Quantum Cyber Security
 Lecture 17: Post-Quantum Cryptography II

Petros Wallden

University of Edinburgh
19th March 2024

(1) Lattice Problems:

Learning-With-Errors (LWE)
Shortest-Vector Problem (SVP)
(2) LWE-based Public-Key Encryption (Regev's)
(1) Lattice Problems:

Learning-With-Errors (LWE)
Shortest-Vector Problem (SVP)
(2) LWE-based Public-Key Encryption (Regev's)

Notation colour code: parameters and functions: public (blue), private (red), secret but not used later (brown)

- Parameters:
- Vectors in \mathbb{Z}_{q}^{n}
- $n \in \mathbb{N}$ dimension of vectors
- q is a prime number where additions are carried over $\bmod q$
- Coefficients are integers

The Learning-With-Errors (LWE) Problem

- Parameters:
- Vectors in \mathbb{Z}_{q}^{n}
- $n \in \mathbb{N}$ dimension of vectors
- q is a prime number where additions are carried over $\bmod q$
- Coefficients are integers

LWE Problem (Search)

Given m pairs $\left(\vec{a}_{i}, b_{i}\right)$ find the secret vector \vec{s}

The Learning-With-Errors (LWE) Problem

- Parameters:
- Vectors in \mathbb{Z}_{q}^{n}
- $n \in \mathbb{N}$ dimension of vectors
- q is a prime number where additions are carried over $\bmod q$
- Coefficients are integers

LWE Problem (Search)

Given m pairs $\left(\vec{a}_{i}, b_{i}\right)$ find the secret vector \vec{s}
Where we have:

- Random public vectors $\overrightarrow{a_{i}}$
- A single random secret vector \vec{s} that we want to find
- Small error terms e_{i} (sampled from a distribution that w.h.p. is small, i.e. $e \ll q$) that are kept secret
- Public scalars $b_{i}:=\vec{a}_{i} \cdot \vec{s}+e_{i}$
- $i \in\{1,2, \ldots, m\}$

The Learning-With-Errors (LWE) Problem: Example

- Let $n=4, q=17, \vec{s}=\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$
- Let $n=4, q=17, \vec{s}=\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$
- Given m equations:

$$
\begin{aligned}
& 14 s_{1}+15 s_{2}+5 s_{3}+2 s_{4} \approx 8(\bmod 17) \\
& 13 s_{1}+14 s_{2}+14 s_{3}+6 s_{4} \approx 16(\bmod 17) \\
& 6 s_{1}+10 s_{2}+13 s_{3}+1 s_{4} \approx 3(\bmod 17) \\
& \vdots \\
& 9 s_{1}+5 s_{2}+9 s_{3}+6 s_{4} \approx 9(\bmod 17) \\
& \text { where } \overrightarrow{a_{1}}=(14,15,5,2) \text { and } b_{1}=8, \text { etc. }
\end{aligned}
$$

- Let $n=4, q=17, \vec{s}=\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$
- Given m equations:

$$
\begin{aligned}
& 14 s_{1}+15 s_{2}+5 s_{3}+2 s_{4} \approx 8(\bmod 17) \\
& 13 s_{1}+14 s_{2}+14 s_{3}+6 s_{4} \approx 16(\bmod 17) \\
& 6 s_{1}+10 s_{2}+13 s_{3}+1 s_{4} \approx 3(\bmod 17) \\
& \vdots \\
& 9 s_{1}+5 s_{2}+9 s_{3}+6 s_{4} \approx 9(\bmod 17) \\
& \text { where } \overrightarrow{a_{1}}=(14,15,5,2) \text { and } b_{1}=8, \text { etc. }
\end{aligned}
$$

- Find the secret vector $\vec{s}=\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$

The Learning-With-Errors (LWE) Problem

- Without the errors it is simple (if we had exact equality)
- Once $m=n$, we have n equations with n unknowns
(Can be solved efficiently with Gaussian elimination)

The Learning-With-Errors (LWE) Problem

- Without the errors it is simple (if we had exact equality)
- Once $m=n$, we have n equations with n unknowns (Can be solved efficiently with Gaussian elimination)
- Instead we try to learn \vec{s} from noisy samples
- Errors accumulate with operations trying to solve the system of equations (even with small initial errors). Large final uncertainty
- It relates with hard lattice problems (see next)

The Learning-With-Errors (LWE) Problem

- Without the errors it is simple (if we had exact equality)
- Once $m=n$, we have n equations with n unknowns (Can be solved efficiently with Gaussian elimination)
- Instead we try to learn \vec{s} from noisy samples
- Errors accumulate with operations trying to solve the system of equations (even with small initial errors). Large final uncertainty
- It relates with hard lattice problems (see next)
- One can always (in exponential time) solve it by brute-force

The Learning-With-Errors (LWE) Problem

- Without the errors it is simple (if we had exact equality)
- Once $m=n$, we have n equations with n unknowns (Can be solved efficiently with Gaussian elimination)
- Instead we try to learn \vec{s} from noisy samples
- Errors accumulate with operations trying to solve the system of equations (even with small initial errors). Large final uncertainty
- It relates with hard lattice problems (see next)
- One can always (in exponential time) solve it by brute-force
- Alternative Version:

Decisional LWE Problem

Can a (quantum) poly-time adversary distinguish between LWE samples $\left(\overrightarrow{a_{i}}, b_{i}\right)$ and random samples $\left(\overrightarrow{a_{i}}, r_{i}\right) ; r_{i} \leftarrow \mathbb{Z}_{q}$?

Parameters:

- n dimension vector space
- k linearly independent vectors (with integer coefficients)
$B=\left\{\overrightarrow{b_{1}}, \ldots, \overrightarrow{b_{k}}\right\}$
- (Euclidean) norm $\|\vec{a}\|:=\sqrt{\vec{a} \cdot \vec{a}}$

The Shortest Vector Problem (SVP)

Parameters:

- n dimension vector space
- k linearly independent vectors (with integer coefficients)

$$
\mathrm{B}=\left\{\overrightarrow{b_{1}}, \ldots, \overrightarrow{b_{k}}\right\}
$$

- (Euclidean) norm $\|\vec{a}\|:=\sqrt{\vec{a} \cdot \vec{a}}$

SVP Problem

Find the shortest (non-zero) integer linear combination of basis vectors: $\overrightarrow{S V}:=\overrightarrow{b_{1}} x_{1}+\ldots+\overrightarrow{b_{k}} x_{k}$, where $\left(x_{1}, \ldots, x_{k}\right) \in Z^{k} \backslash\{0\}$. We define $\lambda(L):=\|\overrightarrow{S V}\|$.

The Shortest Vector Problem (SVP)

Parameters:

- n dimension vector space
- k linearly independent vectors (with integer coefficients)

$$
\mathrm{B}=\left\{\overrightarrow{b_{1}}, \ldots, \overrightarrow{b_{k}}\right\}
$$

- (Euclidean) norm $\|\vec{a}\|:=\sqrt{\vec{a} \cdot \vec{a}}$

SVP Problem

Find the shortest (non-zero) integer linear combination of basis vectors: $\overrightarrow{S V}:=\overrightarrow{b_{1}} x_{1}+\ldots+\overrightarrow{b_{k}} x_{k}$, where $\left(x_{1}, \ldots, x_{k}\right) \in Z^{k} \backslash\{0\}$. We define $\lambda(L):=\|S \vec{V}\|$.

SVP $_{\beta}$ Problem (Approximate)

Find a non-zero integer vector with length $\beta \lambda(L)$.

The Shortest Vector Problem (SVP)

Parameters:

- n dimension vector space
- k linearly independent vectors (with integer coefficients)

$$
\mathrm{B}=\left\{\overrightarrow{b_{1}}, \ldots, \overrightarrow{b_{k}}\right\}
$$

- (Euclidean) norm $\|\vec{a}\|:=\sqrt{\vec{a} \cdot \vec{a}}$

SVP Problem

Find the shortest (non-zero) integer linear combination of basis vectors: $\overrightarrow{S V}:=\overrightarrow{b_{1}} x_{1}+\ldots+\overrightarrow{b_{k}} x_{k}$, where $\left(x_{1}, \ldots, x_{k}\right) \in Z^{k} \backslash\{0\}$. We define $\lambda(L):=\|\overrightarrow{S V}\|$.

SVP $_{\beta}$ Problem (Approximate)

Find a non-zero integer vector with length $\beta \lambda(L)$.

GapSVP $_{\beta}$ Problem

Determine whether the shortest vector has $\lambda(L) \leq 1$ or $\lambda(L) \geq \beta$

Why is LWE good for post-quantum cryptography

- Average case LWE implies worst case SVP $_{\beta}$
- In cryptography we need proven average case hardness!

Why is LWE good for post-quantum cryptography

- Average case LWE implies worst case SVP $_{\beta}$
- In cryptography we need proven average case hardness!
- The exact SVP is NP-hard and thus hard for quantum computers (unless crazy things happen!)

Why is LWE good for post-quantum cryptography

- Average case LWE implies worst case SVP $_{\beta}$
- In cryptography we need proven average case hardness!
- The exact SVP is NP-hard and thus hard for quantum computers (unless crazy things happen!)
- Approximate versions are also believed to be hard (but not proven - hardness depends on the approximation β)

Why is LWE good for post-quantum cryptography

- Average case LWE implies worst case SVP $_{\beta}$
- In cryptography we need proven average case hardness!
- The exact SVP is NP-hard and thus hard for quantum computers (unless crazy things happen!)
- Approximate versions are also believed to be hard (but not proven - hardness depends on the approximation β)
- Regev's encryption scheme (next) is secure provided that the decisional-LWE is hard.

LWE-based Encryption Scheme (Regev's)

Parameters: n security parameters, $m \#$ equations, q modulus, α error parameter

LWE-based Encryption Scheme (Regev's)

Parameters: n security parameters, $m \#$ equations, q modulus, α error parameter

Conditions on Parameters: Essential for security $n^{2} \leq q \leq 2 n^{2} ; m=1.1 n \log q ; \alpha=1 /\left(\sqrt{n} \log ^{2} n\right)$

LWE-based Encryption Scheme (Regev's)

Parameters: n security parameters, $m \#$ equations, q modulus, α error parameter

Conditions on Parameters: Essential for security $n^{2} \leq q \leq 2 n^{2} ; m=1.1 n \log q ; \alpha=1 /\left(\sqrt{n} \log ^{2} n\right)$
(1) KeyGen:

- Private Key: $\vec{s} \leftarrow Z_{q}^{n}$

LWE-based Encryption Scheme (Regev's)

Parameters: n security parameters, $m \#$ equations, q modulus, α error parameter

Conditions on Parameters: Essential for security $n^{2} \leq q \leq 2 n^{2} ; m=1.1 n \log q ; \alpha=1 /\left(\sqrt{n} \log ^{2} n\right)$
(1) KeyGen:

- Private Key: $\vec{s} \leftarrow Z_{q}^{n}$
- Public Key: m LWE samples (\vec{a}_{i}, b_{i}), where:
- $b_{i}=\vec{a}_{i} \cdot \vec{s}+e_{i}$
- $\vec{a}_{i} \leftarrow Z_{q}^{n} \forall i$
- e_{i} random small numbers (sampled from normal distribution with standard deviation αq).

LWE-based Encryption Scheme (Regev's)

(2) $\operatorname{Enc}\left(\left(\vec{a}_{i}, b_{i}\right), \mu\right)$:

- For single bit message $\mu \in\{0,1\}$
- Choose a random subset S of indices $\{1, \ldots, m\}$ (out of the 2^{m} possible subsets).
- Compute $\vec{a}:=\sum_{i \in S} \overrightarrow{a_{i}}$ and $b:=\sum_{i \in S} b_{i}$
- Output pair (\vec{a}, c), where $c:=b+\mu\left\lfloor\frac{q}{2}\right\rfloor$

LWE-based Encryption Scheme (Regev's)

(2) $\operatorname{Enc}\left(\left(\vec{a}_{i}, b_{i}\right), \mu\right)$:

- For single bit message $\mu \in\{0,1\}$
- Choose a random subset S of indices $\{1, \ldots, m\}$ (out of the 2^{m} possible subsets).
- Compute $\vec{a}:=\sum_{i \in S} \vec{a}_{i}$ and $b:=\sum_{i \in S} b_{i}$
- Output pair (\vec{a}, c), where $c:=b+\mu\left\lfloor\frac{q}{2}\right\rfloor$
(3) $\operatorname{Dec}((\vec{a}, c), \vec{s})$:
- Compute $c-\vec{a} \cdot \vec{s}$
- Check whether outcome is closer to 0 or $\frac{q}{2}$ (oper. done $\bmod q$)
- Output $\mu=0$ if closer to zero, and $\mu=1$ otherwise
- Correctness: We consider $\operatorname{Dec}\left(\operatorname{Enc}\left(\left(\vec{a}_{i}, b_{i}\right), \mu\right), \vec{s}\right)$.

$$
\begin{aligned}
c-\vec{a} \cdot \vec{s} & =b+\mu\left\lfloor\frac{q}{2}\right\rfloor-\vec{a} \cdot \vec{s} \\
& =\sum_{i \in S}\left(\vec{a}_{i} \cdot \vec{s}+e_{i}\right)+\mu\left\lfloor\frac{q}{2}\right\rfloor-\left(\sum_{i \in S} \vec{a}_{i}\right) \cdot \vec{s} \\
& =\sum_{i \in S} e_{i}+\mu\left\lfloor\frac{q}{2}\right\rfloor
\end{aligned}
$$

- Correctness: We consider $\operatorname{Dec}\left(\operatorname{Enc}\left(\left(\vec{a}_{i}, b_{i}\right), \mu\right), \vec{s}\right)$.

$$
\begin{aligned}
c-\vec{a} \cdot \vec{s} & =b+\mu\left\lfloor\frac{q}{2}\right\rfloor-\vec{a} \cdot \vec{s} \\
& =\sum_{i \in S}\left(\vec{a}_{i} \cdot \vec{s}+e_{i}\right)+\mu\left\lfloor\frac{q}{2}\right\rfloor-\left(\sum_{i \in S} \vec{a}_{i}\right) \cdot \vec{s} \\
& =\sum_{i \in S} e_{i}+\mu\left\lfloor\frac{q}{2}\right\rfloor
\end{aligned}
$$

Provided e_{i} 's are small enough, this is closer to 0 when $\mu=0$ and to $\frac{q}{2}$ otherwise.

LWE-based Encryption Scheme (Regev's)

- Security:
- Dec works since we "cancel" $\vec{a} \cdot \vec{s}$ term (unknown to adversary).

LWE-based Encryption Scheme (Regev's)

- Security:
- Dec works since we "cancel" $\vec{a} \cdot \vec{s}$ term (unknown to adversary).
- The Decisional-LWE states that adversary cannot distinguish between (\vec{a}, b) and (\vec{a}, r) where r is random.
- Thus $c=b+\mu\left\lfloor\frac{q}{2}\right\rfloor$ looks like $r+\mu\left\lfloor\frac{q}{2}\right\rfloor$ to the adversary.

LWE-based Encryption Scheme (Regev's)

- Security:
- Dec works since we "cancel" $\vec{a} \cdot \vec{s}$ term (unknown to adversary).
- The Decisional-LWE states that adversary cannot distinguish between (\vec{a}, b) and (\vec{a}, r) where r is random.
- Thus $c=b+\mu\left\lfloor\frac{q}{2}\right\rfloor$ looks like $r+\mu\left\lfloor\frac{q}{2}\right\rfloor$ to the adversary.
- The message μ is masked by the random r

LWE-based Encryption Scheme (Regev's)

- Security:
- Dec works since we "cancel" $\vec{a} \cdot \vec{s}$ term (unknown to adversary).
- The Decisional-LWE states that adversary cannot distinguish between (\vec{a}, b) and (\vec{a}, r) where r is random.
- Thus $c=b+\mu\left\lfloor\frac{q}{2}\right\rfloor$ looks like $r+\mu\left\lfloor\frac{q}{2}\right\rfloor$ to the adversary.
- The message μ is masked by the random r
- See an example at Tutorial 6

LWE-based Encryption Scheme (Regev's)

- Security:
- Dec works since we "cancel" $\vec{a} \cdot \vec{s}$ term (unknown to adversary).
- The Decisional-LWE states that adversary cannot distinguish between (\vec{a}, b) and (\vec{a}, r) where r is random.
- Thus $c=b+\mu\left\lfloor\frac{q}{2}\right\rfloor$ looks like $r+\mu\left\lfloor\frac{q}{2}\right\rfloor$ to the adversary.
- The message μ is masked by the random r
- See an example at Tutorial 6
- Efficiency: The parameters required to ensure security and correctness imply public key of $O\left(n^{2}\right)$ (not efficient)

Using "Ring-LWE" instead can bring this to linear.

LWE-based Encryption Scheme (Regev's)

- Security:
- Dec works since we "cancel" $\vec{a} \cdot \vec{s}$ term (unknown to adversary).
- The Decisional-LWE states that adversary cannot distinguish between (\vec{a}, b) and (\vec{a}, r) where r is random.
- Thus $c=b+\mu\left\lfloor\frac{q}{2}\right\rfloor$ looks like $r+\mu\left\lfloor\frac{q}{2}\right\rfloor$ to the adversary.
- The message μ is masked by the random r
- See an example at Tutorial 6
- Efficiency: The parameters required to ensure security and correctness imply public key of $O\left(n^{2}\right)$ (not efficient)

Using "Ring-LWE" instead can bring this to linear.

- We define rings and give another ring lattice-based cryptosystem at the next lecture.

