Quantum Cyber Security Lecture 19: Properties of Quantum Systems and Cryptography

Petros Wallden

University of Edinburgh
26th March 2024

- Idistinguishability: theorem and implication
- No-cloning: theorem and implication
- Monogamy of Entanglement: theorem, implications and measures of entanglement
- Teleportation: what it is and its relation to Quantum One-Time Pad

Distinguishing Pure Quantum States

- Assume a fixed set of possible states $\left\{\left|\psi_{1}\right\rangle, \cdots,\left|\psi_{n}\right\rangle\right\}$
- Alice chooses one of these states $\left|\psi_{i}\right\rangle$ and sends it to Bob

Distinguishing Pure Quantum States

- Assume a fixed set of possible states $\left\{\left|\psi_{1}\right\rangle, \cdots,\left|\psi_{n}\right\rangle\right\}$
- Alice chooses one of these states $\left|\psi_{i}\right\rangle$ and sends it to Bob
- Challenge: Bob to find the index $i \in\{1, \cdots, n\}$ (can make any measurement)

Distinguishing Pure Quantum States

- Assume a fixed set of possible states $\left\{\left|\psi_{1}\right\rangle, \cdots,\left|\psi_{n}\right\rangle\right\}$
- Alice chooses one of these states $\left|\psi_{i}\right\rangle$ and sends it to Bob
- Challenge: Bob to find the index $i \in\{1, \cdots, n\}$ (can make any measurement)
Case I: States $\left|\psi_{i}\right\rangle$ are orthogonal, i.e. $\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}$ We perform a (projective) measurement that consist of the following operators
$P_{i}=\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ and $P_{0}=\mathbb{I}-\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$

Distinguishing Pure Quantum States

- Assume a fixed set of possible states $\left\{\left|\psi_{1}\right\rangle, \cdots,\left|\psi_{n}\right\rangle\right\}$
- Alice chooses one of these states $\left|\psi_{i}\right\rangle$ and sends it to Bob
- Challenge: Bob to find the index $i \in\{1, \cdots, n\}$ (can make any measurement)
Case I: States $\left|\psi_{i}\right\rangle$ are orthogonal, i.e. $\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}$ We perform a (projective) measurement that consist of the following operators
$P_{i}=\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ and $P_{0}=\mathbb{I}-\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$
Exercise: Check that this measurement satisfies the completeness relation
We can see easily that if the state $\left|\psi_{k}\right\rangle$ is prepared, then $p(i)=\left\langle\psi_{k}\right| P_{i}\left|\psi_{k}\right\rangle=\delta_{i k}$ and therefore Bob finds with probability one the correct index.

Distinguishing Pure Quantum States

Case II: Some of the states are not orthogonal
Theorem
Non-orthogonal pure states cannot be distinguished with certainty

Distinguishing Pure Quantum States

Case II: Some of the states are not orthogonal

Theorem

Non-orthogonal pure states cannot be distinguished with certainty

Proof by contradiction:

- Consider two non-orthogonal states $\left\langle\psi_{1} \mid \psi_{2}\right\rangle \neq 0$
- Related to these are two measurement operators (not necessarily projective) $E_{1}=M_{1}^{\dagger} M_{1}$ and $E_{2}=M_{2}^{\dagger} M_{2}$
- If we can distinguish them perfectly it means that when Alice sends $\left|\psi_{1}\right\rangle$ Bob has $p(i=1)=\left\langle\psi_{1}\right| E_{1}\left|\psi_{1}\right\rangle=1$ and when Alice sends $\left|\psi_{2}\right\rangle$ Bob has $p(i=2)=\left\langle\psi_{2}\right| E_{2}\left|\psi_{2}\right\rangle=1$

Distinguishing Pure Quantum States

Case II: Some of the states are not orthogonal

Theorem

Non-orthogonal pure states cannot be distinguished with certainty

Proof by contradiction:

- Consider two non-orthogonal states $\left\langle\psi_{1} \mid \psi_{2}\right\rangle \neq 0$
- Related to these are two measurement operators (not necessarily projective) $E_{1}=M_{1}^{\dagger} M_{1}$ and $E_{2}=M_{2}^{\dagger} M_{2}$
- If we can distinguish them perfectly it means that when Alice sends $\left|\psi_{1}\right\rangle$ Bob has $p(i=1)=\left\langle\psi_{1}\right| E_{1}\left|\psi_{1}\right\rangle=1$ and when Alice sends $\left|\psi_{2}\right\rangle$ Bob has $p(i=2)=\left\langle\psi_{2}\right| E_{2}\left|\psi_{2}\right\rangle=1$
- From $\sum_{i} E_{i}=\mathbb{I}$ and $\left\langle\psi_{1}\right| E_{1}\left|\psi_{1}\right\rangle=1$ we conclude that $\left\langle\psi_{1}\right| E_{2}\left|\psi_{1}\right\rangle=0$ and thus $\sqrt{E_{2}}\left|\psi_{1}\right\rangle=0$

Distinguishing Pure Quantum States

Case II: Some of the states are not orthogonal

Theorem

Non-orthogonal pure states cannot be distinguished with certainty

Proof by contradiction:

- Consider two non-orthogonal states $\left\langle\psi_{1} \mid \psi_{2}\right\rangle \neq 0$
- Related to these are two measurement operators (not necessarily projective) $E_{1}=M_{1}^{\dagger} M_{1}$ and $E_{2}=M_{2}^{\dagger} M_{2}$
- If we can distinguish them perfectly it means that when Alice sends $\left|\psi_{1}\right\rangle$ Bob has $p(i=1)=\left\langle\psi_{1}\right| E_{1}\left|\psi_{1}\right\rangle=1$ and when Alice sends $\left|\psi_{2}\right\rangle$ Bob has $p(i=2)=\left\langle\psi_{2}\right| E_{2}\left|\psi_{2}\right\rangle=1$
- From $\sum_{i} E_{i}=\mathbb{I}$ and $\left\langle\psi_{1}\right| E_{1}\left|\psi_{1}\right\rangle=1$ we conclude that $\left\langle\psi_{1}\right| E_{2}\left|\psi_{1}\right\rangle=0$ and thus $\sqrt{E_{2}}\left|\psi_{1}\right\rangle=0$
Since the two states are non-orthogonal we can write $\left|\psi_{2}\right\rangle=\alpha\left|\psi_{1}\right\rangle+\beta|\phi\rangle$ where $\left\langle\psi_{1} \mid \phi\right\rangle=0$ is a unit vector

Distinguishing Pure Quantum States

Case II: Some of the states are not orthogonal

Theorem

Non-orthogonal pure states cannot be distinguished with certainty

Proof by contradiction:

- Consider two non-orthogonal states $\left\langle\psi_{1} \mid \psi_{2}\right\rangle \neq 0$
- Related to these are two measurement operators (not necessarily projective) $E_{1}=M_{1}^{\dagger} M_{1}$ and $E_{2}=M_{2}^{\dagger} M_{2}$
- If we can distinguish them perfectly it means that when Alice sends $\left|\psi_{1}\right\rangle$ Bob has $p(i=1)=\left\langle\psi_{1}\right| E_{1}\left|\psi_{1}\right\rangle=1$ and when Alice sends $\left|\psi_{2}\right\rangle$ Bob has $p(i=2)=\left\langle\psi_{2}\right| E_{2}\left|\psi_{2}\right\rangle=1$
- From $\sum_{i} E_{i}=\mathbb{I}$ and $\left\langle\psi_{1}\right| E_{1}\left|\psi_{1}\right\rangle=1$ we conclude that $\left\langle\psi_{1}\right| E_{2}\left|\psi_{1}\right\rangle=0$ and thus $\sqrt{E_{2}}\left|\psi_{1}\right\rangle=0$
Since the two states are non-orthogonal we can write $\left|\psi_{2}\right\rangle=\alpha\left|\psi_{1}\right\rangle+\beta|\phi\rangle$ where $\left\langle\psi_{1} \mid \phi\right\rangle=0$ is a unit vector Then it follows : $\left\langle\psi_{2}\right| E_{2}\left|\psi_{2}\right\rangle=|\beta|^{2}\langle\phi| E_{2}|\phi\rangle \leq|\beta|^{2}<1$ which contradicts our assumption \square
- B92 QKD protocol relies on this impossibility.
- One can also bound the probability of distinguishing, which is related with how far from orthogonal are the states.
- In many other quantum communication protocols this property is essential (e.g. some protocols that achieve: Quantum Digital Signatures, Quantum Coin-Flipping, Blind Quantum Computing, etc)

No-cloning Theorem

No-cloning Theorem

It is impossible to copy an unknown quantum state

No-cloning Theorem

No-cloning Theorem

It is impossible to copy an unknown quantum state

- Classically we can copy an (unknown) bit: $\operatorname{CNOT}(a 0)=a \operatorname{a}$

No-cloning Theorem

No-cloning Theorem

It is impossible to copy an unknown quantum state

- Classically we can copy an (unknown) bit: $\operatorname{CNOT}(a 0)=a \quad a$ CNOT between unknown bit (control) and the 0 bit (target)

No-cloning Theorem

No-cloning Theorem

It is impossible to copy an unknown quantum state

- Classically we can copy an (unknown) bit: $\operatorname{CNOT}(a 0)=a \operatorname{a}$ CNOT between unknown bit (control) and the 0 bit (target)
- Does not work in QM:

No-cloning Theorem

No-cloning Theorem

It is impossible to copy an unknown quantum state

- Classically we can copy an (unknown) bit: $\operatorname{CNOT}(a 0)=a \operatorname{a}$ CNOT between unknown bit (control) and the 0 bit (target)
- Does not work in QM:

Unknown state $|\psi\rangle=a|0\rangle+b|1\rangle$ and
$\wedge X=|00\rangle\langle 00|+|01\rangle\langle 01|+|11\rangle\langle 10|+|10\rangle\langle 11|$

$$
\wedge X|\psi\rangle|0\rangle=a|00\rangle+b|11\rangle
$$

which is different than: $|\psi\rangle|\psi\rangle$

No-cloning Theorem

It is impossible to copy an unknown quantum state

- Classically we can copy an (unknown) bit: $\operatorname{CNOT}(a 0)=a \operatorname{a}$ CNOT between unknown bit (control) and the 0 bit (target)
- Does not work in QM:

Unknown state $|\psi\rangle=a|0\rangle+b|1\rangle$ and
$\wedge X=|00\rangle\langle 00|+|01\rangle\langle 01|+|11\rangle\langle 10|+|10\rangle\langle 11|$

$$
\wedge X|\psi\rangle|0\rangle=a|00\rangle+b|11\rangle
$$

which is different than: $|\psi\rangle|\psi\rangle$

- No-deleting Theroem: The "time-reversed" version proves that it is impossible to delete a qubit using unitary gates.

No-cloning Theorem (Proof)

Proof: By contradiction. Assume that we could copy:

- Then there exists a unitary:
$U|\psi\rangle|0\rangle=|\psi\rangle|\psi\rangle \quad \forall|\psi\rangle$

No-cloning Theorem (Proof)

Proof: By contradiction. Assume that we could copy:

- Then there exists a unitary:
$U|\psi\rangle|0\rangle=|\psi\rangle|\psi\rangle \quad \forall|\psi\rangle$
- Consider $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ where $\left\langle\psi_{1} \mid \psi_{2}\right\rangle=a \neq 1$ or 0

No-cloning Theorem (Proof)

Proof: By contradiction. Assume that we could copy:

- Then there exists a unitary: $U|\psi\rangle|0\rangle=|\psi\rangle|\psi\rangle \quad \forall|\psi\rangle$
- Consider $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ where $\left\langle\psi_{1} \mid \psi_{2}\right\rangle=a \neq 1$ or 0
- Consider an ancilla initialised at $|0\rangle$, and then the inner product between $\left|\psi_{1}\right\rangle \otimes|0\rangle$ and $\left|\psi_{2}\right\rangle \otimes|0\rangle$:

$$
\begin{equation*}
\left(\left\langle\psi_{1}\right| \otimes\langle 0|\right)\left(\left|\psi_{2}\right\rangle \otimes|0\rangle\right)=\left\langle\psi_{1} \mid \psi_{2}\right\rangle\langle 0 \mid 0\rangle=a \tag{1}
\end{equation*}
$$

No-cloning Theorem (Proof)

Proof: By contradiction. Assume that we could copy:

- Then there exists a unitary: $U|\psi\rangle|0\rangle=|\psi\rangle|\psi\rangle \quad \forall|\psi\rangle$
- Consider $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ where $\left\langle\psi_{1} \mid \psi_{2}\right\rangle=a \neq 1$ or 0
- Consider an ancilla initialised at $|0\rangle$, and then the inner product between $\left|\psi_{1}\right\rangle \otimes|0\rangle$ and $\left|\psi_{2}\right\rangle \otimes|0\rangle$:

$$
\begin{equation*}
\left(\left\langle\psi_{1}\right| \otimes\langle 0|\right)\left(\left|\psi_{2}\right\rangle \otimes|0\rangle\right)=\left\langle\psi_{1} \mid \psi_{2}\right\rangle\langle 0 \mid 0\rangle=a \tag{1}
\end{equation*}
$$

- Inner products are invariant under any unitary:

$$
\begin{align*}
\left(\left\langle\psi_{1}\right| \otimes\langle 0|\right)\left(\left|\psi_{2}\right\rangle \otimes|0\rangle\right) & =\left(\left\langle\psi_{1}\right| \otimes\langle 0|\right) U^{\dagger} U\left(\left|\psi_{2}\right\rangle \otimes|0\rangle\right) \\
& =\left(\left\langle\psi_{1}\right| \otimes\left\langle\psi_{1}\right|\right)\left(\left|\psi_{2}\right\rangle \otimes\left|\psi_{2}\right\rangle\right) \\
& =\left\langle\psi_{1} \mid \psi_{2}\right\rangle\left\langle\psi_{1} \mid \psi_{2}\right\rangle=a^{2} \tag{2}
\end{align*}
$$

No-cloning Theorem (Proof)

Proof: By contradiction. Assume that we could copy:

- Then there exists a unitary: $U|\psi\rangle|0\rangle=|\psi\rangle|\psi\rangle \quad \forall|\psi\rangle$
- Consider $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ where $\left\langle\psi_{1} \mid \psi_{2}\right\rangle=a \neq 1$ or 0
- Consider an ancilla initialised at $|0\rangle$, and then the inner product between $\left|\psi_{1}\right\rangle \otimes|0\rangle$ and $\left|\psi_{2}\right\rangle \otimes|0\rangle$:

$$
\begin{equation*}
\left(\left\langle\psi_{1}\right| \otimes\langle 0|\right)\left(\left|\psi_{2}\right\rangle \otimes|0\rangle\right)=\left\langle\psi_{1} \mid \psi_{2}\right\rangle\langle 0 \mid 0\rangle=a \tag{1}
\end{equation*}
$$

- Inner products are invariant under any unitary:

$$
\begin{align*}
\left(\left\langle\psi_{1}\right| \otimes\langle 0|\right)\left(\left|\psi_{2}\right\rangle \otimes|0\rangle\right) & =\left(\left\langle\psi_{1}\right| \otimes\langle 0|\right) U^{\dagger} U\left(\left|\psi_{2}\right\rangle \otimes|0\rangle\right) \\
& =\left(\left\langle\psi_{1}\right| \otimes\left\langle\psi_{1}\right|\right)\left(\left|\psi_{2}\right\rangle \otimes\left|\psi_{2}\right\rangle\right) \\
& =\left\langle\psi_{1} \mid \psi_{2}\right\rangle\left\langle\psi_{1} \mid \psi_{2}\right\rangle=a^{2} \tag{2}
\end{align*}
$$

- From Eq. (1) and Eq. (2) we have $a=a^{2}$ possible only if $\left\langle\psi_{1} \mid \psi_{2}\right\rangle=1$ or 0 reaching contradiction \qquad

Implications of No-Cloning

- Security of QKD relies on this. If one could copy the BB84 states, then the adversary could measure one copy in each basis, and then compromise the security completely.
- No-Cloning is essential for the indistringuishability too

Q: Can you come up with a way to distinguish states if you had a copying machine?

- Can put a bound on how well one can copy an unknown quantum state - this is used in certain security proofs

Monogamy of Entanglement

The "maximally" entangled states have some unique properties
(1) Perfect correlation: Alice's and Bob's results are perfectly correlated in all bases

$$
\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}(|++\rangle+|--\rangle)
$$

Monogamy of Entanglement

The "maximally" entangled states have some unique properties
(1) Perfect correlation: Alice's and Bob's results are perfectly correlated in all bases

$$
\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}(|++\rangle+|--\rangle)
$$

This is not the case for "partially" entangled e.g.
$|\psi\rangle=\sqrt{\frac{2}{3}}|00\rangle+\sqrt{\frac{1}{3}}|11\rangle=\frac{1}{2}\left(\sqrt{\frac{2}{3}}(|+\rangle+|-\rangle)(|+\rangle+|-\rangle)+\sqrt{\frac{1}{3}}(|+\rangle-|-\rangle)(|+\rangle-|-\rangle)\right)$
which clearly is not perfectly correlated

Monogamy of Entanglement

(2) Monogamy: If two qubits are maximally entangled, then they are separable with respect to any third qubit

$$
\rho_{A B}=\operatorname{Tr}_{E}\left(\rho_{A B E}\right)=\left|\Phi^{+}\right\rangle_{A B}\left\langle\Phi^{+}\right| \Rightarrow \rho_{A B E}=\left|\Phi^{+}\right\rangle_{A B}\left\langle\Phi^{+}\right| \otimes \rho_{E}
$$

- By knowing A and B are strongly (quantum) correlated, we know that A and B are not correlated with anything else!
(2) Monogamy: If two qubits are maximally entangled, then they are separable with respect to any third qubit

$$
\rho_{A B}=\operatorname{Tr}_{E}\left(\rho_{A B E}\right)=\left|\Phi^{+}\right\rangle_{A B}\left\langle\Phi^{+}\right| \Rightarrow \rho_{A B E}=\left|\Phi^{+}\right\rangle_{A B}\left\langle\Phi^{+}\right| \otimes \rho_{E}
$$

- By knowing A and B are strongly (quantum) correlated, we know that A and B are not correlated with anything else!
- Need a measure to quantify how entangled are two subsystems (see later)
- This can be used both to define properly what "perfect correlation" means, and to demonstrate that they are not correlated with third systems

Implications of Monogamy of Entanglement

- Is the basis for entanglement-based QKD protocols (e.g. BBM92 and E91) security.
- Even for other QKD protocols, their formal security is proven by reduction to entanglement-based protocols.
- Can quantify this since the more quantumly-correlated with one system, the closer it is to being uncorrelated with other systems.

Measure of Entanglement

- Bipartite state $\rho_{A B}$, how can we measure how entangled it is?
- Bipartite state $\rho_{A B}$, how can we measure how entangled it is?
- Assume pure (global) state $\rho_{A B}=|\psi\rangle\left\langle\left.\psi\right|_{A B}\right.$ Entanglement Entropy: $S\left(\rho_{A}\right)=-\operatorname{Tr} \rho_{A} \log \rho_{A}=S\left(\rho_{B}\right)$, where ρ_{A}, ρ_{B} the reduced density matrices
- This measures entanglement (check that separable states $\left|\psi_{1}\right\rangle_{A} \otimes\left|\psi_{2}\right\rangle_{B}$ have zero entanglement entropy)
- Bipartite state $\rho_{A B}$, how can we measure how entangled it is?
- Assume pure (global) state $\rho_{A B}=|\psi\rangle\left\langle\left.\psi\right|_{A B}\right.$ Entanglement Entropy: $S\left(\rho_{A}\right)=-\operatorname{Tr} \rho_{A} \log \rho_{A}=S\left(\rho_{B}\right)$, where ρ_{A}, ρ_{B} the reduced density matrices
- This measures entanglement (check that separable states $\left|\psi_{1}\right\rangle_{A} \otimes\left|\psi_{2}\right\rangle_{B}$ have zero entanglement entropy)
- For qubit, maximum entanglement is given by:
$\left|\Phi^{+}\right\rangle_{A B}=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ (check!)

Measure of Entanglement

- Bipartite state $\rho_{A B}$, how can we measure how entangled it is?
- Assume pure (global) state $\rho_{A B}=|\psi\rangle\left\langle\left.\psi\right|_{A B}\right.$ Entanglement Entropy: $S\left(\rho_{A}\right)=-\operatorname{Tr} \rho_{A} \log \rho_{A}=S\left(\rho_{B}\right)$, where ρ_{A}, ρ_{B} the reduced density matrices
- This measures entanglement (check that separable states $\left|\psi_{1}\right\rangle_{A} \otimes\left|\psi_{2}\right\rangle_{B}$ have zero entanglement entropy)
- For qubit, maximum entanglement is given by:

$$
\left|\Phi^{+}\right\rangle_{A B}=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \text { (check!) }
$$

- A general (for mixed states too) measure of entanglement: Relative Entropy of Entanglement: Measures the minimum relative entropy between our state $\rho_{A B}$ and any separable state $D_{R E E}\left(\rho_{A B}\right)=\min _{\sigma_{A B} \in \text { separable states }} S\left(\rho_{A B} \| \sigma_{A B}\right)$
- Setting: Alice and Bob share a pair of entangled qubits

$$
\left|\Phi^{+}\right\rangle=\frac{|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}
$$

There is no quantum channel between them (i.e. no quantum state can be physically sent)

They can classically communicate
Alice has an unknown state $|\psi\rangle_{C}=a|0\rangle_{C}+b|1\rangle_{C}$ (Alice does NOT know a and b)

- Setting: Alice and Bob share a pair of entangled qubits

$$
\left|\Phi^{+}\right\rangle=\frac{|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}
$$

There is no quantum channel between them (i.e. no quantum state can be physically sent)

They can classically communicate
Alice has an unknown state $|\psi\rangle_{C}=a|0\rangle_{C}+b|1\rangle_{C}$ (Alice does NOT know a and b)

- Task: Alice wants to send the state $|\psi\rangle$ to Bob
- The overall initial state (entangled pair plus unknown state) is $\left|\Phi^{+}\right\rangle_{A B}|\psi\rangle_{C}$, where qubits A and C are in Alice's lab, while qubit B in Bob's.
- The overall initial state (entangled pair plus unknown state) is $\left|\Phi^{+}\right\rangle_{A B}|\psi\rangle_{C}$, where qubits A and C are in Alice's lab, while qubit B in Bob's.
- Alice measures her two qubits in the Bell basis $\left\{\left|\Phi^{+}\right\rangle_{A C},\left|\Phi^{-}\right\rangle_{A C},\left|\Psi^{+}\right\rangle_{A C},\left|\Psi^{-}\right\rangle_{A C}\right\}$
- The overall initial state (entangled pair plus unknown state) is $\left|\Phi^{+}\right\rangle_{A B}|\psi\rangle_{C}$, where qubits A and C are in Alice's lab, while qubit B in Bob's.
- Alice measures her two qubits in the Bell basis
$\left\{\left|\Phi^{+}\right\rangle_{A C},\left|\Phi^{-}\right\rangle_{A C},\left|\Psi^{+}\right\rangle_{A C},\left|\Psi^{-}\right\rangle_{A C}\right\}$
Note: The following identities hold

$$
\begin{aligned}
& |00\rangle=\frac{1}{\sqrt{2}}\left(\left|\Phi^{+}\right\rangle+\left|\Phi^{-}\right\rangle\right) ;|01\rangle=\frac{1}{\sqrt{2}}\left(\left|\Psi^{+}\right\rangle+\left|\Psi^{-}\right\rangle\right) \\
& |10\rangle=\frac{1}{\sqrt{2}}\left(\left|\Psi^{+}\right\rangle-\left|\Psi^{-}\right\rangle\right) ;|11\rangle=\frac{1}{\sqrt{2}}\left(\left|\Phi^{+}\right\rangle-\left|\Phi^{-}\right\rangle\right)
\end{aligned}
$$

- The overall initial state (entangled pair plus unknown state) is $\left|\Phi^{+}\right\rangle_{A B}|\psi\rangle_{C}$, where qubits A and C are in Alice's lab, while qubit B in Bob's.
- Alice measures her two qubits in the Bell basis
$\left\{\left|\Phi^{+}\right\rangle_{A C},\left|\Phi^{-}\right\rangle_{A C},\left|\Psi^{+}\right\rangle_{A C},\left|\Psi^{-}\right\rangle_{A C}\right\}$
Note: The following identities hold

$$
\begin{aligned}
& |00\rangle=\frac{1}{\sqrt{2}}\left(\left|\Phi^{+}\right\rangle+\left|\Phi^{-}\right\rangle\right) ;|01\rangle=\frac{1}{\sqrt{2}}\left(\left|\Psi^{+}\right\rangle+\left|\Psi^{-}\right\rangle\right) \\
& |10\rangle=\frac{1}{\sqrt{2}}\left(\left|\Psi^{+}\right\rangle-\left|\Psi^{-}\right\rangle\right) ;|11\rangle=\frac{1}{\sqrt{2}}\left(\left|\Phi^{+}\right\rangle-\left|\Phi^{-}\right\rangle\right)
\end{aligned}
$$

- The state (before the Bell measurement) can be written as:
$\left|\Phi^{+}\right\rangle_{A B}|\psi\rangle_{C}=$
$1 / 2\left[\left|\Phi^{+}\right\rangle_{A C}\left(a|0\rangle_{B}+b|1\rangle_{B}\right)+\left|\Phi^{-}\right\rangle_{A C}\left(a|0\rangle_{B}-b|1\rangle_{B}\right)+\right.$
$\left.+\left|\Psi^{+}\right\rangle_{A C}\left(a|1\rangle_{B}+b|0\rangle_{B}\right)+\left|\Psi^{-}\right\rangle_{A C}\left(-a|1\rangle_{B}+b|0\rangle_{B}\right)\right]$
- Alice by making a Bell measurement, she gets as outcome one of the four states and collapses the state to one of the four terms in the previous expression (brown)
- Alice by making a Bell measurement, she gets as outcome one of the four states and collapses the state to one of the four terms in the previous expression (brown)
- Depending on the outcome, Alice sends to Bob using a classical channel a "correction" to make:

$$
\begin{aligned}
& \left|\Phi^{+}\right\rangle_{A C} \rightarrow \mathbb{I}_{B} ;\left|\Phi^{-}\right\rangle_{A C} \rightarrow Z_{B}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
& \left|\Psi^{+}\right\rangle_{A C} \rightarrow X_{B}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] ;\left|\Psi^{-}\right\rangle_{A C} \rightarrow-(Z X)_{B}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

- Alice by making a Bell measurement, she gets as outcome one of the four states and collapses the state to one of the four terms in the previous expression (brown)
- Depending on the outcome, Alice sends to Bob using a classical channel a "correction" to make:

$$
\begin{aligned}
& \left|\Phi^{+}\right\rangle_{A C} \rightarrow \mathbb{I}_{B} ;\left|\Phi^{-}\right\rangle_{A C} \rightarrow Z_{B}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
& \left|\Psi^{+}\right\rangle_{A C} \rightarrow X_{B}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] ;\left|\Psi^{-}\right\rangle_{A C} \rightarrow-(Z X)_{B}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

- Bob in all four cases ends up with the state $|\psi\rangle_{B}$ completing the teleportation
- Alice by making a Bell measurement, she gets as outcome one of the four states and collapses the state to one of the four terms in the previous expression (brown)
- Depending on the outcome, Alice sends to Bob using a classical channel a "correction" to make:

$$
\begin{aligned}
& \left|\Phi^{+}\right\rangle_{A C} \rightarrow \mathbb{I}_{B} ;\left|\Phi^{-}\right\rangle_{A C} \rightarrow Z_{B}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
& \left|\Psi^{+}\right\rangle_{A C} \rightarrow X_{B}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] ;\left|\Psi^{-}\right\rangle_{A C} \rightarrow-(Z X)_{B}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

- Bob in all four cases ends up with the state $|\psi\rangle_{B}$ completing the teleportation
Note: To complete the teleportation, some corrections are needed which Alice communicates classically to Bob.
Otherwise she could "signal" faster than the speed of light!

Pictorially:

Classical Channel + Entanglement = Quantum Channel

- Let us label the outcomes as 2-bit string $a b$

$$
\begin{array}{ll}
\left|\Phi^{+}\right\rangle \rightarrow 00 & ; \quad\left|\Phi^{-}\right\rangle \rightarrow 01 \\
\left|\Psi^{+}\right\rangle \rightarrow 10 & ; \quad\left|\Psi^{-}\right\rangle \rightarrow 11
\end{array}
$$

- We can then rewrite the output state as:

$$
X^{a} Z^{b}|\psi\rangle
$$

- This is really the QOTP where the padding is the outcomes Alice got in her Bell measurement
- The state for Bob (without knowing Alice's outcomes/secret key) is totally random
Contains no information and thus doesn't violate non-signalling
- Bob cannot know whether Alice has made the measurement (and thus teleportation) or that he holds one side of a Bell pair
- Conversely in QOTP Bob could have received one side of a Bell pair, and not the padded state, thus he has no information!

