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This Lecture: Device-Independent QKD and Non-Locality

1 Device-Independence (DI): definition, meaning, motivation

2 Non-Locality and Bell’s Inequalities

3 E91 Protocol

4 Security for DI protocols

5 Loopholes and experimental challenges

6 Semi-device-independence (SDI)
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Device-Independent Quantum Cryptography

Definition: Device-Independent Quantum Cryptography

Achieving a cryptographic task while treating the (quantum)
devices used as black-boxes with classical input and output,
where these boxes are prepared by the adversary in a possibly
correlated or even entangled way
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Device-Independent Quantum Cryptography

Motivation:
Higher level of security (classically impossible)

No trust on devices means that the protocol remains secure
when physical implementation does not meet exactly the
theoretical specifications
Non-ideal single-photon source, leakage of info on the
measuring device setting (hacking/side-channel attacks), etc
No trust required to the manufacturer (important for
commercial applications)

Assumptions:
Secure Labs: stop unwanted info between lab & other devices
Reliable classical info processing
Perfect local randomness source
Classically authenticated channel
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Non-Locality and Bell’s Inequalities (CHSH)

DI possible due to quantum non-locality
Of most fundamental differences between classical and
quantum theories

Locality: The state of a system cannot be influenced
instantaneously by an action that is far away
Appears essential to do science!
John Bell (1964) derived some inequalities that allowed to
test if non-locality is present in quantum theory
Technically proved that there is doesn’t exist any local hidden
variables (LHV) theory that agrees with the prediction of QT
Along with the Einstein-Podolsky-Rosen argument this means
that QT is non-local
Experiments confirmed Quantum Theory
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2022 Nobel for violation of Bell’s inequalities

Experimental validation of Quantum Theory got the 2022
Physics Nobel prize

John F. Clauser (first experiment AND simpler inequality)

Alain Aspect (experiment with varying bases – first
“conclusive” experiment)

Anton Zeilinger (loophole free experiment 2015)

www.nobelprize.org/prizes/physics/2022/summary/
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CHSH (Bell) inequalities

Clauser, Horne, Shimony and Holt (CHSH) in 1969 proved a
similar (and simpler) “Bell” inequality (which we will see)

Two parties (Alice, Bob), each can choose between two
measurements, Alice x = {0, 1}, Bob y = {0, 1}. Each
measurement can take two values ax = {1,−1}, by = {1,−1}
We have 4-different probability distributions (one for each
different choice of measurement settings)
P00(a, b),P01(a, b),P10(a, b),P11(a, b)
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CHSH inequalities

We define the correlator to be (expresses the correlation
between the outcomes of different variables)
Exy =

∑
ab abPxy (ab), e.g.:

E01 = P01(1, 1) + (−1)P01(1,−1) + (−1)P01(−1, 1) + (−1)(−1)P01(−1,−1)

We can easily see that |Exy | ≤ 1. We define the quantity β:

β := E00 − E01 + E10 + E11

Given a local hidden variables model, we obtain the inequality

−2 ≤ β ≤ 2

The assumption of local hidden-variables is given by:

Exy =

∫
A(x , λ)B(y , λ)ρ(λ)dλ

Each outcome depends on the local measurement only and is
fixed given λ

Correlations appear due ρ(λ) where
∫
ρ(λ)dλ = 1
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CHSH inequalities: Quantum Bound and Eavesdropping

Given LHV, an eavesdropper (Eve) can mimic all
correlations observed deterministically. Having access to λ,
can reproduce all outcomes of both Alice, Bob in all bases.

Variables still appear random for someone with no access to λ:
e.g. A(x) =

∫
A(x , λ)ρ(λ)dλ

In QT can achieve a max value of β = 2
√

2 > 2 which proves
non-locality, i.e. non existence of LHV

Example of max violation: Alice and Bob share the state:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

Alice measures observables: x = 0 → Z ; x = 1 → X
Bob measures: x = 0 → 1√

2
(X + Z ) ; x = 1 → 1√

2
(X − Z )
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CHSH inequalities: Quantum Bound and Eavesdropping

To compute β need the correlators, e.g.:

E01(ρAB) := Tr
(
(ZA ⊗ 1√

2
(XB − ZB))ρAB

)
Then compute β = E00 − E01 + E10 + E11

Which leads to β = 2
√

2 > 2!

Whenever β > 2 system we know there was no LHV that
can reproduce the behaviour, and it exhibits non-locality

See tutorial for computing β for different states ρ.
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The E91 QKD Protocol
Proposed by: Ekert (1991)

Difference to BBM92: Alice and Bob, measure in three bases
in a way that they can violate the CHSH inequality. Security is
based on this violation

History:

Ekert did not realise that this protocol is device-independent

Concept first define 1998 by Mayers and Yao

first DI QKD protocol by Barrett, Hardy, Kent 2005 where
stronger version of DI was obtained (alas not practically
implementable)

The protocol:
Any trusted or untrusted party (even Eve)

Distributes to Alice and Bob n copies of the state:

|Φ+⟩(i) = 1√
2
(|hh⟩+ |vv⟩) = 1√

2
(|++⟩+ |−−⟩)

Alice
Measures randomly one of the three observables
x (i) = 1 → Z ; x (i) = 2 → 1√

2
(X + Z ) ; x (i) = 3 → X

Obtains result a(i) ∈ {1,−1}
Stores string of pairs: (a(1), x (1)), (a(2), x (2)), · · · , (a(n), x (n))

Bob
Measures randomly one of the three observables
y (i) = 1 → 1√

2
(X + Z ) ; y (i) = 2 → X ; y (i) = 3 → 1√

2
(X − Z )

Obtains result b(i) ∈ {1,−1}
Stores string of pairs: (b(1), y (1)), (b(2), y (2)), · · · , (b(n), y (n))
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The E91 Protocol

Raw Key
Alice/Bob announce the bases x (i), y (i) and they keep
positions where they used the same basis x (i) = 2 ∧ y (i) = 1 or
when x (i) = 3 ∧ y (i) = 2 (raw key)
If there was no eavesdropping (state shared was indeed the
|Φ+⟩) then a(i) = b(i) ∀ i of the raw key

“Parameter Estimation”
Instead of discarding results measured in different bases, they
use them to compute β = E11 − E13 + E31 + E33, where e.g.
E31 = ⟨Ψ̃|X ⊗ 1√

2
(X + Z ) |Ψ̃⟩

Small fraction of same bases are also used to compute D the
symmetric QBER (not in original E91)
eb = 1

2 (1 − Tr ((Z ⊗ Z )ρ)) and ep = 1
2 (1 − Tr ((X ⊗ X )ρ))

Rate is derived wrt β,D and β > 2 to not abort
IR and PA as usual
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E91 security and Key Rate

Intuition: Eve cannot be (perfectly) correlated with Alice’s
string if there is non-locality (β > 2)

Due to monogamy of entanglement triv true for max violation
It also holds for any violation since perfect correlation would
imply existence of local hidden variables!
For i.i.d. adversaries it holds:

S(A|E ) ≥ 1 − h
(

1
2(1 +

√
(β/2)2 − 1)

)
Non-iid harder but reduces essentially to similar expression
Other DI QKD no simple formula. Instead weakly bound
S(A|E ) by min-entropy and numer methods (SDP)
Key Rate: R ≥ S(A|E )− H(A|B) = S(A|E )− h(D)

Smaller than BB84 but can be made viable (∼ 7%). Major
issue is the high detection required (see loopholes)
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Loopholes

There are ways to mimic Bell inequality violation with LHV
if one is not sufficiently careful.

Is crucial for Crypto, when fake violations may lead to wrong
assumptions about the info that Eve has!

Detection Loophole: If an adversary can choose (adaptively)
which qubits are detected, then she can achieve higher β on
the post-selected, detected qubits

Crucial for QKD implies that high detection rates are
essential!

Locality Loophole: If the two parties are not far enough the
basic assumption that observables depend only on their local
measurement setting is violated (not big issue for photonic
implementations)

Only in 2015 loophole-free violation was observed!
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Semi-Device Independent Quantum Cryptography

Rates and detection efficiency makes DI very hard currently for
practical applications

Can have weaker (but more practical) variations:
Semi-Device Independent

1-side DI: Untrusted/black-box only the one-side (e.g. Bob’s
measuring device) but the other side is trusted

Measurement-device independent: Protocol that does not
require trust on any measuring device. Measuring-devices are
liable to hacking attacks easier (e.g. “blinding-attack”) so such
protocols are useful

Bounded dimension: Make a min assumption on dimension of
systems that Alice’s and Bob’s devices process.

Petros Wallden Lecture 11: Quantum Key Distribution IV



15/15

Semi-Device Independent Quantum Cryptography

Rates and detection efficiency makes DI very hard currently for
practical applications

Can have weaker (but more practical) variations:
Semi-Device Independent

1-side DI: Untrusted/black-box only the one-side (e.g. Bob’s
measuring device) but the other side is trusted

Measurement-device independent: Protocol that does not
require trust on any measuring device. Measuring-devices are
liable to hacking attacks easier (e.g. “blinding-attack”) so such
protocols are useful

Bounded dimension: Make a min assumption on dimension of
systems that Alice’s and Bob’s devices process.

Petros Wallden Lecture 11: Quantum Key Distribution IV



15/15

Semi-Device Independent Quantum Cryptography

Rates and detection efficiency makes DI very hard currently for
practical applications

Can have weaker (but more practical) variations:
Semi-Device Independent

1-side DI: Untrusted/black-box only the one-side (e.g. Bob’s
measuring device) but the other side is trusted

Measurement-device independent: Protocol that does not
require trust on any measuring device. Measuring-devices are
liable to hacking attacks easier (e.g. “blinding-attack”) so such
protocols are useful

Bounded dimension: Make a min assumption on dimension of
systems that Alice’s and Bob’s devices process.

Petros Wallden Lecture 11: Quantum Key Distribution IV



15/15

Semi-Device Independent Quantum Cryptography

Rates and detection efficiency makes DI very hard currently for
practical applications

Can have weaker (but more practical) variations:
Semi-Device Independent

1-side DI: Untrusted/black-box only the one-side (e.g. Bob’s
measuring device) but the other side is trusted

Measurement-device independent: Protocol that does not
require trust on any measuring device. Measuring-devices are
liable to hacking attacks easier (e.g. “blinding-attack”) so such
protocols are useful

Bounded dimension: Make a min assumption on dimension of
systems that Alice’s and Bob’s devices process.

Petros Wallden Lecture 11: Quantum Key Distribution IV


