Quantum Cyber Security Lecture 12: Secure Two-Parties Functionalities

Petros Wallden

University of Edinburgh
29th February 2024

(1) What is Secure Multiparty Computation
(2) Basic Primitives and Their Relations
(3) Information Theoretic Security: Classical Impossibility
(9) Could Quantum Communications achieve ITS: a naive attempt
(5) Information Theoretic Security: Quantum Impossibility
(6) Side-Stepping the No-Go Results

The Problem
Two millionaires (Alice and Bob) want to:
(1) Determine who is wealthier $(a \stackrel{?}{\geq} b)$
(2) Not reveal anything else about their properties

The Problem
Two millionaires (Alice and Bob) want to:
(1) Determine who is wealthier $(a \geq b)$
(2) Not reveal anything else about their properties

Secure Multiparty Computation

Some figures taken from F. Dupuis

$$
f(a, b)=(x, y)
$$

Secure Multiparty Computation

Some figures taken from F. Dupuis

$$
f(a, b)=(x, y)
$$

Example: Function $f(a, b)=(a \wedge b, a \wedge b)$

Some figures taken from F. Dupuis

$$
f(a, b)=(x, y)
$$

Example: Function $f(a, b)=(a \wedge b, a \wedge b)$

- If $a=0$ Alice learns nothing on Bob's input
- If $a=1$ Alice learns exactly Bob's input
- Protocol is secure because this information Alice would learn even in the ideal case!

(In many cases the output is the same for all parties)

(In many cases the output is the same for all parties)
- Applications: E-voting, auctions, private information retrieval, privacy-preserving data mining, etc

1 out of 2 Oblivious Transfer (OT)

- Alice: Inputs two (single-bit) messages m_{0}, m_{1}
- Bob: Inputs a single bit c

1 out of 2 Oblivious Transfer (OT)

- Bob: Receives the message m_{c} (Output)

1 out of 2 Oblivious Transfer (OT)

Security

- Alice: Does not learn c; ie which message Bob received
- Bob: Learns nothing about the message $m_{c \oplus 1}$

1 out of 2 Oblivious Transfer (OT)

Security

- Alice: Does not learn c; ie which message Bob received
- Bob: Learns nothing about the message $m_{c \oplus 1}$

OT is Universal for Secure Multiparty Computation

Bit Commitment

Commit Phase

- Alice: Inputs a single-bit c (commits)
- Bob: receives commit

Bit Commitment

Reveal Phase

- Alice: sends the message/request "reveal"
- Bob: Receives c \& confirmation that matches commitment

Security

- Alice: Cannot open the commitment to another value than the one she inputs in the commit phase (Binding)
- Bob: Learns nothing about c before reveal (Concealing)

Security

- Alice: Cannot open the commitment to another value than the one she inputs in the commit phase (Binding)
- Bob: Learns nothing about c before reveal (Concealing)

Implication

- BC can be constructed from OT.
- Any impossibility of BC implies impossibility of OT

ITS: Classical Impossibility of BC

BC Impossibility in ITS setting

It is impossible to achieve Bit-Commitment classically, with information-theoretic security (ITS)

BC Impossibility in ITS setting

It is impossible to achieve Bit-Commitment classically, with information-theoretic security (ITS)

At the end of commit phase: Bob has classical info that either:
(1) Any possible reveal that does not abort, opens to a unique message c

BC Impossibility in ITS setting

It is impossible to achieve Bit-Commitment classically, with information-theoretic security (ITS)

Proof

At the end of commit phase: Bob has classical info that either:
(1) Any possible reveal that does not abort, opens to a unique message c
\rightarrow Bob can brute-force trying all reveal and find c : Not Concealing

BC Impossibility in ITS setting

It is impossible to achieve Bit-Commitment classically, with information-theoretic security (ITS)

Proof

At the end of commit phase: Bob has classical info that either:
(1) Any possible reveal that does not abort, opens to a unique message c
\rightarrow Bob can brute-force trying all reveal and find c : Not Concealing
(2) There exist at least two ways to open reveal ${ }_{c}$, reveal ${ }_{c \oplus 1}$ that opens to different message

BC Impossibility in ITS setting

It is impossible to achieve Bit-Commitment classically, with information-theoretic security (ITS)

Proof

At the end of commit phase: Bob has classical info that either:
(1) Any possible reveal that does not abort, opens to a unique message c
\rightarrow Bob can brute-force trying all reveal and find c : Not Concealing
(2) There exist at least two ways to open reveal ${ }_{c}$, reveal ${ }_{c \oplus 1}$ that opens to different message
\rightarrow Alice can brute-force and find both reveal ${ }_{c}$, reveal $l_{c \oplus 1}$, and thus can open commitment to either message: Not Binding

A Wrong Protocol for Quantum BC

Commit Phase

- Alice, to commit to 0 , selects rand a state from $\{|h\rangle,|v\rangle\}$
- Alice, to commit to 1 , selects rand a state from $\{|+\rangle,|-\rangle\}$
- Alice sends Qubit to Bob that stores it

A Wrong Protocol for Quantum BC

Reveal Phase

- Alice announces the bit and the exact state she send
- Bob measures in that basis and confirms the commitment

A naive Quantum Protocol for ITS BC

A Wrong Protocol for Quantum BC

Security

- Protocol is Concealing.
- Bob's state at the end of commit phase:

$$
\rho_{B}=\frac{1}{2}(|h\rangle\langle h|+|v\rangle\langle v|)=\frac{1}{2}(|+\rangle\langle+|+|-\rangle\langle-|)=\frac{1}{2} \mathbb{I}
$$

A Wrong Protocol for Quantum BC

Security

- Protocol is not binding
- If Alice follows protocol cannot de-commit to different value without being detected with some probability.
- If Alice deviates (commit phase), can postpone commitment until reveal phase. 0 prob being detected (see later)!

Quantum Bit Commitment is Impossible ITS (Lo-Chau \& Mayers)

It is impossible (quantumly) to achieve Bit Commitment that is Information Theoretically both Binding and Concealing

Proof

Fact (proof later): Let $|\psi\rangle_{A B},|\chi\rangle_{A B}$ and assume that $\operatorname{Tr}_{A}(|\psi\rangle\langle\psi|)=\operatorname{Tr}_{A}(|\chi\rangle\langle\chi|)$. There exists U_{A} s.t. $\left(U_{A} \otimes \mathbb{I}\right)|\psi\rangle_{A B}=|\chi\rangle_{A B}$.

Quantum Bit Commitment is Impossible ITS (Lo-Chau \& Mayers)

It is impossible (quantumly) to achieve Bit Commitment that is Information Theoretically both Binding and Concealing

- Assume the global (Alice-Bob) state after committing to be:

$$
0 \rightarrow\left|\phi_{0}\right\rangle_{A B} ; 1 \rightarrow\left|\phi_{1}\right\rangle_{A B}
$$

- Assume perfectly concealing:

$$
\rho_{B}(0)=\operatorname{Tr}_{A}\left(\left|\phi_{0}\right\rangle\left\langle\phi_{0}\right|\right)=\rho_{B}(1)=\operatorname{Tr}_{A}\left(\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|\right)
$$

ITS: Quantum Impossibility of BC

Quantum Bit Commitment is Impossible ITS (Lo-Chau \& Mayers)

It is impossible (quantumly) to achieve Bit Commitment that is Information Theoretically both Binding and Concealing

- Assume the global (Alice-Bob) state after committing to be:

$$
0 \rightarrow\left|\phi_{0}\right\rangle_{A B} ; 1 \rightarrow\left|\phi_{1}\right\rangle_{A B}
$$

- Assume perfectly concealing:

$$
\rho_{B}(0)=\operatorname{Tr}_{A}\left(\left|\phi_{0}\right\rangle\left\langle\phi_{0}\right|\right)=\rho_{B}(1)=\operatorname{Tr}_{A}\left(\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|\right)
$$

- There exist unitary $\left(U_{A} \otimes \mathbb{I}\right)\left|\phi_{0}\right\rangle_{A B}=\left|\phi_{1}\right\rangle_{A B}$
- Alice can "commit" to 0 , and then if she changes her mind can apply U_{A} on her qubit to commit to 1 .

Not Binding at all!

ITS: Quantum Impossibility of BC

Quantum Bit Commitment is Impossible ITS (Lo-Chau \& Mayers)

It is impossible (quantumly) to achieve Bit Commitment that is Information Theoretically both Binding and Concealing

Fact (proof later): Let $|\psi\rangle_{A B},|\chi\rangle_{A B}$ and assume that $\operatorname{Tr}_{A}(|\psi\rangle\langle\psi|)=\operatorname{Tr}_{A}(|\chi\rangle\langle\chi|)$. There exists U_{A} s.t. $\left(U_{A} \otimes \mathbb{I}\right)|\psi\rangle_{A B}=|\chi\rangle_{A B}$.

- Schmidt Decomposition: $|\psi\rangle_{A B}=\sum_{i} \sqrt{\lambda_{i}}\left|e_{i}\right\rangle_{A} \otimes\left|f_{i}\right\rangle_{B}$ where $\left|e_{i}\right\rangle_{A},\left|f_{i}\right\rangle_{B}$ eigenvectors of reduced matr. $\operatorname{Tr}_{B}\left(|\psi\rangle_{A B}\left\langle\left.\psi\right|_{A B}\right)\right.$; $\operatorname{Tr}_{A}\left(|\psi\rangle_{A B}\left\langle\left.\psi\right|_{A B}\right)\right.$ resp, and λ_{i} joint eigenvalues.
- Having same reduced (B) states means that the second eigenvectors (and eigenvalues) of ψ, χ are the same
- U_{A} is simply mapping the one local basis to the other: $U_{A}\left|e_{i}^{\psi}\right\rangle=\left|e_{i}^{\chi}\right\rangle$ (always possible)

Quantum Bit Commitment is Impossible ITS (Lo-Chau \& Mayers)

It is impossible (quantumly) to achieve Bit Commitment that is Information Theoretically both Binding and Concealing

Approximate Concealing:

- Let $\rho_{B}(0) \stackrel{\epsilon}{\approx} \rho_{B}(1)$ in trace-distance
- Then following same argument can show that the protocol is at most ϵ-binding

ITS: Quantum Impossibility of BC

Quantum Bit Commitment is Impossible ITS (Lo-Chau \& Mayers)

It is impossible (quantumly) to achieve Bit Commitment that is Information Theoretically both Binding and Concealing

Attack on Naive Protocol:

- Alice sends one side of a Bell pair to Bob:

$$
\left|\Phi^{+}\right\rangle_{A B}=\frac{1}{\sqrt{2}}(|h h\rangle+|v v\rangle)=\frac{1}{\sqrt{2}}(|++\rangle+|--\rangle)
$$

- Bob sees the same reduced matrix $\rho_{B}=\frac{1}{2} \mathbb{I}$
- Alice can choose her bit later:

Commits to 0 Alice measures in $\{|h\rangle,|v\rangle\}$ basis Commits to 1 Alice measures in $\{|+\rangle,|-\rangle\}$ basis

- Alice essentially chooses to apply H or not, before measuring in computational basis
- Bob cannot distinguish this from the ideal protocol

It is impossible to side-step without making some relaxation in security requested

Note: Majority attempts are wrong. Check if it is clearly stated how one evades the Lo-Chau and Mayers Thm.

It is impossible to side-step without making some relaxation in security requested

Note: Majority attempts are wrong. Check if it is clearly stated how one evades the Lo-Chau and Mayers Thm.

- Bounded Storage Model: Assume adversary cannot store quantum information for long time (or for more than a fixed number of qubits).
- The Lo-Chau-Mayers attack (de-committing) would require to store a large system until the reveal phase (which can be later than the bounds of storage).

It is impossible to side-step without making some relaxation in security requested

Note: Majority attempts are wrong. Check if it is clearly stated how one evades the Lo-Chau and Mayers Thm.

- Relativistic: Protocol is performed by teams located in different spacetime locations. Parties cannot communicate faster-than-the-speed-of-light.
- Commitment has to be opened within a fixed time period (expires/stops being binding after that)
- The Lo-Chau-Mayers attack (de-committing) would involve applying a unitary on the joint system that during the protocol is not located in a single spacetime location (lab).

