Quantum Cyber Security
 Lecture 18: Post-Quantum Cryptography III

Petros Wallden

University of Edinburgh
21st March 2024

(1) Ring over Finite Field: Intro with an example
(2) NTRU Public-Key Encryption: The system and its security
(3) NTRU an example
(1) Ring over Finite Field: Intro with an example
(2) NTRU Public-Key Encryption: The system and its security
(NTRU an example
Notation colour code: parameters and functions: public (blue), private (red), secret but not used later (brown)

Example: Ring $R=\mathbb{Z}[x] / x^{n-1}$ (explanation below)

- Polynomials, truncated at degree n, with integer coeff $p_{i} \in \mathbb{Z}$: $p(x)=p_{0}+p_{1} x+\ldots+p_{n-1} x^{n-1}$
- Coefficients could be restricted to be in \mathbb{Z}_{q}
- The "free-parameters" characterising such polynomial are in \mathbb{Z}_{q}^{n} as previously in the LWE

Example: Ring $R=\mathbb{Z}[x] / x^{n-1}$ (explanation below)

- Polynomials, truncated at degree n, with integer coeff $p_{i} \in \mathbb{Z}$: $p(x)=p_{0}+p_{1} x+\ldots+p_{n-1} x^{n-1}$
- Coefficients could be restricted to be in \mathbb{Z}_{q}
- The "free-parameters" characterising such polynomial are in \mathbb{Z}_{q}^{n} as previously in the LWE

Parameters:

- ($n-1$) maximum degree of polynomials. Additions of exponents of x are performed $\bmod n$.
- q prime number. Additions of coefficients (p_{i} 's) are performed $\bmod q$

Ring Over Finite Field: An Example

- An example of operations: Let $n=3 ; q=5$.

Consider the product of $f(x) \cdot g(x)$ in $\mathbb{Z}_{5}[x] / x^{2}$ where:

$$
\begin{aligned}
& f(x)=1+3 x+2 x^{2} \\
& g(x)=2+4 x+3 x^{2}
\end{aligned}
$$

Ring Over Finite Field: An Example

- An example of operations: Let $n=3 ; q=5$.

Consider the product of $f(x) \cdot g(x)$ in $\mathbb{Z}_{5}[x] / x^{2}$ where:

$$
\begin{aligned}
& f(x)=1+3 x+2 x^{2} \\
& g(x)=2+4 x+3 x^{2} \\
& \begin{aligned}
f(x) \cdot g(x) & =\left(1+3 x+2 x^{2}\right)\left(2+4 x+3 x^{2}\right) \\
& =2+4 x+3 x^{2}+6 x+12 x^{2}+9 x^{3}+4 x^{2}+8 x^{3}+6 x^{4}
\end{aligned}
\end{aligned}
$$

Ring Over Finite Field: An Example

- An example of operations: Let $n=3 ; q=5$.

Consider the product of $f(x) \cdot g(x)$ in $\mathbb{Z}_{5}[x] / x^{2}$ where:

$$
\begin{aligned}
& f(x)=1+3 x+2 x^{2} \\
& g(x)=2+4 x+3 x^{2} \\
& \begin{aligned}
f(x) \cdot g(x) & =\left(1+3 x+2 x^{2}\right)\left(2+4 x+3 x^{2}\right) \\
& =2+4 x+3 x^{2}+6 x+12 x^{2}+9 x^{3}+4 x^{2}+8 x^{3}+6 x^{4}
\end{aligned}
\end{aligned}
$$

Exponents are taken mod3

$$
\begin{aligned}
f(x) \cdot g(x) & =2+4 x+3 x^{2}+6 x+12 x^{2}+9 x^{0}+4 x^{2}+8 x^{0}+6 x^{1} \\
& =19+16 x+19 x^{2}
\end{aligned}
$$

Ring Over Finite Field: An Example

- An example of operations: Let $n=3 ; q=5$.

Consider the product of $f(x) \cdot g(x)$ in $\mathbb{Z}_{5}[x] / x^{2}$ where:

$$
\begin{aligned}
& f(x)=1+3 x+2 x^{2} \\
& g(x)=2+4 x+3 x^{2} \\
& \begin{aligned}
f(x) \cdot g(x) & =\left(1+3 x+2 x^{2}\right)\left(2+4 x+3 x^{2}\right) \\
& =2+4 x+3 x^{2}+6 x+12 x^{2}+9 x^{3}+4 x^{2}+8 x^{3}+6 x^{4}
\end{aligned}
\end{aligned}
$$

Exponents are taken mod3

$$
\begin{aligned}
f(x) \cdot g(x) & =2+4 x+3 x^{2}+6 x+12 x^{2}+9 x^{0}+4 x^{2}+8 x^{0}+6 x^{1} \\
& =19+16 x+19 x^{2}
\end{aligned}
$$

Coefficients are taken mod5

$$
f(x) \cdot g(x)=4+x+4 x^{2}
$$

- First developed in 1996 by Hoffstein, Pipher and Silverman
- Name: N(th degree) T(runcated polynomial) R(ing) U(nits)
- Both Encryption and Signatures algorithms (the former here)
- First developed in 1996 by Hoffstein, Pipher and Silverman
- Name: N(th degree) T(runcated polynomial) R(ing) U(nits)
- Both Encryption and Signatures algorithms (the former here)
- Very efficient, believed to be secure against quantum attacks
- Other versions (less efficient) have less "algebraic" structure and the hardness belief is more formally established
- No attack that uses that algebraic structure has been found (so initial version is still a valid candidate)

Parameters: $(n-1)$ max degree of polynomials, q prime number (large mod), p prime number (small mod), d coef.

Polynomials in $\mathbb{Z}[x] / x^{n-1}$, operations in either $\mathbb{Z}_{q}[x] / x^{n-1}$ or $\mathbb{Z}_{p}[x] / x^{n-1}$.

Conditions on Parameters: correctness holds provided: $q>(6 d+1) p$

NTRU Encryption Scheme

Parameters: $(n-1)$ max degree of polynomials, q prime number (large mod), p prime number (small mod), d coef.

Polynomials in $\mathbb{Z}[x] / x^{n-1}$, operations in either $\mathbb{Z}_{q}[x] / x^{n-1}$ or $\mathbb{Z}_{p}[x] / x^{n-1}$.

Conditions on Parameters: correctness holds provided: $q>(6 d+1) p$
(1) KeyGen:

- Choose two random polynomials $f(x), g(x)$ with small coefficients, that are both kept secret

NTRU Encryption Scheme

Parameters: $(n-1)$ max degree of polynomials, q prime number (large mod), p prime number (small mod), d coef.

Polynomials in $\mathbb{Z}[x] / x^{n-1}$, operations in either $\mathbb{Z}_{q}[x] / x^{n-1}$ or $\mathbb{Z}_{p}[x] / x^{n-1}$.

Conditions on Parameters: correctness holds provided: $q>(6 d+1) p$
(1) KeyGen:

- Choose two random polynomials $f(x), g(x)$ with small coefficients, that are both kept secret
- Compute the inverses f_{p}^{-1}, f_{q}^{-1} of f w.r.t. modulo p, q : $f(x) \cdot f_{p}^{-1}(x)=1 \bmod p ; f(x) \cdot f_{q}^{-1}(x)=1 \bmod q$
- Compute $h(x)=p\left(f_{q}^{-1}(x) \cdot g(x)\right)(\bmod q)$

NTRU Encryption Scheme

Parameters: $(n-1)$ max degree of polynomials, q prime number (large mod), p prime number (small mod), d coef.

Polynomials in $\mathbb{Z}[x] / x^{n-1}$, operations in either $\mathbb{Z}_{q}[x] / x^{n-1}$ or $\mathbb{Z}_{p}[x] / x^{n-1}$.

Conditions on Parameters: correctness holds provided: $q>(6 d+1) p$
(1) KeyGen:

- Choose two random polynomials $f(x), g(x)$ with small coefficients, that are both kept secret
- Compute the inverses f_{p}^{-1}, f_{q}^{-1} of f w.r.t. modulo p, q : $f(x) \cdot f_{p}^{-1}(x)=1 \bmod p ; f(x) \cdot f_{q}^{-1}(x)=1 \bmod q$
- Compute $h(x)=p\left(f_{q}^{-1}(x) \cdot g(x)\right)(\bmod q)$
- Private Key: $f(x), f_{p}^{-1}(x)$
- Public Key: $h(x)$
(2) $\operatorname{Enc}(h(x), \mu)$:
- Express message μ as a polynomial $\mu(x)$ with coefficients modulo p (centred around zero). Example: if $p=2$ then a n-bit message is mapped to a ($n-1$) degree polynomial, with $0 / 1$ coefficients.
(2) $\operatorname{Enc}(h(x), \mu)$:
- Express message μ as a polynomial $\mu(x)$ with coefficients modulo p (centred around zero).
Example: if $p=2$ then a n-bit message is mapped to a ($n-1$) degree polynomial, with $0 / 1$ coefficients.
- Randomly choose another small polynomial $r(x)$
(2) $\operatorname{Enc}(h(x), \mu)$:
- Express message μ as a polynomial $\mu(x)$ with coefficients modulo p (centred around zero).
Example: if $p=2$ then a n-bit message is mapped to a ($n-1$) degree polynomial, with $0 / 1$ coefficients.
- Randomly choose another small polynomial $r(x)$
- Output $e(x):=r(x) \cdot h(x)+\mu(x) \bmod q$

NTRU Encryption Scheme

(2) $\operatorname{Enc}(h(x), \mu)$:

- Express message μ as a polynomial $\mu(x)$ with coefficients modulo p (centred around zero).
Example: if $p=2$ then a n-bit message is mapped to a ($n-1$) degree polynomial, with $0 / 1$ coefficients.
- Randomly choose another small polynomial $r(x)$
- Output $e(x):=r(x) \cdot h(x)+\mu(x) \bmod q$
(3) $\operatorname{Dec}\left(e(x),\left(f(x), f_{p}^{-1}(x)\right)\right.$:
- Computes $a(x)=f(x) \cdot e(x)(\bmod q)$
$a(x)$ is expressed using coefficients centred around zero, i.e. $[-q / 2, q / 2]$ instead of $[0, q-1]$.

NTRU Encryption Scheme

(2) $\operatorname{Enc}(h(x), \mu)$:

- Express message μ as a polynomial $\mu(x)$ with coefficients modulo p (centred around zero).
Example: if $p=2$ then a n-bit message is mapped to a ($n-1$) degree polynomial, with $0 / 1$ coefficients.
- Randomly choose another small polynomial $r(x)$
- Output $e(x):=r(x) \cdot h(x)+\mu(x) \bmod q$
(3) $\operatorname{Dec}\left(e(x),\left(f(x), f_{p}^{-1}(x)\right)\right.$:
- Computes $a(x)=f(x) \cdot e(x)(\bmod q)$
$a(x)$ is expressed using coefficients centred around zero, i.e. $[-q / 2, q / 2]$ instead of $[0, q-1]$.
- Computes $b(x)=a(x)(\bmod p)$

NTRU Encryption Scheme

(2) $\operatorname{Enc}(h(x), \mu)$:

- Express message μ as a polynomial $\mu(x)$ with coefficients modulo p (centred around zero).
Example: if $p=2$ then a n-bit message is mapped to a ($n-1$) degree polynomial, with $0 / 1$ coefficients.
- Randomly choose another small polynomial $r(x)$
- Output $e(x):=r(x) \cdot h(x)+\mu(x) \bmod q$
(3) $\operatorname{Dec}\left(e(x),\left(f(x), f_{p}^{-1}(x)\right)\right.$:
- Computes $a(x)=f(x) \cdot e(x)(\bmod q)$
$a(x)$ is expressed using coefficients centred around zero, i.e. $[-q / 2, q / 2]$ instead of $[0, q-1]$.
- Computes $b(x)=a(x)(\bmod p)$
- Recovers message $\mu^{\prime}(x)=f_{p}^{-1}(x) b(x)(\bmod p)$

NTRU Encryption Scheme

- Correctness: We consider $\operatorname{Dec}\left(\operatorname{Enc}(h(x), \mu),\left(f(x), f_{p}^{-1}\right)\right)$.

NTRU Encryption Scheme

- Correctness: We consider $\operatorname{Dec}\left(\operatorname{Enc}(h(x), \mu),\left(f(x), f_{p}^{-1}\right)\right)$.

$$
a(x)=f(x) \cdot e(x) \bmod q=f(x) \cdot r(x) \cdot h(x)+f(x) \cdot \mu(x) \bmod q
$$

- Correctness: We consider $\operatorname{Dec}\left(\operatorname{Enc}(h(x), \mu),\left(f(x), f_{p}^{-1}\right)\right)$. $a(x)=f(x) \cdot e(x) \bmod q=f(x) \cdot r(x) \cdot h(x)+f(x) \cdot \mu(x) \bmod q$ Recall $h(x)=p f_{q}^{-1}(x) \cdot g(x) \bmod q$ and the first term simplifies using $f(x) f_{q}^{-1}(x)=1 \bmod q$: $a(x)=p g(x) \cdot r(x)+f(x) \cdot \mu(x) \bmod q$
- Correctness: We consider $\operatorname{Dec}\left(\operatorname{Enc}(h(x), \mu),\left(f(x), f_{p}^{-1}\right)\right)$. $a(x)=f(x) \cdot e(x) \bmod q=f(x) \cdot r(x) \cdot h(x)+f(x) \cdot \mu(x) \bmod q$ Recall $h(x)=p f_{q}^{-1}(x) \cdot g(x) \bmod q$ and the first term simplifies using $f(x) f_{q}^{-1}(x)=1 \bmod q$:
$a(x)=p g(x) \cdot r(x)+f(x) \cdot \mu(x) \bmod q$
Now $b(x)=a(x) \bmod p$ and the first term cancels (since it is multiplied by p)
$b(x)=(f(x) \cdot \mu(x) \bmod q) \bmod p$

Provided that $a(x)$ was centred in zero, $f(x)$ has small coefficients and $\mu(x)$ has coefficients in $[0, p-1]$ we have

$$
\begin{aligned}
\mu^{\prime}(x) & =f_{p}^{-1}(x)(f(x) \cdot \mu(x) \bmod q) \bmod p \\
& =\left(f_{p}^{-1}(x) \cdot f(x) \cdot \mu(x)\right) \bmod p \\
& =\mu(x) \bmod p
\end{aligned}
$$

where we used $f_{p}^{-1}(x) \cdot f(x)=1 \bmod p$

NTRU Encryption Scheme

Provided that $a(x)$ was centred in zero, $f(x)$ has small coefficients and $\mu(x)$ has coefficients in $[0, p-1]$ we have

$$
\begin{aligned}
\mu^{\prime}(x) & =f_{p}^{-1}(x)(f(x) \cdot \mu(x) \bmod q) \bmod p \\
& =\left(f_{p}^{-1}(x) \cdot f(x) \cdot \mu(x)\right) \bmod p \\
& =\mu(x) \bmod p
\end{aligned}
$$

where we used $f_{p}^{-1}(x) \cdot f(x)=1 \bmod p$

- Security: It is believed (but not proven) that the security reduces to the Closest-Vector Problem that reduces to the (approximate) SVP-problem

NTRU Encryption Scheme

Provided that $a(x)$ was centred in zero, $f(x)$ has small coefficients and $\mu(x)$ has coefficients in $[0, p-1]$ we have

$$
\begin{aligned}
\mu^{\prime}(x) & =f_{p}^{-1}(x)(f(x) \cdot \mu(x) \bmod q) \bmod p \\
& =\left(f_{p}^{-1}(x) \cdot f(x) \cdot \mu(x)\right) \bmod p \\
& =\mu(x) \bmod p
\end{aligned}
$$

where we used $f_{p}^{-1}(x) \cdot f(x)=1 \bmod p$

- Security: It is believed (but not proven) that the security reduces to the Closest-Vector Problem that reduces to the (approximate) SVP-problem

A variant (SS11) is proven to reduce to approximate SVP_{β}

NTRU Encryption Scheme

Provided that $a(x)$ was centred in zero, $f(x)$ has small coefficients and $\mu(x)$ has coefficients in [$0, p-1$] we have

$$
\begin{aligned}
\mu^{\prime}(x) & =f_{p}^{-1}(x)(f(x) \cdot \mu(x) \bmod q) \bmod p \\
& =\left(f_{p}^{-1}(x) \cdot f(x) \cdot \mu(x)\right) \bmod p \\
& =\mu(x) \bmod p
\end{aligned}
$$

where we used $f_{p}^{-1}(x) \cdot f(x)=1 \bmod p$

- Security: It is believed (but not proven) that the security reduces to the Closest-Vector Problem that reduces to the (approximate) SVP-problem

A variant (SS11) is proven to reduce to approximate SVP_{β} Intuitively the $h(x) \cdot r(x)$ "masks" the message and only with the secret key one can "cancel" this term.

NTRUE: Example

Parameters: $(n, p, q, d)=(7,3,41,2)$
Check: $q>(6 d+1) p$ is satisfied $41>(6 \times 2+1) \times 3=39$

NTRUE: Example

Parameters: $(n, p, q, d)=(7,3,41,2)$
Check: $q>(6 d+1) p$ is satisfied $41>(6 \times 2+1) \times 3=39$
(1) KeyGen:

- $f(x)=x^{6}-x^{4}+x^{3}+x^{2}-1 ; g(x)=x^{6}+x^{4}-x^{2}-x$

NTRUE: Example

Parameters: $(n, p, q, d)=(7,3,41,2)$
Check: $q>(6 d+1) p$ is satisfied $41>(6 \times 2+1) \times 3=39$
(1) KeyGen:

- $f(x)=x^{6}-x^{4}+x^{3}+x^{2}-1 ; g(x)=x^{6}+x^{4}-x^{2}-x$
- $f_{3}^{-1}(x)=x^{6}+2 x^{5}+x^{3}+x^{2}+x+1(\bmod 3)$
- $f_{41}^{-1}(x)=8 x^{6}+26 x^{5}+31 x^{4}+21 x^{3}+40 x^{2}+2 x+37(\bmod 41)$

NTRUE: Example

Parameters: $(n, p, q, d)=(7,3,41,2)$
Check: $q>(6 d+1) p$ is satisfied $41>(6 \times 2+1) \times 3=39$
(1) KeyGen:

- $f(x)=x^{6}-x^{4}+x^{3}+x^{2}-1 ; g(x)=x^{6}+x^{4}-x^{2}-x$
- $f_{3}^{-1}(x)=x^{6}+2 x^{5}+x^{3}+x^{2}+x+1(\bmod 3)$
- $f_{41}^{-1}(x)=8 x^{6}+26 x^{5}+31 x^{4}+21 x^{3}+40 x^{2}+2 x+37(\bmod 41)$ Check: $f(x) \cdot f_{3}^{-1}(x)=1 \bmod 3 ; f(x) \cdot f_{41}^{-1}(x)=1 \bmod 41$

NTRUE: Example

Parameters: $(n, p, q, d)=(7,3,41,2)$
Check: $q>(6 d+1) p$ is satisfied $41>(6 \times 2+1) \times 3=39$
(1) KeyGen:

- $f(x)=x^{6}-x^{4}+x^{3}+x^{2}-1 ; g(x)=x^{6}+x^{4}-x^{2}-x$
- $f_{3}^{-1}(x)=x^{6}+2 x^{5}+x^{3}+x^{2}+x+1(\bmod 3)$
- $f_{41}^{-1}(x)=8 x^{6}+26 x^{5}+31 x^{4}+21 x^{3}+40 x^{2}+2 x+37(\bmod 41)$ Check: $f(x) \cdot f_{3}^{-1}(x)=1 \bmod 3 ; f(x) \cdot f_{41}^{-1}(x)=1 \bmod 41$
- Private Key: $f(x) ; f_{3}^{-1}(x)$
- Public Key: $h(x)=p\left(f_{q}^{-1}(x) \cdot g(x)\right)(\bmod q)$ $h(x)=20 x^{6}+40 x^{5}+2 x^{4}+38 x^{3}+8 x^{2}+26 x+30(\bmod 41)$

NTRUE: Example

(2) $\operatorname{Enc}(h(x), \mu=1012202)$:
(2) $\operatorname{Enc}(h(x), \mu=1012202)$:

- Since $p=3$ we need the message in ternary number. Express it as polynomial with coefficients centred around zero so $0 \rightarrow-1,1 \rightarrow 0,2 \rightarrow 1$, i.e. $1012202 \rightarrow 0,-1,0,1,1,-1,1$
Note: if p was even, coef. not exactly centred around zero.
- $\mu(x)=0 x^{6}-1 x^{5}+0 x^{4}+1 x^{3}+1 x^{2}-1 x+1$
(2) $\operatorname{Enc}(h(x), \mu=1012202)$:
- Since $p=3$ we need the message in ternary number. Express it as polynomial with coefficients centred around zero so $0 \rightarrow-1,1 \rightarrow 0,2 \rightarrow 1$, i.e. $1012202 \rightarrow 0,-1,0,1,1,-1,1$
Note: if p was even, coef. not exactly centred around zero.
- $\mu(x)=0 x^{6}-1 x^{5}+0 x^{4}+1 x^{3}+1 x^{2}-1 x+1$
- Randomly choose: $r(x)=x^{6}-x^{5}+x-1$

NTRUE: Example

(2) $\operatorname{Enc}(h(x), \mu=1012202)$:

- Since $p=3$ we need the message in ternary number. Express it as polynomial with coefficients centred around zero so $0 \rightarrow-1,1 \rightarrow 0,2 \rightarrow 1$, i.e. $1012202 \rightarrow 0,-1,0,1,1,-1,1$
Note: if p was even, coef. not exactly centred around zero.
- $\mu(x)=0 x^{6}-1 x^{5}+0 x^{4}+1 x^{3}+1 x^{2}-1 x+1$
- Randomly choose: $r(x)=x^{6}-x^{5}+x-1$
- Ciphertext $e(x):=r(x) \cdot h(x)+\mu(x) \bmod q$

$$
e(x)=31 x^{6}+19 x^{5}+4 x^{4}+2 x^{3}+40 x^{2}+3 x+25(\bmod 41)
$$

NTRUE: Example

(3) $\operatorname{Dec}\left(e(x), f(x), f_{3}^{-1}(x)\right)$

- Compute $a(x)=f(x) \cdot e(x)(\bmod q)$
$a(x)=x^{6}+10 x^{5}+33 x^{4}+40 x^{3}+40 x^{2}+x+40(\bmod 41)$ which written with coefficients from [$-20,20$] becomes:
$a(x)=x^{6}+10 x^{5}-8 x^{4}-x^{3}-x^{2}+x-1(\bmod 41)$
(3) $\operatorname{Dec}\left(e(x), f(x), f_{3}^{-1}(x)\right)$
- Compute $a(x)=f(x) \cdot e(x)(\bmod q)$
$a(x)=x^{6}+10 x^{5}+33 x^{4}+40 x^{3}+40 x^{2}+x+40(\bmod 41)$
which written with coefficients from [$-20,20$] becomes:

$$
a(x)=x^{6}+10 x^{5}-8 x^{4}-x^{3}-x^{2}+x-1(\bmod 41)
$$

- Compute $b(x)=a(x)(\bmod p)$

$$
b(x)=x^{6}+x^{5}-2 x^{4}-x^{3}-x^{2}+x-1(\bmod 3)
$$

(3) $\operatorname{Dec}\left(e(x), f(x), f_{3}^{-1}(x)\right)$

- Compute $a(x)=f(x) \cdot e(x)(\bmod q)$
$a(x)=x^{6}+10 x^{5}+33 x^{4}+40 x^{3}+40 x^{2}+x+40(\bmod 41)$ which written with coefficients from [$-20,20$] becomes:
$a(x)=x^{6}+10 x^{5}-8 x^{4}-x^{3}-x^{2}+x-1(\bmod 41)$
- Compute $b(x)=a(x)(\bmod p)$
$b(x)=x^{6}+x^{5}-2 x^{4}-x^{3}-x^{2}+x-1(\bmod 3)$
- Recovers message: $\mu(x)=f_{p}^{-1}(x) b(x)(\bmod p)$

Recall $f_{3}^{-1}(x)=x^{6}+2 x^{5}+x^{3}+x^{2}+x+1$
$\mu(x)=-x^{5}+x^{3}+x^{2}-x+1 \rightarrow \mu=1012202$

