Quantum Cyber Security Lecture 17: Post-Quantum Cryptography II

Petros Wallden

University of Edinburgh

19th March 2024

Lattice Problems:

```
Learning-With-Errors (LWE)
```

Shortest-Vector Problem (SVP)

2 LWE-based Public-Key Encryption (Regev's)

Lattice Problems:

```
Learning-With-Errors (LWE)
```

Shortest-Vector Problem (SVP)

2 LWE-based Public-Key Encryption (Regev's)

Notation colour code: parameters and functions: public (blue), private (red), secret but not used later (brown)

- Parameters:
 - Vectors in \mathbb{Z}_q^n
 - $n \in \mathbb{N}$ dimension of vectors
 - q is a prime number where additions are carried over mod q
 - Coefficients are integers

- Parameters:
 - Vectors in \mathbb{Z}_{a}^{n}
 - $n \in \mathbb{N}$ dimension of vectors
 - q is a prime number where additions are carried over mod q
 - Coefficients are integers

LWE Problem (Search)

Given *m* pairs (\vec{a}_i, b_i) find the secret vector \vec{s}

- Parameters:
 - Vectors in \mathbb{Z}_{a}^{n}
 - $n \in \mathbb{N}$ dimension of vectors
 - q is a prime number where additions are carried over mod q
 - Coefficients are integers

LWE Problem (Search)

Given *m* pairs (\vec{a}_i, b_i) find the secret vector \vec{s}

Where we have:

- Random public vectors $\vec{a_i}$
- A single random secret vector \vec{s} that we want to find
- Small error terms e_i (sampled from a distribution that w.h.p. is small, i.e. e << q) that are kept secret
- Public scalars $b_i := \vec{a}_i \cdot \vec{s} + e_i$
- $i \in \{1, 2, ..., m\}$

The Learning-With-Errors (LWE) Problem: Example

• Let n = 4, q = 17, $\vec{s} = (s_1, s_2, s_3, s_4)$

The Learning-With-Errors (LWE) Problem: Example

- Let n = 4, q = 17, $\vec{s} = (s_1, s_2, s_3, s_4)$
- Given *m* equations:

 $14s_{1} + 15s_{2} + 5s_{3} + 2s_{4} \approx 8 \pmod{17}$ $13s_{1} + 14s_{2} + 14s_{3} + 6s_{4} \approx 16 \pmod{17}$ $6s_{1} + 10s_{2} + 13s_{3} + 1s_{4} \approx 3 \pmod{17}$ \vdots $9s_{1} + 5s_{2} + 9s_{3} + 6s_{4} \approx 9 \pmod{17}$

where $\vec{a_1} = (14, 15, 5, 2)$ and $b_1 = 8$, etc.

The Learning-With-Errors (LWE) Problem: Example

- Let n = 4, q = 17, $\vec{s} = (s_1, s_2, s_3, s_4)$
- Given *m* equations:

 $14s_1 + 15s_2 + 5s_3 + 2s_4 \approx 8 \pmod{17}$ $13s_1 + 14s_2 + 14s_3 + 6s_4 \approx 16 \pmod{17}$ $6s_1 + 10s_2 + 13s_3 + 1s_4 \approx 3 \pmod{17}$ \vdots $9s_1 + 5s_2 + 9s_3 + 6s_4 \approx 9 \pmod{17}$

where $\vec{a_1} = (14, 15, 5, 2)$ and $b_1 = 8$, etc.

• Find the secret vector $\vec{s} = (s_1, s_2, s_3, s_4)$

- Without the errors it is simple (if we had exact equality)
- Once *m* = *n*, we have *n* equations with *n* unknowns (Can be solved efficiently with Gaussian elimination)

- Without the errors it is simple (if we had exact equality)
- Once m = n, we have *n* equations with *n* unknowns (Can be solved efficiently with Gaussian elimination)
- Instead we try to learn \vec{s} from noisy samples
- Errors accumulate with operations trying to solve the system of equations (even with small initial errors). Large final uncertainty
- It relates with hard lattice problems (see next)

- Without the errors it is simple (if we had exact equality)
- Once m = n, we have *n* equations with *n* unknowns (Can be solved efficiently with Gaussian elimination)
- Instead we try to learn \vec{s} from noisy samples
- Errors accumulate with operations trying to solve the system of equations (even with small initial errors). Large final uncertainty
- It relates with hard lattice problems (see next)
- One can always (in exponential time) solve it by brute-force

- Without the errors it is simple (if we had exact equality)
- Once m = n, we have n equations with n unknowns (Can be solved efficiently with Gaussian elimination)
- Instead we try to learn \vec{s} from noisy samples
- Errors accumulate with operations trying to solve the system of equations (even with small initial errors). Large final uncertainty
- It relates with hard lattice problems (see next)
- One can always (in exponential time) solve it by brute-force
- Alternative Version:

Decisional LWE Problem

Can a (quantum) poly-time adversary distinguish between LWE samples $(\vec{a_i}, b_i)$ and random samples $(\vec{a_i}, r_i)$; $r_i \leftarrow \mathbb{Z}_q$?

Parameters:

- *n* dimension vector space
- *k* linearly independent vectors (with integer coefficients) $B = \{\vec{b_1}, \dots, \vec{b_k}\}$
- (Euclidean) norm $\|\vec{a}\| := \sqrt{\vec{a} \cdot \vec{a}}$

Parameters:

- *n* dimension vector space
- *k* linearly independent vectors (with integer coefficients) $B = \{\vec{b_1}, \dots, \vec{b_k}\}$
- (Euclidean) norm $\|\vec{a}\| := \sqrt{\vec{a} \cdot \vec{a}}$

SVP Problem

Find the shortest (non-zero) integer linear combination of basis vectors: $\vec{SV} := \vec{b_1}x_1 + \ldots + \vec{b_k}x_k$, where $(x_1, \ldots, x_k) \in Z^k \setminus \{0\}$. We define $\lambda(L) := \|\vec{SV}\|$.

Parameters:

- *n* dimension vector space
- *k* linearly independent vectors (with integer coefficients) $B = \{\vec{b_1}, \dots, \vec{b_k}\}$
- (Euclidean) norm $\|\vec{a}\| := \sqrt{\vec{a} \cdot \vec{a}}$

SVP Problem

Find the shortest (non-zero) integer linear combination of basis vectors: $\vec{SV} := \vec{b_1}x_1 + \ldots + \vec{b_k}x_k$, where $(x_1, \ldots, x_k) \in Z^k \setminus \{0\}$. We define $\lambda(L) := \|\vec{SV}\|$.

SVP_{β} Problem (Approximate)

Find a non-zero integer vector with length $\beta\lambda(L)$.

Parameters:

- *n* dimension vector space
- *k* linearly independent vectors (with integer coefficients) $B = \{\vec{b_1}, \dots, \vec{b_k}\}$
- (Euclidean) norm $\|\vec{a}\| := \sqrt{\vec{a} \cdot \vec{a}}$

SVP Problem

Find the shortest (non-zero) integer linear combination of basis vectors: $\vec{SV} := \vec{b_1}x_1 + \ldots + \vec{b_k}x_k$, where $(x_1, \ldots, x_k) \in Z^k \setminus \{0\}$. We define $\lambda(L) := \|\vec{SV}\|$.

SVP_{β} Problem (Approximate)

Find a non-zero integer vector with length $\beta\lambda(L)$.

$GapSVP_{\beta}$ Problem

Determine whether the shortest vector has $\lambda(L) \leq 1$ or $\lambda(L) \geq \beta$

- Average case LWE implies worst case SVP_{β}
- In cryptography we need proven average case hardness!

- Average case LWE implies worst case SVP_β
- In cryptography we need proven average case hardness!
- The exact SVP is NP-hard and thus hard for quantum computers (unless crazy things happen!)

- Average case LWE implies worst case SVP_β
- In cryptography we need proven average case hardness!
- The exact SVP is NP-hard and thus hard for quantum computers (unless crazy things happen!)
- Approximate versions are also believed to be hard (but not proven – hardness depends on the approximation β)

- Average case LWE implies worst case SVP_β
- In cryptography we need proven average case hardness!
- The exact SVP is NP-hard and thus hard for quantum computers (unless crazy things happen!)
- Approximate versions are also believed to be hard (but not proven – hardness depends on the approximation β)
- Regev's encryption scheme (next) is secure provided that the decisional-LWE is hard.

Parameters: *n* security parameters, *m* # equations, *q* modulus, α error parameter

Parameters: *n* security parameters, *m* # equations, *q* modulus, α error parameter

Conditions on Parameters: Essential for security $n^2 \le q \le 2n^2$; $m = 1.1n \log q$; $\alpha = 1/(\sqrt{n} \log^2 n)$

8/11

Parameters: *n* security parameters, *m* # equations, *q* modulus, α error parameter

Conditions on Parameters: Essential for security $n^2 \le q \le 2n^2$; $m = 1.1n \log q$; $\alpha = 1/(\sqrt{n} \log^2 n)$

KeyGen:

• Private Key: $\vec{s} \leftarrow Z_q^n$

Parameters: *n* security parameters, *m* # equations, *q* modulus, α error parameter

Conditions on Parameters: Essential for security $n^2 \le q \le 2n^2$; $m = 1.1n \log q$; $\alpha = 1/(\sqrt{n} \log^2 n)$

KeyGen:

- Private Key: $\vec{s} \leftarrow Z_q^n$
- **Public Key:** *m* LWE samples $(\vec{a_i}, b_i)$, where:
- $b_i = \vec{a}_i \cdot \vec{s} + e_i$
- $\vec{a}_i \leftarrow Z_q^n \forall i$
- e_i random small numbers (sampled from normal distribution with standard deviation αq).

- **2** Enc $((\vec{a_i}, b_i), \mu)$:
 - For single bit message $\mu \in \{0,1\}$
 - Choose a random subset S of indices $\{1, \ldots, m\}$ (out of the 2^m possible subsets).
 - Compute $\vec{a} := \sum_{i \in S} \vec{a_i}$ and $b := \sum_{i \in S} b_i$
 - Output pair (\vec{a}, c) , where $c := b + \mu \lfloor \frac{q}{2} \rfloor$

- **2** Enc $((\vec{a_i}, b_i), \mu)$:
 - For single bit message $\mu \in \{0,1\}$
 - Choose a random subset S of indices $\{1, \ldots, m\}$ (out of the 2^m possible subsets).
 - Compute $\vec{a} := \sum_{i \in S} \vec{a_i}$ and $b := \sum_{i \in S} b_i$
 - Output pair (\vec{a}, c) , where $c := b + \mu \lfloor \frac{q}{2} \rfloor$
- 3 $Dec((\vec{a}, c), \vec{s})$:
 - Compute $c \vec{a} \cdot \vec{s}$
 - Check whether outcome is closer to 0 or $\frac{q}{2}$ (oper. done mod q)
 - Output $\mu = 0$ if closer to zero, and $\mu = 1$ otherwise

• **Correctness:** We consider $Dec(Enc((\vec{a}_i, b_i), \mu), \vec{s})$.

$$c - \vec{a} \cdot \vec{s} = b + \mu \left\lfloor \frac{q}{2} \right\rfloor - \vec{a} \cdot \vec{s}$$
$$= \sum_{i \in S} (\vec{a}_i \cdot \vec{s} + e_i) + \mu \left\lfloor \frac{q}{2} \right\rfloor - \left(\sum_{i \in S} \vec{a}_i \right) \cdot \vec{s}$$
$$= \sum_{i \in S} e_i + \mu \left\lfloor \frac{q}{2} \right\rfloor$$

• **Correctness:** We consider $Dec(Enc((\vec{a}_i, b_i), \mu), \vec{s})$.

$$c - \vec{a} \cdot \vec{s} = b + \mu \left\lfloor \frac{q}{2} \right\rfloor - \vec{a} \cdot \vec{s}$$
$$= \sum_{i \in S} (\vec{a}_i \cdot \vec{s} + e_i) + \mu \left\lfloor \frac{q}{2} \right\rfloor - \left(\sum_{i \in S} \vec{a}_i \right) \cdot \vec{s}$$
$$= \sum_{i \in S} e_i + \mu \left\lfloor \frac{q}{2} \right\rfloor$$

Provided e_i 's are small enough, this is closer to 0 when $\mu = 0$ and to $\frac{q}{2}$ otherwise.

- Security:
 - Dec works since we "cancel" $\vec{a} \cdot \vec{s}$ term (unknown to adversary).

• Security:

- Dec works since we "cancel" $\vec{a} \cdot \vec{s}$ term (unknown to adversary).
- The Decisional-LWE states that adversary cannot distinguish between (\vec{a}, b) and (\vec{a}, r) where r is random.
- Thus $c = b + \mu \lfloor \frac{q}{2} \rfloor$ looks like $r + \mu \lfloor \frac{q}{2} \rfloor$ to the adversary.

• Security:

- Dec works since we "cancel" $\vec{a} \cdot \vec{s}$ term (unknown to adversary).
- The Decisional-LWE states that adversary cannot distinguish between (\vec{a}, b) and (\vec{a}, r) where r is random.
- Thus $c = b + \mu \lfloor \frac{q}{2} \rfloor$ looks like $r + \mu \lfloor \frac{q}{2} \rfloor$ to the adversary.
- The message μ is masked by the random r

• Security:

- Dec works since we "cancel" $\vec{a} \cdot \vec{s}$ term (unknown to adversary).
- The Decisional-LWE states that adversary cannot distinguish between (\vec{a}, b) and (\vec{a}, r) where r is random.
- Thus $c = b + \mu \lfloor \frac{q}{2} \rfloor$ looks like $r + \mu \lfloor \frac{q}{2} \rfloor$ to the adversary.
- The message μ is masked by the random r
- See an example at Tutorial 6

• Security:

- Dec works since we "cancel" $\vec{a} \cdot \vec{s}$ term (unknown to adversary).
- The Decisional-LWE states that adversary cannot distinguish between (\vec{a}, b) and (\vec{a}, r) where r is random.
- Thus $c = b + \mu \lfloor \frac{q}{2} \rfloor$ looks like $r + \mu \lfloor \frac{q}{2} \rfloor$ to the adversary.
- The message μ is masked by the random r
- See an example at Tutorial 6
- Efficiency: The parameters required to ensure security and correctness imply public key of $O(n^2)$ (not efficient)

Using "Ring-LWE" instead can bring this to linear.

• Security:

- Dec works since we "cancel" $\vec{a} \cdot \vec{s}$ term (unknown to adversary).
- The Decisional-LWE states that adversary cannot distinguish between (\vec{a}, b) and (\vec{a}, r) where r is random.
- Thus $c = b + \mu \lfloor \frac{q}{2} \rfloor$ looks like $r + \mu \lfloor \frac{q}{2} \rfloor$ to the adversary.
- The message μ is masked by the random r
- See an example at Tutorial 6
- Efficiency: The parameters required to ensure security and correctness imply public key of $O(n^2)$ (not efficient)

Using "Ring-LWE" instead can bring this to linear.

• We define rings and give another ring lattice-based cryptosystem at the next lecture.