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This Lecture

1 What Post-Quantum Cryptography is?

2 Categories of Post-Quantum Secure Cryptosystems

3 Quantum Algorithms: What can a quantum adversary break

4 Quantum (Adversarial) Access To Classical Protocols

5 The Quantum Random Oracle (QRO)

6 Example: Quantum Access to Oblivious Transfer

7 Further reading: Changes in Definitions of Secure Encryption
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What is Post-Quantum Cryptography?

Question
Is a classical cryptosystem secure against adversaries that have
quantum technologies, including a scalable fault-tolerant quantum
computer?

All honest steps of protocols involve classical computations
and communications

Adversaries can use off-line (to compute) or online (replace
classical with quantum messages) their quantum technologies

Definition
A classical system that withstands all quantum attacks is called
Post-Quantum Secure
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Levels of Post-Quantum Security

Level 1: Adversaries use a quantum computer to solve a
classical hard problem that guarantees the security
Example: Use QC to factor and break RSA

Level 2: Definitions need modific since adversaries can send
quant-info instead of classical in protocol or ‘security game’
Eg: Advers can Encr/Decr (chosen plaintext/ciphertext)
superpos of classical messages and use superpos output

Level 3: Some techniques to prove security do not apply since
they ‘copy’ something impossible for quant-info
Example: ‘Rewinding’, ‘Cut-and-Choose’, ‘Zero-Knowledge’

We focus on Level 1 & Level 2
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Types of Post-Quantum Cryptosystems

Post-Quantum Cryptosystems classified by hardness assumption

Lattice-Based: Given a high-dimensional lattice, find the
smallest vector in the lattice (SVP). Believed to be hard to
even approximate even for quantum computers (see later)

Hash-Based: Relies on assumption that post-quantum secure
cryptographic hash functions exist. SHA-3 can be used.
Security proven in Quantum Random Oracle model (see later)

Code-Based: Uses error-correcting codes, with decoding kept
secret. Security reduces to max-likelihood decoding or
max-distance problem, both believed to be hard for QC.

Other: Multivariate, SuperSingular-Isogeny (recently broken),
Symmetric-key (block-ciphers)

Higher/lower confidence these are secure against QC. All less
efficient/practical than used (quantumly insecure) protocols
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Postquantum Standardization

Competition (4 rounds) winners (July 2022)

Lattices: CRYSTALS-Kyber, CRYSTALS-Dilithium
(signature), Falcon (signature)

Code-based: BIKE, Classic McEliece, HQC

Hash-based: SPHINCS+ (signature)

Supersingular Elliptic Curve, Isogeny: SIKE (broken classically)
Next lectures (lattice-based earlier/simpler protocols)
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Quantum Algorithms: Implications

There is no generic speed-up for every task

Separate analysis for each problem/cryptosystem

Best quantum algorithm required even when it doesn’t
break/solve efficiently the problem

Security parameters (key-size) for real-life implementations
depend on this (quantum cryptanalysis)

Existing quantum computers require Quantum Error
Correction to implement most algorithms. Currently far from
breaking cryptosystems even when there is an exponential
quantum speed-up
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Quantum Algorithms: Implications

What Quantum Algorithms Offer:
Poly-time algorithm for factoring and discrete logarithm
with Shor’s Algorithm

Breaks: RSA, DSA, ECDSA, etc

Quadratic speed-up for search (and smaller poly speed-up for
collisions) with Grover’s Algorithm

Affects: Hash-based, symmetric-key, etc (but appears ok with
doubling key-size)

Other quantum speed-ups: Simon’s Algorithm, Variational
Quantum Algorithms, HHL Algorithm
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Quantum Algorithms: The Circuit Model

Quantum Computations can be decomposed to a circuit

The basic blocks are (quantum) gates

Gates are unitary operations (thus invertible) U†U = I

The final result/read-out requires also a measurement
(non-invertible – see algorithms)
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Single Qubit Gates

For a single classical bit there is only one non-trivial gate:
NOT: takes 0 → 1 and 1 → 0, i.e. ¬a = a⊕ 1
For qubits all unitary operators are allowed gates
Even for single qubit, there exist infinite different gates

The quantum NOT-gate is the Pauli X :

X =

[
0 1
1 0

]
Acts as the NOT-gate to computational basis vectors:
|0⟩→|1⟩ and |1⟩→|0⟩
For a general qubit: α |0⟩+ β |1⟩→α |1⟩+ β |0⟩

α |0⟩+ β |1⟩ X α |1⟩+ β |0⟩
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Single Qubit Gates

We give some gates. Using a suitable finite collection of gates
we can approximate all (see later).
Pauli Y -gate:

Y =

[
0 −i
i 0

]
On computational basis vectors: |0⟩→i |1⟩ and |1⟩→−i |0⟩.
Acting on a general state: α |0⟩+ β |1⟩→iα |1⟩ − iβ |0⟩

α |0⟩+ β |1⟩ Y iα |1⟩ − iβ |0⟩
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Single Qubit Gates

We give some gates. Using a suitable finite collection of gates
we can approximate all (see later).
Pauli Z -gate:

Z =

[
1 0
0 −1

]
On computational basis vectors: |0⟩→|0⟩ and |1⟩→− |1⟩.
Acting on a general state: α |0⟩+ β |1⟩→α |0⟩ − β |1⟩

α |0⟩+ β |1⟩ Z α |0⟩ − β |1⟩

E.g. Z |+⟩ = |−⟩
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Single Qubit Gates

We give some gates. Using a suitable finite collection of gates
we can approximate all (see later).
Hadamard H-gate:

H =
1√
2

[
1 1
1 −1

]
On computational basis vectors: |0⟩→ 1√

2
(|0⟩+ |1⟩) and

|1⟩→ 1√
2
(|0⟩ − |1⟩).

Acting on a general state:

α |0⟩+ β |1⟩→ 1√
2
((α+ β) |0⟩+ (α− β) |1⟩)

α |0⟩+ β |1⟩ H
1√
2
((α+ β) |0⟩+ (α− β) |1⟩)

E.g. H|0⟩ = |+⟩
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Single Qubit Gates

We give some gates. Using a suitable finite collection of gates
we can approximate all (see later).
Phase gate Rθ-gate:

Rθ =

[
1 0
0 e iθ

]
On computational basis vectors: |0⟩→|0⟩ and |1⟩→e iθ |1⟩.
Acting on a general state:

α |0⟩+ β |1⟩→α |0⟩+ e iθ |1⟩

α |0⟩+ β |1⟩ Rθ α |0⟩+ e iθβ |1⟩
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Single Qubit Gates

Some examples of phase gates Rθ:
1 Rπ = Z

2 Rπ/2 =

[
1 0
0 i

]
Some authors call this gate as the phase gate

3 Rπ/4 =

[
1 0
0 1+i√

2

]
This gate is also called the π/8-gate

Note: This is not a typo! Historically is called this way even
though it corresponds to θ = π/4 due to different conventions!
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Two Qubits Gates

Notation: “Control” gates are denoted as CU = ∧U

The most important two-qubit gate is CNOT
(Controlled-NOT)

∧X = CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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|B⟩ X |A⊕ B⟩
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Two Qubits Gates

Given U =

[
U00 U01
U10 U11

]
the controlled U gate:

∧U = CU =


1 0 0 0
0 1 0 0
0 0 U00 U01
0 0 U10 U11



A general state:
a |00⟩+ b |01⟩+ c |10⟩+ d |11⟩→a |00⟩+ b |01⟩+
+ |1⟩U (c |0⟩+ d |1⟩)

|A⟩ • |A⟩

|B⟩ U UA |B⟩
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Two Qubits Gates

E.g. the controlled Z gate:

∧Z = CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


A general state:
a |00⟩+ b |01⟩+ c |10⟩+ d |11⟩→a |00⟩+ b |01⟩+ c |10⟩ − d |11⟩

|A⟩ • |A⟩

|B⟩ Z ZA |B⟩
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A Three Qubits Gate

The Toffoli gate: Has two control qubits that are left
unaffected, and a target qubit.
Notation: ∧ ∧ X .
Action: It acts as identity except when both controlled qubits
are |1⟩ where we apply X to the target qubit:

|A⟩ |B⟩ |C ⟩→|A⟩ |B⟩XAB |C ⟩ = |A⟩ |B⟩ |C ⊕ AB⟩

|A⟩ • |A⟩
|B⟩ • |B⟩

|C ⟩ X |C ⊕ AB⟩
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Universal Set of Gates

Definition: A universal set of gates, is a collection of gates
such that all operations possible on a quantum computer can
be approximated by finite sequences of gates from the set.
Note: Possible quantum gates are uncountable → impossible
to exactly reconstruct from countable sequences of gates of a
finite set
Possible to obtain exactly all operations from an infinite set of
quantum gates

Exactly Universal Set: {∧X ,U}, where U all single qubit gates
Exactly Universal Set: {X ,Rθ,∧X}, where we include all
angles θ

Approximate Universal Set: {H,Rπ/4,CNOT}
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Universal Set of Gates

Note: All quantum gates are reversible. Classical gates can
be irreversible (e.g. NAND: A,B → 1 ⊕ AB)
We can simulate irreversible gates using reversible gates and
ancilla qubits

Example: Quantum (reversible) NAND gate

|A⟩ • |A⟩
|B⟩ • |B⟩

|1⟩ X |1 ⊕ AB⟩

We use the Toffoli gate and one ancilla qubits to implement a
reversible NAND.
Input is the two controlled qubits and output the target qubit!
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The Oracle Model

We are given a classical gate corresponding to an unknown
function f as a black box (oracle)

Access: Query the oracle, i.e. insert x and obtain f (x)

Goal: Determine properties of the function f with the fewest
queries to the oracle
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The Quantum Oracle Model

We are given a quantum gate corresponding to an unknown
classical function f as a black box (oracle) acting on two
qubits in the following way:

Access: Query the quantum oracle, i.e. insert |a⟩ |b⟩ and
obtain |a⟩ |b ⊕ f (a)⟩
By linearity, we can also query in superposition:∑

a,b

Ca,b |a⟩ |b⟩ →
∑
a,b

Ca,b |a⟩ |b ⊕ f (a)⟩

Goal: Determine properties of the classical function f with the
fewest queries to the quantum oracle
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Quantum Access to Classical Protocols

Honest messages/communications are classical (or else in
computational basis): E.g. 011 → |011⟩

What if an adversary inputs a superposition of classical
messages in some step? ∑

x∈{0,1}n
ax |x⟩

We can model any classical step (operation/function) as a
unitary that takes classical inputs to classical outputs

By linearity: superposition input gives superposition output
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Quantum Access to Classical Protocols

An adversary can use the superposition output:
1 Process it in q-algorithm to extract more info: breaks security
2 Illustrate that definitions/proof-techniques need modification

Assuming quantum access can be more or less realistic:
1 Q1: Quantum states are not communicated to honest parties

Examples: Encrypt superpositions in public-key setting;
compute hashes of superpositions

2 Q2: Honest parties receive and process quantum states

Examples: Decrypt superpositions in public-key setting;
encrypt superpositions in symmetric-key
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Turning a Classical Function to Unitary

Express the function as a Boolean circuit (AND, OR, NOT)

Replace each gate with a reversible version of the same gate

Replace clas gates with quantum unitaries (X , ∧X , Toffoli)

Quantum Circuit: on classical input returns classical output

Quantum Circuit: on superpos input returns superpos output

Behaves as Quantum Oracle (see previous lecture)

Uf |x⟩ |y⟩ = |x⟩ |y ⊕ f (x)⟩
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Unitary Gates Used

The NOT gate:

|A⟩ X |A⊕ 1⟩

The reversible OR gate:

|A⟩ • |A⟩

|B⟩ X |A⊕ B⟩

The reversible AND gate:

|A⟩ • |A⟩
|B⟩ • |B⟩

|0⟩ X |AB⟩
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The (Quantum) Random Oracle

(Classical) Random Oracle: Oracle that responds to every
input (x) with a random output (O(x)).

Typical Use: To replace cryptographic hash functions
(preimage, second-preimage resistant and collision resistant)

Real hash functions h(x) instead (e.g. SHA3).

Security against attacks not using specific structure of the
function. “Brute-force” attacks: comp. h(x) for many inputs

Quantum Random Oracle (QRO): A classical random oracle
that can be accessed in superposition

Practically feasible: Given hash function, adversary can run the
unitary with quantum input and obtain quantum output.
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The Quantum Random Oracle

Speed-up: Generic speed-up without any detail of the function
(“quantum brute-force”)

Finding preimages: Use O(x) as Grover’s oracle. Start with
equal superpos and apply oracle (and iteration) sequentially.

Applies QRO on previous (quantum) output to obtain:

Quadratic Speed-Up

Practical: Adversary runs Uh, where h is the real hash function

Similar advantage for collision finding

RO (and QRO) can be used in complicated proofs where a
“programmable RO” is required.

Further difficulties for QRO due to no-cloning!
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Example of Quantum Access: 1-of-2 Oblivious Transfer

Different (classical) security definitions for OT for Bob (receiver):
1 Bob learns nothing about one message mc⊕1 (guess prob 0.5)
2 Bob learns at most 1-bit of info from m0,m1,m0 ⊕m1.

Classically these are equivalent
Allowing quantum access only (2) can be achieved!
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Quantum Access to 1-of-2 Oblivious Transfer

From Bob’s view the OT behaves like this gate:

|x⟩C OT(m0,m1)) |mx⟩C

Bob can prepare his input register C in superposition and
entangled with a private register E .

The following circuit shows the problem:

|0⟩C X OT(m0,m1)) |A(y)⟩C

|0⟩E H • H |y⟩E

where, |A(y)⟩C := 1√
2
(|m0⟩C + (−1)y |m1⟩C ).
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Quantum Access to 1-of-2 Oblivious Transfer

Claim: The adversary can guess the XOR of m0,m1 with
constant advantage.

Proof: The adversary sets y = m̃0 ⊕ m̃1

Is not hard to see that the adversary succeeds with prob:

Prob[m̃0 ⊕ m̃1 = m0 ⊕m1] = 3/4

Exercise: Check why this is the case!

Definition 1 fails

Definition 2 is valid (to guess XOR info about m0,m1 is lost)
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Extra: Quantum Attacks to Encryptions

Cryptosystems are considered secure when they do not break even
when given some extra abilities:

Chosen Plaintext Attacks (CPA). Gets encryption of any
paintext he chooses (apart from challenge).

Modelled as oracle access to Enc

Quantum Chosen Plaintext Attacks (qCPA). Plaintexts are
allowed to be in superposition – Superposition access to Enc

Public-Key: Essential (classical/quantum) since adversary can
encrypt with public key

Symmetric-Key: Higher Security. Quantum Access means that
honest party encrypt, by default, using unitaries (preserving
coherence/superpositions). Less Realistic
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Extra: Quantum Attacks to Encryptions

Chosen Ciphertext Attacks (CCA). Gets decryption of any
ciphertext he wishes (apart from challenge).

Modelled as oracle access to Dec

Quantum Chosen Ciphertext Attacks (qCCA). Ciphertexts
are allowed to be in superposition – Superp access to Dec

Public/Symmetric Key: Quantum Access means that honest
party decrypt, by default, using unitaries (preserving
coherence/superpositions). Less Realistic
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