Quantum Cyber Security Lecture 18: Post-Quantum Cryptography III

Petros Wallden

University of Edinburgh

21st March 2024

- Ring over Finite Field: Intro with an example
- INTRU Public-Key Encryption: The system and its security
- INTRU an example

- Ring over Finite Field: Intro with an example
- INTRU Public-Key Encryption: The system and its security
- INTRU an example

Notation colour code: parameters and functions: public (blue), private (red), secret but not used later (brown)

Example: Ring $R = \mathbb{Z}[x]/x^{n-1}$ (explanation below)

- Polynomials, truncated at degree *n*, with integer coeff $p_i \in \mathbb{Z}$: $p(x) = p_0 + p_1 x + \ldots + p_{n-1} x^{n-1}$
- Coefficients could be restricted to be in \mathbb{Z}_q
- The "free-parameters" characterising such polynomial are in Zⁿ_q as previously in the LWE

Example: Ring $R = \mathbb{Z}[x]/x^{n-1}$ (explanation below)

- Polynomials, truncated at degree *n*, with integer coeff $p_i \in \mathbb{Z}$: $p(x) = p_0 + p_1 x + \ldots + p_{n-1} x^{n-1}$
- Coefficients could be restricted to be in \mathbb{Z}_q
- The "free-parameters" characterising such polynomial are in Zⁿ_q as previously in the LWE

Parameters:

- (*n*−1) maximum degree of polynomials. Additions of exponents of x are performed mod *n*.
- *q* prime number. Additions of coefficients (*p_i*'s) are performed mod *q*

• An example of operations: Let n = 3; q = 5.

Petros Wallden

Consider the product of $f(x) \cdot g(x)$ in $\mathbb{Z}_5[x]/x^2$ where:

 $f(x) = 1 + 3x + 2x^2$

 $g(x)=2+4x+3x^2$

• An example of operations: Let n = 3; q = 5.

Consider the product of $f(x) \cdot g(x)$ in $\mathbb{Z}_5[x]/x^2$ where: $f(x) = 1 + 3x + 2x^2$ $g(x) = 2 + 4x + 3x^2$ $f(x) \cdot g(x) = (1 + 3x + 2x^2)(2 + 4x + 3x^2)$ $= 2 + 4x + 3x^2 + 6x + 12x^2 + 9x^3 + 4x^2 + 8x^3 + 6x^4$

• An example of operations: Let n = 3; q = 5.

Consider the product of $f(x) \cdot g(x)$ in $\mathbb{Z}_5[x]/x^2$ where: $f(x) = 1 + 3x + 2x^2$ $g(x) = 2 + 4x + 3x^2$ $f(x) \cdot g(x) = (1 + 3x + 2x^2)(2 + 4x + 3x^2)$ $= 2 + 4x + 3x^2 + 6x + 12x^2 + 9x^3 + 4x^2 + 8x^3 + 6x^4$

Exponents are taken mod3

 $f(x) \cdot g(x) = 2 + 4x + 3x^2 + 6x + 12x^2 + 9x^0 + 4x^2 + 8x^0 + 6x^1$ = 19 + 16x + 19x²

• An example of operations: Let n = 3; q = 5.

Consider the product of $f(x) \cdot g(x)$ in $\mathbb{Z}_5[x]/x^2$ where: $f(x) = 1 + 3x + 2x^2$ $g(x) = 2 + 4x + 3x^2$ $f(x) \cdot g(x) = (1 + 3x + 2x^2)(2 + 4x + 3x^2)$ $= 2 + 4x + 3x^2 + 6x + 12x^2 + 9x^3 + 4x^2 + 8x^3 + 6x^4$

Exponents are taken mod3

 $f(x) \cdot g(x) = 2 + 4x + 3x^2 + 6x + 12x^2 + 9x^0 + 4x^2 + 8x^0 + 6x^1$ = 19 + 16x + 19x²

Coefficients are taken mod5

$$f(x) \cdot g(x) = 4 + x + 4x^2$$

4/12

NTRU Cryptosystem

- First developed in 1996 by Hoffstein, Pipher and Silverman
- Name: N(th degree) T(runcated polynomial) R(ing) U(nits)
- Both Encryption and Signatures algorithms (the former here)

NTRU Cryptosystem

- First developed in 1996 by Hoffstein, Pipher and Silverman
- Name: N(th degree) T(runcated polynomial) R(ing) U(nits)
- Both Encryption and Signatures algorithms (the former here)
- Very efficient, believed to be secure against quantum attacks
- Other versions (less efficient) have less "algebraic" structure and the hardness belief is more formally established
- No attack that uses that algebraic structure has been found (so initial version is still a valid candidate)

Parameters: (n-1) max degree of polynomials, q prime number (large mod), p prime number (small mod), d coef.

Polynomials in $\mathbb{Z}[x]/x^{n-1}$, operations in either $\mathbb{Z}_q[x]/x^{n-1}$ or $\mathbb{Z}_p[x]/x^{n-1}$.

Conditions on Parameters: correctness holds provided: q > (6d + 1)p

Parameters: (n-1) max degree of polynomials, q prime number (large mod), p prime number (small mod), d coef.

Polynomials in $\mathbb{Z}[x]/x^{n-1}$, operations in either $\mathbb{Z}_q[x]/x^{n-1}$ or $\mathbb{Z}_p[x]/x^{n-1}$.

Conditions on Parameters: correctness holds provided: q > (6d + 1)p

- KeyGen:
 - Choose two random polynomials f(x), g(x) with small coefficients, that are both kept secret

Parameters: (n-1) max degree of polynomials, q prime number (large mod), p prime number (small mod), d coef.

Polynomials in $\mathbb{Z}[x]/x^{n-1}$, operations in either $\mathbb{Z}_q[x]/x^{n-1}$ or $\mathbb{Z}_p[x]/x^{n-1}$.

Conditions on Parameters: correctness holds provided: q > (6d + 1)p

- KeyGen:
 - Choose two random polynomials f(x), g(x) with small coefficients, that are both kept secret
 - Compute the inverses f_p^{-1} , f_q^{-1} of f w.r.t. modulo p, q: $f(x) \cdot f_p^{-1}(x) = 1 \mod p$; $f(x) \cdot f_q^{-1}(x) = 1 \mod q$

• Compute $h(x) = p\left(f_q^{-1}(x) \cdot g(x)\right) \pmod{q}$

Parameters: (n-1) max degree of polynomials, q prime number (large mod), p prime number (small mod), d coef.

Polynomials in $\mathbb{Z}[x]/x^{n-1}$, operations in either $\mathbb{Z}_q[x]/x^{n-1}$ or $\mathbb{Z}_p[x]/x^{n-1}$.

Conditions on Parameters: correctness holds provided: q > (6d + 1)p

- KeyGen:
 - Choose two random polynomials f(x), g(x) with small coefficients, that are both kept secret
 - Compute the inverses f_p^{-1} , f_q^{-1} of f w.r.t. modulo p, q: $f(x) \cdot f_p^{-1}(x) = 1 \mod p$; $f(x) \cdot f_q^{-1}(x) = 1 \mod q$
 - Compute $h(x) = p\left(f_q^{-1}(x) \cdot g(x)\right) \pmod{q}$
 - Private Key: $f(x), f_p^{-1}(x)$
 - Public Key: h(x)

2 Enc $(h(x), \mu)$:

Express message μ as a polynomial μ(x) with coefficients modulo p (centred around zero).
 Example: if p = 2 then a n-bit message is mapped to a (n - 1) degree polynomial, with 0/1 coefficients.

2 Enc $(h(x), \mu)$:

- Express message μ as a polynomial μ(x) with coefficients modulo p (centred around zero).
 Example: if p = 2 then a n-bit message is mapped to a (n 1) degree polynomial, with 0/1 coefficients.
- Randomly choose another small polynomial r(x)

2 Enc $(h(x), \mu)$:

- Express message μ as a polynomial μ(x) with coefficients modulo p (centred around zero).
 Example: if p = 2 then a n-bit message is mapped to a (n 1) degree polynomial, with 0/1 coefficients.
- Randomly choose another small polynomial r(x)
- Output $e(x) := r(x) \cdot h(x) + \mu(x) \mod q$

2 Enc $(h(x), \mu)$:

- Express message μ as a polynomial μ(x) with coefficients modulo p (centred around zero).
 Example: if p = 2 then a n-bit message is mapped to a (n 1) degree polynomial, with 0/1 coefficients.
- Randomly choose another small polynomial r(x)
- Output $e(x) := r(x) \cdot h(x) + \mu(x) \mod q$
- 3 $Dec(e(x), (f(x), f_p^{-1}(x)))$:
 - Computes $a(x) = f(x) \cdot e(x) \pmod{q}$

a(x) is expressed using coefficients centred around zero, i.e. $\left[-q/2, q/2\right]$ instead of $\left[0, q-1\right]$.

2 Enc $(h(x), \mu)$:

- Express message μ as a polynomial μ(x) with coefficients modulo p (centred around zero).
 Example: if p = 2 then a n-bit message is mapped to a (n 1) degree polynomial, with 0/1 coefficients.
- Randomly choose another small polynomial r(x)
- Output $e(x) := r(x) \cdot h(x) + \mu(x) \mod q$
- 3 $Dec(e(x), (f(x), f_p^{-1}(x)))$:
 - Computes $a(x) = f(x) \cdot e(x) \pmod{q}$

a(x) is expressed using coefficients centred around zero, i.e. [-q/2, q/2] instead of [0, q - 1].

• Computes $b(x) = a(x) \pmod{p}$

2 Enc($h(x), \mu$):

- Express message μ as a polynomial μ(x) with coefficients modulo p (centred around zero).
 Example: if p = 2 then a n-bit message is mapped to a (n 1) degree polynomial, with 0/1 coefficients.
- Randomly choose another small polynomial r(x)
- Output $e(x) := r(x) \cdot h(x) + \mu(x) \mod q$
- 3 $Dec(e(x), (f(x), f_p^{-1}(x)))$:
 - Computes $a(x) = f(x) \cdot e(x) \pmod{q}$

a(x) is expressed using coefficients centred around zero, i.e. [-q/2, q/2] instead of [0, q - 1].

- Computes $b(x) = a(x) \pmod{p}$
- Recovers message $\mu'(x) = f_p^{-1}(x)b(x) \pmod{p}$

• Correctness: We consider $Dec(Enc(h(x), \mu), (f(x), f_p^{-1}))$.

• **Correctness:** We consider $Dec(Enc(h(x), \mu), (f(x), f_p^{-1}))$.

 $a(x) = f(x) \cdot e(x) \mod q = f(x) \cdot r(x) \cdot h(x) + f(x) \cdot \mu(x) \mod q$

• **Correctness:** We consider $Dec(Enc(h(x), \mu), (f(x), f_p^{-1}))$.

 $a(x) = f(x) \cdot e(x) \mod q = f(x) \cdot r(x) \cdot h(x) + f(x) \cdot \mu(x) \mod q$

Recall $h(x) = pf_q^{-1}(x) \cdot g(x) \mod q$ and the first term simplifies using $f(x)f_q^{-1}(x) = 1 \mod q$:

 $a(x) = pg(x) \cdot r(x) + f(x) \cdot \mu(x) \mod q$

• **Correctness:** We consider $Dec(Enc(h(x), \mu), (f(x), f_p^{-1}))$.

 $a(x) = f(x) \cdot e(x) \mod q = f(x) \cdot r(x) \cdot h(x) + f(x) \cdot \mu(x) \mod q$

Recall $h(x) = pf_q^{-1}(x) \cdot g(x) \mod q$ and the first term simplifies using $f(x)f_q^{-1}(x) = 1 \mod q$:

 $a(x) = pg(x) \cdot r(x) + f(x) \cdot \mu(x) \mod q$

Now $b(x) = a(x) \mod p$ and the first term cancels (since it is multiplied by p)

 $b(x) = (f(x) \cdot \mu(x) \bmod q) \bmod p$

Provided that a(x) was centred in zero, f(x) has small coefficients and $\mu(x)$ has coefficients in [0, p-1] we have

$$\mu'(x) = f_p^{-1}(x) (f(x) \cdot \mu(x) \mod q) \mod p$$

= $(f_p^{-1}(x) \cdot f(x) \cdot \mu(x)) \mod p$
= $\mu(x) \mod p$

where we used $f_p^{-1}(x) \cdot f(x) = 1 \mod p$

Provided that a(x) was centred in zero, f(x) has small coefficients and $\mu(x)$ has coefficients in [0, p-1] we have

$$\mu'(x) = f_p^{-1}(x) (f(x) \cdot \mu(x) \mod q) \mod p$$

= $(f_p^{-1}(x) \cdot f(x) \cdot \mu(x)) \mod p$
= $\mu(x) \mod p$

where we used $f_p^{-1}(x) \cdot f(x) = 1 \mod p$

• Security: It is believed (but not proven) that the security reduces to the Closest-Vector Problem that reduces to the (approximate) SVP-problem

Provided that a(x) was centred in zero, f(x) has small coefficients and $\mu(x)$ has coefficients in [0, p-1] we have

$$\mu'(x) = f_p^{-1}(x) (f(x) \cdot \mu(x) \mod q) \mod p$$

= $(f_p^{-1}(x) \cdot f(x) \cdot \mu(x)) \mod p$
= $\mu(x) \mod p$

where we used $f_p^{-1}(x) \cdot f(x) = 1 \mod p$

• Security: It is believed (but not proven) that the security reduces to the Closest-Vector Problem that reduces to the (approximate) SVP-problem

A variant (SS11) is proven to reduce to approximate SVP_{β}

Provided that a(x) was centred in zero, f(x) has small coefficients and $\mu(x)$ has coefficients in [0, p-1] we have

$$\mu'(x) = f_p^{-1}(x) (f(x) \cdot \mu(x) \mod q) \mod p$$

= $(f_p^{-1}(x) \cdot f(x) \cdot \mu(x)) \mod p$
= $\mu(x) \mod p$

where we used $f_p^{-1}(x) \cdot f(x) = 1 \mod p$

• Security: It is believed (but not proven) that the security reduces to the Closest-Vector Problem that reduces to the (approximate) SVP-problem

A variant (SS11) is proven to reduce to approximate SVP_{β}

Intuitively the $h(x) \cdot r(x)$ "masks" the message and only with the secret key one can "cancel" this term.

Parameters: (n, p, q, d) = (7, 3, 41, 2)

Parameters: (n, p, q, d) = (7, 3, 41, 2)

- KeyGen:
 - $f(x) = x^6 x^4 + x^3 + x^2 1$; $g(x) = x^6 + x^4 x^2 x$

Parameters: (n, p, q, d) = (7, 3, 41, 2)

- KeyGen:
 - $f(x) = x^6 x^4 + x^3 + x^2 1$; $g(x) = x^6 + x^4 x^2 x$
 - $f_3^{-1}(x) = x^6 + 2x^5 + x^3 + x^2 + x + 1 \pmod{3}$
 - $f_{41}^{-1}(x) = 8x^6 + 26x^5 + 31x^4 + 21x^3 + 40x^2 + 2x + 37 \pmod{41}$

Parameters: (n, p, q, d) = (7, 3, 41, 2)

- KeyGen:
 - $f(x) = x^6 x^4 + x^3 + x^2 1$; $g(x) = x^6 + x^4 x^2 x$
 - $f_3^{-1}(x) = x^6 + 2x^5 + x^3 + x^2 + x + 1 \pmod{3}$
 - $f_{41}^{-1}(x) = 8x^6 + 26x^5 + 31x^4 + 21x^3 + 40x^2 + 2x + 37 \pmod{41}$ Check: $f(x) \cdot f_3^{-1}(x) = 1 \mod 3$; $f(x) \cdot f_{41}^{-1}(x) = 1 \mod 41$

Parameters: (n, p, q, d) = (7, 3, 41, 2)

- KeyGen:
 - $f(x) = x^6 x^4 + x^3 + x^2 1$; $g(x) = x^6 + x^4 x^2 x$
 - $f_3^{-1}(x) = x^6 + 2x^5 + x^3 + x^2 + x + 1 \pmod{3}$
 - $f_{41}^{-1}(x) = 8x^6 + 26x^5 + 31x^4 + 21x^3 + 40x^2 + 2x + 37 \pmod{41}$ Check: $f(x) \cdot f_3^{-1}(x) = 1 \mod 3$; $f(x) \cdot f_{41}^{-1}(x) = 1 \mod 41$
 - Private Key: f(x); $f_3^{-1}(x)$
 - Public Key: $h(x) = p\left(f_q^{-1}(x) \cdot g(x)\right) \pmod{q}$ $h(x) = 20x^6 + 40x^5 + 2x^4 + 38x^3 + 8x^2 + 26x + 30 \pmod{41}$

2 Enc(
$$h(x), \mu = 1012202$$
):

2 Enc($h(x), \mu = 1012202$):

Since p = 3 we need the message in ternary number. Express it as polynomial with coefficients centred around zero so 0 → -1 , 1 → 0 , 2 → 1, i.e. 1012202 → 0, -1, 0, 1, 1, -1, 1 Note: if p was even, coef. not exactly centred around zero.

• $\mu(x) = 0x^6 - 1x^5 + 0x^4 + 1x^3 + 1x^2 - 1x + 1$

2 Enc($h(x), \mu = 1012202$):

• Since p = 3 we need the message in ternary number. Express it as polynomial with coefficients centred around zero so $0 \rightarrow -1$, $1 \rightarrow 0$, $2 \rightarrow 1$, i.e. $1012202 \rightarrow 0, -1, 0, 1, 1, -1, 1$

Note: if p was even, coef. not exactly centred around zero.

- $\mu(x) = 0x^6 1x^5 + 0x^4 + 1x^3 + 1x^2 1x + 1$
- Randomly choose: $r(x) = x^6 x^5 + x 1$

2 Enc($h(x), \mu = 1012202$):

• Since p = 3 we need the message in ternary number. Express it as polynomial with coefficients centred around zero so $0 \rightarrow -1$, $1 \rightarrow 0$, $2 \rightarrow 1$, i.e. $1012202 \rightarrow 0, -1, 0, 1, 1, -1, 1$

Note: if p was even, coef. not exactly centred around zero.

- $\mu(x) = 0x^6 1x^5 + 0x^4 + 1x^3 + 1x^2 1x + 1$
- Randomly choose: $r(x) = x^6 x^5 + x 1$
- Ciphertext $e(x) := r(x) \cdot h(x) + \mu(x) \mod q$ $e(x) = 31x^6 + 19x^5 + 4x^4 + 2x^3 + 40x^2 + 3x + 25 \pmod{41}$

3 $Dec(e(x), f(x), f_3^{-1}(x))$

• Compute $a(x) = f(x) \cdot e(x) \pmod{q}$ $a(x) = x^6 + 10x^5 + 33x^4 + 40x^3 + 40x^2 + x + 40 \pmod{41}$ which written with coefficients from [-20, 20] becomes: $a(x) = x^6 + 10x^5 - 8x^4 - x^3 - x^2 + x - 1 \pmod{41}$

3 $Dec(e(x), f(x), f_3^{-1}(x))$

• Compute $a(x) = f(x) \cdot e(x) \pmod{q}$ $a(x) = x^6 + 10x^5 + 33x^4 + 40x^3 + 40x^2 + x + 40 \pmod{41}$ which written with coefficients from [-20, 20] becomes: $a(x) = x^6 + 10x^5 - 8x^4 - x^3 - x^2 + x - 1 \pmod{41}$

• Compute
$$b(x) = a(x) \pmod{p}$$

 $b(x) = x^6 + x^5 - 2x^4 - x^3 - x^2 + x - 1 \pmod{3}$

3 $Dec(e(x), f(x), f_3^{-1}(x))$

- Compute a(x) = f(x) ⋅ e(x) (mod q) a(x) = x⁶ + 10x⁵ + 33x⁴ + 40x³ + 40x² + x + 40 (mod 41) which written with coefficients from [-20, 20] becomes: a(x) = x⁶ + 10x⁵ - 8x⁴ - x³ - x² + x - 1 (mod 41)
- Compute $b(x) = a(x) \pmod{p}$ $b(x) = x^6 + x^5 - 2x^4 - x^3 - x^2 + x - 1 \pmod{3}$
- Recovers message: $\mu(x) = f_p^{-1}(x)b(x) \pmod{p}$ Recall $f_3^{-1}(x) = x^6 + 2x^5 + x^3 + x^2 + x + 1$ $\mu(x) = -x^5 + x^3 + x^2 - x + 1 \rightarrow \mu = 1012202$