the ordered partial reductions.
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Message Passing Interface (MPI) Concepts
Processes are usually created statically when the program is invoked using the
mpirun command (but can be spawned dynamically)

[machine]: mpirun -np 8 ./helloworld

All communications take place within the context of “communication spaces”
called communicators, which denote sets of processes. A process can belong
to many communicators simultaneously. New communicators can be defined
dynamically.

Simple send/receives operate with respect to other processes in a communicator.
Send must specify a target but receive can wild card on matching sender.

Messages can be tagged with an extra value to aid clarity, there are many
synchronization modes and a range of collective operations.
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Example: Hello World in MPI
int main(int argc, char *argv[])

{

int rank, p;

MPI_Init(&argc, &argv);

// Explore the world

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &p);

// Say hello

printf ("Hello world from process %d of %d\n", rank, p);

MPI_Finalize();

}
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MPI Primitives
int MPI_Init(int *argc, char ***argv)

int MPI_Finalize()

These must be called once by every participating process, before/after any other
MPI calls. They return MPI_SUCCESS if successful, or an error code.

Each process has a unique identifier in each communicator of which it is a
member (range 0..members-1). The built-in global communicator, to which all
processes belong, is called MPI_COMM_WORLD. A process can find the size of a
communicator, and its own rank within it.

int MPI_Comm_Size (MPI_Comm comm, int *np)

int MPI_Comm_rank (MPI_Comm comm, int *me)
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Example: MPI Task Farm

A task farm is bag-of-tasks in which all the tasks are known from the start. The
challenge is to assign them dynamically to worker processes, to improve overall
load-balance if some tasks may take much longer to compute than others.

To simplify the code, we assume that there are at least as many tasks as processors
and that tasks and results are just integers. In a real application these would be
more complex data structures.

Notice the use of wild cards to handle the unpredictability in the order of task
completion, and how tags are used to identify tasks and results. We use a special
tag as an “end of tasks” message.
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#define MAX_TASKS 100

#define NO_MORE_TASKS MAX_TASKS+1

#define FARMER 0

int main(int argc, char *argv[]) {

int np, rank;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &np);

if (rank == FARMER) {

farmer(np-1);

} else {

worker();

}

MPI_Finalize();

}
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void farmer (int workers)

{

int i, task[MAX_TASKS], result[MAX_TASKS], temp, tag, who;

MPI_Status status;

for (i=0; i<workers; i++) { // first phase: one task each

MPI_Send(&task[i], 1, MPI_INT, i+1, i, MPI_COMM_WORLD);

}

while (i<MAX_TASKS) { // second phase: demand driven distribution

MPI_Recv(&temp, 1, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,

&status);

who = status.MPI_SOURCE; tag = status.MPI_TAG;

result[tag] = temp;

MPI_Send(&task[i], 1, MPI_INT, who, i, MPI_COMM_WORLD);

i++;

}
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for (i=0; i<workers; i++) { // third phase: gather remaining results

MPI_Recv(&temp, 1, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,

&status);

who = status.MPI_SOURCE; tag = status.MPI_TAG;

result[tag] = temp;

MPI_Send(&task[i], 1, MPI_INT, who, NO_MORE_TASKS, MPI_COMM_WORLD);

}

}

Notice that the final loop, which gathers the last computed tasks, has a pre-
determined bound. We know that this loop begins after dispatch of the last
uncomputed task, so there must be exactly as many results left to gather as there
are workers.
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void worker () {

int task, result, tag;

MPI_Status status;

MPI_Recv(&task, 1, MPI_INT, FARMER, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

tag = status.MPI_TAG;

while (tag != NO_MORE_TASKS) {

result = somefunction(task);

MPI_Send(&result, 1, MPI_INT, FARMER, tag, MPI_COMM_WORLD);

MPI_Recv(&task, 1, MPI_INT, FARMER, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

tag = status.MPI_TAG;

}

}

A worker is only concerned with its interaction with the farmer.
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Send in standard mode
int MPI_Send(void *buf, int count,

MPI_Datatype datatype,

int dest, int tag,

MPI_Comm comm)

Send ‘count’ items of given type starting in position ‘buf’, to process ‘dest’
in communicator ‘comm’, tagging the message with ‘tag’ (which must be non-
negative).

There are corresponding datatypes for each basic C type, MPI_INT, MPI_FLOAT
etc, and also facilities for constructing derived types which group these together.

Are MPI_Send and MPI_Recv synchronous or asynchronous? We’ll come back to
this question soon!
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Receive in standard mode
int MPI_Recv(void *buf, int count,

MPI_Datatype datatype,

int source, int tag,

MPI_Comm comm,
MPI_Status *status)

Receive ‘count’ items of given type starting in position ‘buf’, from process ‘source’
in communicator ‘comm’, tagged by ‘tag’.

Non-determinism (within a communicator) is achieved with “wild cards”, by
naming MPI_ANY_SOURCE and/or MPI_ANY_TAG as the source or tag respectively.
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Matching Receives

A receive can match any available message sent to the receiver which has the
specified type, communicator, tag and source, subject to the constraint that
matching messages sent between any particular pair of processes are guaranteed
to appear to be non-overtaking.

In other words, a receive cannot match message B in preference to message A if
A was sent before B by the same process (and both fully match the receive).

Status information is returned in a structure with status.MPI_SOURCE and
status.MPI_TAG fields. This is useful in conjunction with wild card receives,
allowing the receiver to determine the actual source and tag associated with the
received message.
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Synchronization in MPI

   MPI
Runtime

Process A Process B

x y

 Send (&x,..B);  Recv (&y,..A);

block? block?

synchronous?

MPI uses the term blocking in a slightly unconventional way, to refer to
the relationship between the caller of a communication operation and the
implementation of that operation (ie nothing to do with any matching operation).
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Synchronization in MPI
Thus, a blocking send completes only when it is safe to reuse the specified output
buffer (because the data has been copied somewhere safe by the system).

Process A Process B

x=25;

Send (&x, ... B) ---------> Recv (&y, ... A); // blocking send

x=26;

We know y==25 for sure

In contrast, a process calling a non-blocking send continues immediately with
unpredictable effects on the value actually sent.

Process A Process B

x=25;

NBSend (&x, ... B) -------> Recv (&y, ... A); // non-blocking send

x=26;

y could be 25 or 26!
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Synchronization in MPI

Similarly, there is a non-blocking receive operation which allows the calling process
to continue immediately, with similar issues concerning the values which appear
in the buffer.

To manage these effects, there are MPI operations for monitoring the progress of
non-blocking communications (effectively, to ask, “is it OK to use this variable
now?”).

The idea is that with careful use these can allow the process to get on with other
useful work even before the user-space buffer has been safely stored.
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Blocking Communication Semantics in MPI

MPI provides four different blocking send operations (though we consider only
the main three).

These vary in the level of synchronization they provide. Each makes different
demands on the underlying communication protocol (ie the implementation).

Synchronous mode send (MPI_Ssend) is blocking and synchronous, only returning
when a matching receive has been found.
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Blocking Communication Semantics in MPI

Standard mode send (MPI_Send) is blocking. Its synchronicity depends upon the
state of the implementation buffers, in that it will be asynchronous unless the
relevant buffers are full, in which case it will wait for buffer space (and so may
appear to behave in a “semi” synchronous fashion).

Buffered mode send (MPI_Bsend) is blocking and asynchronous, but the
programmer must previously have made enough buffer space available in the
sending process’s virtual address space (otherwise an error is reported). There
are associated operations for allocating the buffer space.

Receiving with MPI_Recv blocks until a matching message has been completely
received into the buffer (so it is blocking and synchronous).
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Non-blocking Communication Semantics in MPI

MPI also provides non-blocking sends and receives which return immediately (ie.
possibly before it is safe to use/reuse the buffer). There are immediate versions
of all the blocking operations (with an extra “I” in the name).

For example, MPI_Isend is the standard mode immediate send, and MPI_Irecv

is the immediate receive.

Non-blocking operations have an extra parameter, called a ‘request’ which is a
handle on the communication, used with MPI_Wait and MPI_Test to wait or
check for completion of the communication (in the sense of the corresponding
blocking version of the operation).
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Probing for Messages
A receiving process may want to check for a potential receive without actually
receiving it. For example, we may not know the incoming message size, and want
to create a suitable receiving buffer.

int MPI_Probe(int src, int tag, MPI_Comm comm, MPI_Status *status)

behaves like MPI_Recv , filling in *status, without actually receiving the message.
Note that there is no type parameter, so if we are using messages with different
types we’d have to use the tag (at sender and receiver) to clarify what we want.

There is also a version which tests whether a message is available immediately

int MPI_Iprobe(int src, int tag, MPI_Comm comm,

int *flag, MPI_Status *status)

leaving a (C-style) boolean result in *flag (ie message/no message).
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We can then determine the size of the incoming message by inspecting its status
information.

int MPI_Get_count(MPI_Status *status, MPI_Datatype t, int *count)

sets *count to the number of items of type t in message with status *status

We could use these functions to receive (for example) a message containing an
unknown number of integers from an unknown source, but with tag 75, in a given
communicator comm.

MPI_Probe(MPI_ANY_SOURCE, 75, comm, &status);

MPI_Get_count(&status, MPI_INT, &count);

buf = (int *) malloc(count*sizeof(int));

source = status.MPI_SOURCE;

MPI_Recv(buf, count, MPI_INT, source, 75, comm, &status);
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Spawning New MPI Processes (non-examinable!)
int MPI_Comm_spawn (char *command, char *argv[], int p,

MPI_Info info,

int root, MPI_Comm comm,

MPI_Comm *intercomm, int errcodes[])

This spawns p new processes, each executing a copy of program command, in a
new communicator returned as intercomm.

To the new processes, intercomm appears as MPI_COMM_WORLD. It must be
called by all processes in comm (it is “collective”), with process root computing
the parameters. info and errcodes are used in system dependent ways to
control/monitor process placement, errors etc.

MPI_Comm_get_parent gives the new processes a reference to the communicator
which created them.
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Prime Sieve: The Generator
int main(int argc, char *argv[]) {

MPI_Comm nextComm; int candidate = 2, N = atoi(argv[1]);

MPI_Init(&argc, &argv);

MPI_Comm_spawn("siever", argv, 1, MPI_INFO_NULL, 0,

MPI_COMM_WORLD, &nextComm, MPI_ERRCODES_IGNORE);

while (candidate<N) {

MPI_Send(&candidate, 1, MPI_INT, 0, 0, nextComm);

candidate++;

}

candidate = -1;

MPI_Send(&candidate, 1, MPI_INT, 0, 0, nextComm);

MPI_Finalize();

}
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Prime Sieve: The Sieve
We use MPI_Comm_spawn to dynamically create new sieve processes as we need
them, and MPI_Comm_get_parent to find an inter-communicator to the process
group which created us.

int main(int argc, char *argv[]) {

MPI_Comm predComm, succComm; MPI_Status status;

int myprime, candidate;

int firstoutput = 1; // a C style boolean

MPI_Init (&argc, &argv);

MPI_Comm_get_parent (&predComm);

MPI_Recv(&myprime, 1, MPI_INT, 0, 0, predComm, &status);

printf ("%d is a prime\n", myprime);
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Prime Sieve: The Sieve (continued)
MPI_Recv(&candidate, 1, MPI_INT, 0, 0, predComm, &status);

while (candidate!=-1) {

if (candidate%myprime) { // not sieved out

if (firstoutput) { // create my successor if necessary

MPI_Comm_spawn("siever", argv, 1, MPI_INFO_NULL, 0, MPI_COMM_WORLD,

&succComm, MPI_ERRCODES_IGNORE);

firstoutput = 0;

}

MPI_Send(&candidate, 1, MPI_INT, 0, 0, succComm) // pass on the candidate

}

MPI_Recv(&candidate, 1, MPI_INT, 0, 0, predComm, &status); // next candidate

}

if (!firstoutput) MPI_Send(&candidate, 1, MPI_INT, 0, 0, succComm); // shut down

MPI_Finalize();

}
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Collective Operations

MPI offers a range of more complex operations which would otherwise require
complex sequences of sends, receives and computations.

These are called collective operations, because they must be called by all processes
in a communicator.

For example, MPI_Bcast broadcasts count items of type t from buf in root to
buf in all other processes in comm.

int MPI_Bcast (void *buf, int count, MPI_Datatype t, int root, MPI_Comm comm)
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Collective Operations
MPI_Scatter is used to divide the contents of a buffer across all processes.

int MPI_Scatter (void *sendbuf, int sendcount,

MPI_Datatype sendt,

void *recvbuf, int recvcount,

MPI_Datatype recvt,

int root, MPI_Comm comm)

ith chunk (of size sendcount) of root’s sendbuf is sent to recvbuf on process
i (including the root process itself).

The first three parameters are only significant at the root. Counts, types, root
and communicator parameters must match between root and all receivers.
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Collective Operations
The MPI_Allreduce operation computes a reduction, such as adding a collection
of values together.

int MPI_Allreduce (void *sendbuf, void *recvbuf, int count,

MPI_Datatype sendt, MPI_Op op, MPI_Comm comm)

reduces elements from all send buffers, point-wise, to count single values, using
op, storing result(s) in all receive buffers.

The op is chosen from a predefined set (MPI_SUM, MPI_MAX etc) or constructed
with user code and MPI_Op_create.
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Jacobi Again (1-dimensional wrapped)
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Jacobi Again (1-dimensional wrapped)
int main(int argc, char *argv[]) {

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) read_problem(&n, work);

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

mysize = n/p; // assume p divides n, for simplicity

local = (float *) malloc(sizeof(float) * (mysize+2); //include halo

MPI_Scatter(work, mysize, MPI_FLOAT, &local[1], mysize,

MPI_FLOAT, 0, MPI_COMM_WORLD);

left = (rank+p-1)%p; // who is my left neighour?

right = (rank+1)%p; // who is my right neighour?
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Jacobi Again (1-dimensional wrapped)do {

MPI_Sendrecv(&local[1], 1, MPI_FLOAT,left, 0, // send this

&local[mysize+1], 1, MPI_FLOAT,right,0, // and receive this

MPI_COMM_WORLD, &status); // anti-clockwise

MPI_Sendrecv(&local[mysize], 1, MPI_FLOAT, right, 0,

&local[0], 1, MPI_FLOAT, left, 0,

MPI_COMM_WORLD, &status); // clockwise

do_one_step(local, &local_error);

MPI_Allreduce(&local_error, &global_error, 1,

MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD);

} while (global_error > acceptable_error);

MPI_Gather (&local[1], mysize, MPI_FLOAT,

work, mysize, MPI_FLOAT, 0, MPI_COMM_WORLD);

if (rank == 0) print_results(n, work);

}

MPI_Sendrecv combines a send and a receive, for convenience.
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Communicators
Communicators define contexts within which groups of processes interact. All
processes belong to MPI_COMM_WORLD from the MPI initialisation call onwards.

We can create new communicators from old ones by calling the collective operation

MPI_Comm_split(MPI_Comm old, int colour, int key, MPI_Comm *new)

to create new communicators for each distinct value of colour.

Within each new communicator, processes are assigned a new rank in the range
0..p′ − 1, where p′ is the size of the new communicator. Ranks are ordered by
(but not necessarily equal to) the value passed in as the key parameter, with ties
broken by considering process rank in the parent communicator.
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Manipulating Communicators
This can be helpful in expressing algorithms which contain nested structure. For
example, many divide-and-conquer algorithms split the data and machine in half,
process recursively within the halves, then unwind to process the recursive results
back at the upper level.

void some_DC_algorithm ( ..., MPI_Comm comm) {

MPI_Comm_size(comm, &p); MPI_Comm_rank(comm, &myrank);

... pre-recursion work ...

if (p>1) {

MPI_Comm_split (comm, myrank<(p/2), 0, &subcomm); // two sub-machines

some_DC_algorithm ( ..., subcomm); // recursive step

// in both sub-machines

} else do_base_case_solution_locally();

... post-recursion work ...

}
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Divide & Conquer Communicators

0 0 0 0 0 0 00

1 2 3 4 5 6 70

0 01 2 3 1 2 3

0 0 0 01 1 1 1
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Task and Pattern Based Models

Programming explicitly with threads (or processes) has some drawbacks.

• Natural expression of many highly parallel algorithms involves creation of far
more threads than there are cores. Thread creation and scheduling have higher
overheads than simpler activities like function calls (by a factor of 50-100).

• The OS has control over the scheduling of threads to processor cores, but it
doesn’t have the application specific knowledge required to make intelligent
assignments (for example to optimize cache re-use). Traditional OS concerns
for fairness may be irrelevant or even counter-productive.

To avoid this, programmers resort to complex scheduling and synchronization of
a smaller number of coarser grained threads. Can this be avoided?
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Task and Pattern Based Models

A number of languages and libraries have emerged which

• separate the responsibility for identifying potential parallelism, which remains
the application programmer’s job, from detailed scheduling of this work to
threads and cores, which becomes the language/library run-time’s job

• provide abstractions of common patterns of parallelism, which can be
specialized with application specific operations, leaving implementation of
the pattern and its inherent synchronization to the system

These are sometimes called task based approaches, in contrast to traditional
threaded models. Examples include OpenMP, which is a compiler/language
based model, and Intel’s Threading Building Blocks library.
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Threading Building Blocks

Threading Building Blocks is a shared variable model, C++ template-based
library, produced by Intel.

It uses generic programming techniques to provide a collection of “parallel
algorithms”, each of which is an abstraction of a parallel pattern. It also provides
a direct mechanism for specifying task graphs, and a collection of concurrent data
structures and synchronization primitives.

It handles scheduling of tasks, whether explicit programmed or inferred from
pattern calls, to a fixed number of threads internally. In effect, this is a hidden
Bag-of-Tasks, leaving the OS with less influence on scheduling.

(TBB slides are borrowed from
https://parlab.eecs.berkeley.edu/sites/all/parlab/files/Slides_3.pdf)
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Generic Programming  - reminder 

  The compiler creates the needed versions 

template <typename T> T max (T x, T y) { 
  if (x < y) return y; 
  return x; 
} 

int main() { 
  int i = max(20,5); 
  double f = max(2.5, 5.2); 
  MyClass m = max(MyClass(“foo”),MyClass(“bar”)); 
  return 0; 
} 

T must define a copy constructor 
and a destructor 

T must define operator< 
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Game of Life Sequential Code for a Step

enum State {DEAD,ALIVE} ; // cell status

typedef State **Grid;

void NextGen(Grid oldMap, Grid newMap) {

int row, col, ncount;

State current;

for (row = 1; row <= MAXROW; row++)

for (col = 1; col <= MAXCOL; col++) {

current = oldMap[row][col];

ncount = NeighborCount(oldMap, row, col);

newMap[row][col] = CellStatus(current, ncount);

}

}
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Game of Life Step Using parallel for

void NextGen(Grid oldMap, Grid newMap) {

parallel_for (blocked_range<int>(1, maxrow+1), // Range

CompNextGen(oldMap, newMap), // Body

affinity_partitioner()); // Partitioner

}

Range defines a task space, and its sub-division (partition) technique

Body defines the code which processes a range (techically, by overloading the
function application operator ())

Partitioner (optional) influences the partitioning and scheduling strategy
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Example evolution of a parallel for execution

split

split

split

Range

Range Range

Range Range
Body()

Body()
Body()

Body()

Initial range is subdivided by the splitting constructor, undivided subranges are
passed to the body code for processing on internally created threads.

Parallel Programming Languages and Systems



The parallel_for Template 

• Requires definition of:

– A range type to iterate over

• Must define a copy constructor and a destructor

• Defines is_empty()

• Defines is_divisible()

• Defines a splitting constructor, R(R &r, split)

– A body type that operates on the range (or a subrange)

• Must define a copy constructor and a destructor

• Defines operator()

7

template <typename Range, typename Body>
void parallel_for(const Range& range, const Body &body);
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Game of Life parallel for Range Class

blocked range is a built-in range class provided by TBB.

It represents a contiguous sequence of integers and can be queried for the
beginning (r.begin()) and end (r.end()) of the range.

The TBB runtime can break a blocked range into two smaller ranges, each
(roughly) half the size, as defined by its splitting constructor.

Note that a blocked range carries no problem data. The values in the range
can be used as we choose, for example to index into arrays.

Parallel Programming Languages and Systems



Range is Generic

• Requirements for parallel_for Range

• Library provides predefined ranges

– blocked_range and blocked_range2d

• You can define your own ranges

9

R::R (const  R&) Copy constructor

R::~R() Destructor

bool R::is_empty() const True if range is empty

bool R::is_divisible() const True if range can be partitioned

R::R (R& r, split) Splitting constructor; splits r 
into two subranges
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Game of Life parallel for Body Class
class CompNextGen {

Grid oldMap, newMap;

public:

CompNextGen (Grid omap, Grid nmap) : oldMap(omap), newMap(nmap) {}

void operator()( const blocked_range<int>& r ) const {

for (int row = r.begin(); row < r.end(); row++)

for (int col = 1; col <= maxcol; col++) {

State current = oldMap[row][col];

int ncount = NeighborCount(oldMap, row, col);

newMap[row][col] = CellStatus(current, ncount);

}

}

};
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Body is Generic

• Requirements for parallel_for Body

• parallel_for partitions original range into 

subranges, and deals out subranges to worker threads in a 

way that:

– Balances load

– Uses cache efficiently

– Scales

8

Body::Body(const Body&) Copy constructor

Body::~Body() Destructor

void Body::operator() (Range& subrange) const Apply the body to 
subrange.
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TBB Partitioners
TBB lets us choose a partitioning strategy.

tbb::parallel for( range, body, tbb::simple partitioner() );

forces all ranges to be fully partitioned (i.e. until is divisible() fails).

tbb::parallel for( range, body, tbb::auto partitioner() );

allows the TBB runtime to decide whether to partition the range (to improve
granularity)

tbb::parallel for( range, body, tbb::affinity partitioner );

is like auto partitioner() but also, when the parallel for is inside a loop,
tries to allocate the same range to the same processor core across iterations to
improve cache behaviour.
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Game of Life Using a 2D decomposition

void NextGen(Grid oldMap, Grid newMap) {

parallel_for (blocked_range2d<int, int> (1, maxrow+1, 1, maxcol+1), // Range

CompNextGen(oldMap, newMap), // Body

affinity_partitioner()); // Partitioner

}

blocked range2d is the natural 2D extension of the blocked range class.

It is partitioned in alternating dimensions, level by level.
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How splitting works on 
blocked_range2d

16

tasks available to be 

scheduled to other threads 

(thieves)

Split range...

.. recursively...

...until  grainsize.
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Game of Life Using a 2D decomposition
class CompNextGen {

Grid oldMap, Grid newMap;

public:

CompNextGen (Grid omap, Grid nmap) : oldMap(omap), newMap(nmap) {}

// Now the operator() processes a two dimensional range

void operator()( const blocked_range2d<int, int>& r ) const {

for (int row = r.rows().begin(); row < r.rows().end(); row++)

for (int col = r.cols().begin(); col < r.cols().end(); col++) {

State current = oldMap[row][col];

int ncount = NeighborCount(oldMap, row, col);

newMap[row][col] = CellStatus(current, ncount);

}

}

};
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Game of Life 1D with C++11 Lambda Function
void NextGen(Grid oldMap, Grid newMap) {

parallel_for (blocked_range<int>(1, maxrow+1),

[&](const blocked_range<int>& r){

for (int row = r.begin(); row < r.end(); row++)

for (int col = 1; col <= MAXCOL; col++) {

State current = oldMap[row][col];

int ncount = NeighborCount(oldMap, row, col);

newMap[row][col] = CellStatus(current, ncount);

}

}

);

}

An alternative interface to parallel for allows us to use a C++ lambda
expression to avoid writing a body class.
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TBB parallel reduce Template
The parallel reduce template

template <typename Range, typename Body>

void parallel_reduce (const Range& range, Body &body);

is similar to parallel for but requires Body to gather results internally for all
the ranges it processes, and extends the Body specification with join, which
merges two Bodies into one, combining their gathered results.

//Accumulate results from subrange into Body state

void Body::operator() (const Range& subrange);

// Merge result of rhs into this Body.

void Body::join( Body& rhs );
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A parallel reduce Example

In this example, we use parallel reduce to compute an approximation to Π,
based on

Π =

∫ 1

0

4

(1 + x2)
dx

You don’t have to understand why, or even know what the above means! Just take
the sequential code on the next slide as the computation we need to parallelize.

We could also parallelize this example with a parallel for, but we would
then need a critical section of some kind to accumulate the partial results.
parallel reduce solves this issue for us.
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Numerical Integration Example
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4.0

2.0

1.00.0 X

static long num_steps=100000; 
double step, pi;

void main(int argc, char* argv[])
{  int i;

double x, sum = 0.0;

step = 1.0/(double) num_steps;
for (i = 0; i < num_steps; i++){

x = (i+0.5)*step;
sum = sum + 4.0/(1.0 + x*x);

}
pi = step * sum;
printf(“Pi = %f\n”,pi);

}



parallel_reduce Example

20

#include "tbb/parallel_reduce.h"
#include "tbb/task_scheduler_init.h"
#include "tbb/blocked_range.h"

using namespace tbb;

int main(int argc, char* argv[])
{

double pi;
double width = 1./(double)num_steps;
MyPi step((double *const)&width); 
task_scheduler_init init;

parallel_reduce(blocked_range<int>(0,num_steps), 
step,                                        
auto_partitioner() );

pi = step.sum*width;

printf("The value of PI is %15.12f\n",pi);
return 0;

}



parallel_reduce Example
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class MyPi {
double *const my_step;

public:
double sum;

MyPi(double *const step) : my_step(step), sum(0) {}

MyPi( MyPi& x, split ) : my_step(x.my_step), sum(0) {}

void operator()( const blocked_range<size_t>& r ) {
double step = *my_step;
double x;
for (int i = r.begin(); i < r.end(); i++)
{

x = (i + .5)*step;
sum = sum + 4.0/(1.+ x*x);

}
}

void join( const MyPi& y ) {sum += y.sum;}
};

join

accumulate results
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Lambda Version of Pi Calculation
// this example was posted on the TBB Forum by A. Kukanov of Intel)

double pi; double step = 1./(double) num_steps;

pi = parallel_reduce (blocked_range<size_t>(0, num_steps), double(0),

[&] (blocked_range<size_t>& r, double current_sum -> double) {

for (size_t i = r.begin(); i<r.end(); i++) {

double x = (i+0.5)*step;

current_sum += 4.0/(1.0 + x*x);

}

return current_sum;

},

[] (double s1, double s2) {

return s1+s2; // joins two accumulated values

}

);

pi *= step; printf("The value of Pi is %15.12f\n, pi);
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TBB DIY Range Example
This example shows how we can build our own ranges. We compute Fibonacci
numbers (NB this is not a sensible algorithm, just a short clear example!).

class FibRange {

public:

int n_ ; // represents the ‘‘range’’ corresponding to fib(n)

FibRange(int n) : n_(n) { }

FibRange(FibRange& other, split)

: n_(other.n_ - 2) // initialize the new object

{ other.n_ = other.n_ - 1;} // reuse the other range object

bool is_divisible() const { return (n_ > 10); } // sequential threshold

bool is_empty() const { return n_ < 0; };

};
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The Fib Body Class (with operator())
class Fib {

public:

int fsum_ ;

Fib() : fsum_(0) { }

Fib(Fib& other, split) : fsum_(0) { }

// NB use of += since each body may accumulate more than one range

void operator() (FibRange& range) { fsum_ += fib(range.n_ ); }

int fib(int n) {if (n < 2) return 1; else return fib(n-1)+fib(n-2);}

void join(Fib& rhs) { fsum_ += rhs.fsum_; };

};
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Fibonnaci with DIY Range
int main( int argc, char* argv[] ) {

Fib f;

int fibtarget = ...; // whatever fib number we want

parallel_reduce(FibRange(fibtarget), f, simple_partitioner());

cout << "Fib " << fibtarget << " is " << f.fsum_ << "\n";

}

Using a simple_partitioner forces full splitting of the ranges. We could also
choose auto_partitioner to let the TBB run-time system control this.

(Example is from “A Generic Algorithm Template for Divide-and-Conquer in
Multicore Systems”, Gonzalez et al, see the course Further Reading section.)
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Manipulating Tasks Directly

Each of TBB’s parallel pattern constructs is implemented via the same underlying
task scheduler, which transparently to the programmer) creates and executes a
task graph representing the corresponding pattern.

TBB also allows the programmer to create tasks for the scheduler directly, to
cause other tasks to wait for their completion, and so on. This allows expression
of unstructured task graphs, or the implementation and abstraction of further
patterns.

We now see how to code Fibonacci using tasks directly. It looks like a thread
spawning program, but remember that we are spawning tasks now (ie pieces of
work which might be executed in parallel), not the threads themselves.

Notice that we are using the lambda style interface to define the work in a task.
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Manipulating Tasks Directly

// borrowed from the book "ProTBB", Voss et al.

int parallel_fib (int n) {

if (n<cutoff) {

return fib(n); // sequential

else {

int x, y;

tbb::task_group g;

g.run([&]{x=parallel_fib(n-1);}); // spawn a task

g.run([&]{y=parallel_fib(n-2);}); // spawn a task

g.wait(); // wait for all tasks in this group

return x+y;

}

}
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TBB Scheduler
At any point in execution, the collection of known tasks is maintained as a
shared graph. Each thread maintains its own double-ended queue of ready tasks
(roughly, as pointers into the shared graph).

Newly spawned tasks are added to the front of the local queue.

A thread requiring a task looks:

• firstly, at the front of its local queue, which encourages locality within one
thread’s work;

• failing this, at the back of a randomly chosen other thread’s queue, which
encourages stealing of big tasks, and discourages locality across threads.

This and similar strategies are often called work-stealing.
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TBB Scheduler
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Linda
Linda presents an alternative conceptual model for parallelism, based around a
small library of operations. The Linda model has also been used in distributed
Java programming, under the name JavaSpaces, and in Ruby as dRuby.

The key concept is that as well having their own private variables, processes
interact through tuple space, a global, content addressable memory. Each tuple
is an ordered collection of typed data fields. Duplicate tuples are allowed.

 P 

 P 

 P 

 P 

 P 

 P 
 P 

(12, TRUE, "Green")

(3.5, "x")

("next", 34, "interesting")

("stop")
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Linda Operations

Processes operate on tuple space with six operations, which provide atomicity
and synchronization capabilities. We can use these to program in both shared
variable and message passing styles, or a combination of these.

To add a new tuple to tuple space we call out(exp1, exp2, ...., expN);

This evaluates the expressions in the parameter list before atomically placing a
copy of the results as a new tuple in tuple space. For example,

out("Green", x*y, square(2));

create a new three value tuple.

We can think of out as a kind of write, creating a new piece of shared data, or
in message-passing style, as an asynchronous send with a wild-card destination.
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Linda Operations

To take a tuple from tuple space we call in(tuple-template);

This atomically removes from tuple space a tuple which matches the template.

The template contains actual values and formal parameters (indicated by ?) to
be assigned during the match. A match occurs with any tuple for which all actual
values match and the types on formal parameters match. in is blocking, in the
sense that the caller is suspended until a matching tuple becomes available. For
example,

in("Green", ?y, ?r, FALSE);

As above, we can use in in the style of reading some share data or in the style
of a blocking, asynchronous receive, with wild-card source.
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Linda Operations

It is also possible to atomically match (and copy wild-carded values from) a tuple
without removing it from tuple space with rd (tuple-template);

Tuples may also be created with eval(expr, expr, ...) which is like out,
but dynamically creates new processes to evaluate each field of the tuple which
has been expressed as a function call. The calling process continues immediately,
and the resulting tuple enters tuple space atomically when all the newly sparked
processes have terminated.

Finally, there are non-blocking forms called inp, rdp (p for “predicate”) which
complete “immediately”, returning a boolean indicating whether or not a match
occurred.
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Linda Example: Bag of Tasks
To implement our Bag of Tasks style adaptive quadrature algorithm as seen
before, we use a "counts" tuple, in effect as a shared variable, to count the
number of tasks and number of idle workers. The final field in a task tuple
indicates whether this is a real task or a “no more tasks” signal.

int main () {

out("total", 0.0); out("counts", 1, P);

out ("task", a, b, f(a), f(b), approxarea, FALSE); // make initial task

for (i = 0; i<P; i++) eval (worker());

in ("counts", 0, P); // block until no tasks

// and P workers idle

in ("total", ?total); // get the result

out ("task", 0.0, 0.0, 0.0, 0.0, 0.0, TRUE); // indicate no more tasks

... use total ...

}
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while (true) {

in("task", ?left, ?right, ?fleft, ?fright, ?lrarea, ?gameOver);

if (gameOver) {

out ("task", 0.0, 0.0, 0.0, 0.0, 0.0, TRUE); // for others to see

break;

}

in("counts", ?size, ?idle); out("counts", size-1, idle-1);

... usual adaptive quadrature calculations ...

if (abs (larea + rarea - lrarea) > EPSILON) { // create new tasks

out("task", left, mid, fleft, fmid, larea, FALSE);

out("task", mid, right, fmid, fright, rarea, FALSE);

in("counts", ?size, ?idle); out("counts", size+2, idle+1);

} else {

in ("total", ?total); out ("total", total+larea+rarea);

in("counts", ?size, ?idle); out("counts", size, idle+1);

}

}

}
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Linda Example: Pipeline

By way of contrast, here is a Linda version of the prime sieve pipeline, which finds
all the primes in the range 2..LIMIT.

We use eval() to create the sieve processes dynamically as we need them.

The sieve processes eventually turn into part of an “array” of primes in tuple
space.

We ensure pipelined message flow by tagging tuples with their destination and
position in the sequence.
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void main (int argc, char *argv[]) {

int i;

eval("prime", 1, sieve(1)); // create the first sieve process

for (i=2; i<LIMIT; i++) {

out("number", 1, i-1, i); // all destined for sieve number 1

}

}

Tuples like ("prime", 5, 11), left in tuple space after workers terminate,
indicate that 11 is the 5th prime.

Tuples like ("number", 3, 1, 5) indicate that 5 is the 1st number in the
sequence directed to the 3rd prime sieve.
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int sieve (int me) {

int n, p, in_seq=1, out_seq=1, stop=FALSE;

in("number", me, in_seq, ?p); // first arrival is prime

while (!stop) {

in_seq++;

in("number", me, in_seq, ?n); // get the next candidate

if (n==LIMIT) {

stop = TRUE; out("number", me+1, out_seq, n); // pass on the signal

} else if (n%p !=0) {

if (out_seq == 1) eval("prime", me+1, sieve(me+1)); // create next sieve

out("number", me+1, out_seq, n); // and its first input

out_seq++;

}

}

return p;

}
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Implementing Tuple Space

Linda’s powerful matching model sets a demanding implementation challenge,
way beyond the associative memory hardware used in on-chip caches.

Indexing and hashing techniques adapted from relational database technology can
help (e.g. think about the relationship between Linda’s “rd” and SQL’s “select”).

Advanced Linda implementations perform considerable compile-time analysis of
program specific tuple usage. For example, possible tuples (in a given program)
can be categorised into a set of classes by type signature, and stored separately.
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Review
The first slide said

“This course is about bridging the gap between the parallel applications
and algorithms which we can design and describe in abstract terms and
the parallel computer architectures (and their lowest level programming
interfaces) which it is practical to construct.”

We have examined some of the prominent approaches which address this challenge,
but there are others, and this remains a hot research area, as new accelerator
hardware and application domains are added to the mix.
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