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This Lecture: Lattice-Based Crypto & Regev’s Encryption

1 Lattice Problems:

Learning-With-Errors (LWE)

Shortest-Vector Problem (SVP)

2 LWE-based Public-Key Encryption (Regev’s)

Notation colour code: parameters and functions: public
(blue), private (red), secret but not used later (brown)

Petros Wallden Lecture 17: Post-Quantum Cryptography II



2/11

This Lecture: Lattice-Based Crypto & Regev’s Encryption

1 Lattice Problems:

Learning-With-Errors (LWE)

Shortest-Vector Problem (SVP)

2 LWE-based Public-Key Encryption (Regev’s)

Notation colour code: parameters and functions: public
(blue), private (red), secret but not used later (brown)

Petros Wallden Lecture 17: Post-Quantum Cryptography II



3/11

The Learning-With-Errors (LWE) Problem

Parameters:
Vectors in Zn

q

n ∈ N dimension of vectors
q is a prime number where additions are carried over modq
Coefficients are integers

LWE Problem (Search)

Given m pairs (a⃗i , bi ) find the secret vector s⃗

Where we have:
Random public vectors a⃗i
A single random secret vector s⃗ that we want to find
Small error terms ei (sampled from a distribution that w.h.p.
is small, i.e. e ≪ q) that are kept secret
Public scalars bi := a⃗i · s⃗ + ei
i ∈ {1, 2, . . . ,m}
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The Learning-With-Errors (LWE) Problem: Example

Let n = 4 , q = 17 , s⃗ = (s1, s2, s3, s4)

Given m equations:

14s1 + 15s2 + 5s3 + 2s4 ≈ 8(mod17)
13s1 + 14s2 + 14s3 + 6s4 ≈ 16(mod17)
6s1 + 10s2 + 13s3 + 1s4 ≈ 3(mod17)

...
9s1 + 5s2 + 9s3 + 6s4 ≈ 9(mod17)

where a⃗1 = (14, 15, 5, 2) and b1 = 8, etc.

Find the secret vector s⃗ = (s1, s2, s3, s4)
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The Learning-With-Errors (LWE) Problem
Without the errors it is simple (if we had exact equality)

Once m = n, we have n equations with n unknowns
(Can be solved efficiently with Gaussian elimination)

Instead we try to learn s⃗ from noisy samples

Errors accumulate with operations trying to solve the system
of equations (even with small initial errors).
Large final uncertainty

It relates with hard lattice problems (see next)

One can always (in exponential time) solve it by brute-force

Alternative Version:

Decisional LWE Problem
Can a (quantum) poly-time adversary distinguish between LWE
samples (a⃗i , bi ) and random samples (a⃗i , ri ) ; ri ← Zq ?
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The Shortest Vector Problem (SVP)
Parameters:

n dimension vector space
k linearly independent vectors (with integer coefficients)
B = {b⃗1, . . . , b⃗k}
(Euclidean) norm ∥a⃗∥ :=

√
a⃗ · a⃗

SVP Problem
Find the shortest (non-zero) integer linear combination of basis
vectors: S⃗V := b⃗1x1 + . . .+ b⃗kxk , where (x1, . . . , xk) ∈ Z k \ {0}.
We define λ(L) := ∥S⃗V ∥.

SVPβ Problem (Approximate)

Find a non-zero integer vector with length βλ(L).

GapSVPβ Problem

Determine whether the shortest vector has λ(L) ≤ 1 or λ(L) ≥ β
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Why is LWE good for post-quantum cryptography

Average case LWE implies worst case SVPβ

In cryptography we need proven average case hardness!

The exact SVP is NP-hard and thus hard for quantum
computers (unless crazy things happen!)

Approximate versions are also believed to be hard (but not
proven – hardness depends on the approximation β)

Regev’s encryption scheme (next) is secure provided that the
decisional-LWE is hard.
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LWE-based Encryption Scheme (Regev’s)

Parameters: n security parameters, m # equations, q
modulus, α error parameter

Conditions on Parameters: Essential for security
n2 ≤ q ≤ 2n2 ; m = 1.1n log q ; α = 1/

(√
n log2 n

)
1 KeyGen:

Private Key: s⃗ ← Z n
q

Public Key: m LWE samples (a⃗i , bi ), where:
- bi = a⃗i · s⃗ + ei

- a⃗i ← Z n
q ∀ i

- ei random small numbers (sampled from normal distribution
with standard deviation αq).
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LWE-based Encryption Scheme (Regev’s)

2 Enc((a⃗i , bi ), µ):

For single bit message µ ∈ {0, 1}
Choose a random subset S of indices {1, . . . ,m} (out of the
2m possible subsets).
Compute a⃗ :=

∑
i∈S a⃗i and b :=

∑
i∈S bi

Output pair (a⃗, c), where c := b + µ
⌊
q
2

⌋

3 Dec((a⃗, c), s⃗):

Compute c − a⃗ · s⃗
Check whether outcome is closer to 0 or q

2 (oper. done modq)
Output µ = 0 if closer to zero, and µ = 1 otherwise
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LWE-based Encryption Scheme (Regev’s)

Correctness: We consider Dec(Enc((a⃗i , bi ), µ), s⃗).

c − a⃗ · s⃗ = b + µ
⌊q

2

⌋
− a⃗ · s⃗

=
∑
i∈S

(a⃗i · s⃗ + ei ) + µ
⌊q

2

⌋
−

(∑
i∈S

a⃗i

)
· s⃗

=
∑
i∈S

ei + µ
⌊q

2

⌋

Provided ei ’s are small enough, this is closer to 0 when µ = 0
and to q

2 otherwise.
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LWE-based Encryption Scheme (Regev’s)

Security:
Dec works since we “cancel” a⃗ · s⃗ term (unknown to adversary).

The Decisional-LWE states that adversary cannot distinguish
between (a⃗, b) and (a⃗, r) where r is random.
Thus c= b + µ

⌊
q
2

⌋
looks like r + µ

⌊
q
2

⌋
to the adversary.

The message µ is masked by the random r

See an example at Tutorial 6

Efficiency: The parameters required to ensure security and
correctness imply public key of O(n2) (not efficient)

Using “Ring-LWE” instead can bring this to linear.

We define rings and give another ring lattice-based
cryptosystem at the next lecture.
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