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Idistinguishability: theorem and implication

No-cloning: theorem and implication

Monogamy of Entanglement: theorem, implications and
measures of entanglement

Teleportation: what it is and its relation to Quantum
One-Time Pad
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Distinguishing Pure Quantum States

@ Assume a fixed set of possible states {|i)1),--- . [¢n)}

@ Alice chooses one of these states |¢);) and sends it to Bob
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Distinguishing Pure Quantum States

@ Assume a fixed set of possible states {|i)1),--- . [¢n)}
@ Alice chooses one of these states |¢;) and sends it to Bob

e Challenge: Bob to find the index / € {1,--- , n} (can make
any measurement)
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Distinguishing Pure Quantum States

@ Assume a fixed set of possible states {|i)1),--- . [¢n)}

@ Alice chooses one of these states |¢);) and sends it to Bob

e Challenge: Bob to find the index / € {1,--- , n} (can make
any measurement)
Case |: States |1);) are orthogonal, i.e. (¢ 1)) = Jj;

We perform a (projective) measurement that consist of the
following operators

Pi = i) (il and Po =T =37, [¢i) (il
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Distinguishing Pure Quantum States

@ Assume a fixed set of possible states {|i)1),--- . [¢n)}
@ Alice chooses one of these states |¢;) and sends it to Bob

e Challenge: Bob to find the index / € {1,--- , n} (can make
any measurement)
Case |: States |1);) are orthogonal, i.e. (¢ 1)) = Jj;
We perform a (projective) measurement that consist of the
following operators
Pi = |vi) (il and Po =T — 3", [¢hi) (i
Exercise: Check that this measurement satisfies the
completeness relation
We can see easily that if the state |¢x) is prepared, then
p(i) = (k| Pi |1)k) = ik and therefore Bob finds with
probability one the correct index.
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Distinguishing Pure Quantum States

Case Il: Some of the states are not orthogonal

Non-orthogonal pure states cannot be distinguished with certainty
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Distinguishing Pure Quantum States

Case Il: Some of the states are not orthogonal

Non-orthogonal pure states cannot be distinguished with certainty

Proof by contradiction:
o Consider two non-orthogonal states (11| 2) # 0
o Related to these are two measurement operators (not
necessarily projective) E; = Mi" My and E, = l\/Ié" Mo
o If we can distinguish them perfectly it means that when Alice
sends [¢)1) Bob has p(i = 1) = (¢1] E; [11) = 1 and when
Alice sends [1)2) Bob has p(i = 2) = (¢n| Ex [102) =1
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Distinguishing Pure Quantum States

Case Il: Some of the states are not orthogonal

Non-orthogonal pure states cannot be distinguished with certainty

Proof by contradiction:

o Consider two non-orthogonal states (11| 2) # 0

o Related to these are two measurement operators (not
necessarily projective) E; = Mi" My and E, = l\/Ié" Mo

o If we can distinguish them perfectly it means that when Alice
sends [¢)1) Bob has p(i = 1) = (¢1] E; [11) = 1 and when
Alice sends [1)2) Bob has p(i = 2) = (¢n| Ex [102) =1

o From >, Ei =T and (1| £ |[¢1) = 1 we conclude that
(11] B> [1) = 0 and thus /E; [¢1) =0
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Distinguishing Pure Quantum States

Case Il: Some of the states are not orthogonal

Non-orthogonal pure states cannot be distinguished with certainty

Proof by contradiction:

o Consider two non-orthogonal states (11| 2) # 0

o Related to these are two measurement operators (not
necessarily projective) E; = Mi" My and E, = l\/Ié" Mo

o If we can distinguish them perfectly it means that when Alice
sends [¢)1) Bob has p(i = 1) = (¢1] E; [11) = 1 and when
Alice sends [1)2) Bob has p(i = 2) = (¢n| Ex [102) =1

o From >, Ei =T and (1| £ |[¢1) = 1 we conclude that
(11| Ex [1h1) = 0 and thus \/Ex [11) = 0
Since the two states are non-orthogonal we can write
[th2) = a|t1) + B |p) where (Y1 |¢) = 0 is a unit vector
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Distinguishing Pure Quantum States

Case Il: Some of the states are not orthogonal

Non-orthogonal pure states cannot be distinguished with certainty

Proof by contradiction:

o Consider two non-orthogonal states (11| 2) # 0

o Related to these are two measurement operators (not
necessarily projective) E; = Mi" My and E, = l\/Ié" Mo

o If we can distinguish them perfectly it means that when Alice
sends [¢)1) Bob has p(i = 1) = (¢1] E; [11) = 1 and when
Alice sends [1)2) Bob has p(i = 2) = (¢n| Ex [102) =1

o From >, Ei =T and (1| £ |[¢1) = 1 we conclude that
(11| Ex [1h1) = 0 and thus \/Ex [11) = 0
Since the two states are non-orthogonal we can write
[th2) = a|t1) + B |p) where (Y1 |¢) = 0 is a unit vector
Then it follows : (12| Ex |102) = |32 (0| B2 |¢) < B> < 1
which contradicts our assumption [J
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Significance of Indistringuishability for Crypto

@ B92 QKD protocol relies on this impossibility.

@ One can also bound the probability of distinguishing, which is
related with how far from orthogonal are the states.

@ In many other quantum communication protocols this property
is essential (e.g. some protocols that achieve: Quantum
Digital Signatures, Quantum Coin-Flipping, Blind Quantum
Computing, etc)
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No-cloning Theorem

No-cloning Theorem

It is impossible to copy an unknown quantum state
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No-cloning Theorem

No-cloning Theorem
It is impossible to copy an unknown quantum state

e Classically we can copy an (unknown) bit: CNOT(20) =a a
CNOT between unknown bit (control) and the 0 bit (target)
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No-cloning Theorem

No-cloning Theorem
It is impossible to copy an unknown quantum state

e Classically we can copy an (unknown) bit: CNOT(20) =a a
CNOT between unknown bit (control) and the 0 bit (target)
@ Does not work in QM:
Unknown state |¢)) = a|0) + b|1) and
AX = |00) (00| + |01) (01] + [11) (10| -+ [10) (11|

AX 1) |0) = a|00) + b|11)
which is different than: [¢) [¢)
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No-cloning Theorem

No-cloning Theorem
It is impossible to copy an unknown quantum state

e Classically we can copy an (unknown) bit: CNOT(20) =a a
CNOT between unknown bit (control) and the 0 bit (target)

@ Does not work in QM:
Unknown state |¢)) = a|0) + b|1) and
AX = |00) (00| + |01) (01] + [11) (10| -+ [10) (11|

AX 1) |0) = a|00) + b|11)
which is different than: [¢) [¢)

@ No-deleting Theroem: The “time-reversed” version proves that
it is impossible to delete a qubit using unitary gates.
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No-cloning Theorem (Proof)

Proof: By contradiction. Assume that we could copy:

@ Then there exists a unitary:
U ) [0) = [v) [4) ¥ )
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No-cloning Theorem (Proof)

Proof: By contradiction. Assume that we could copy:
@ Then there exists a unitary:

UL 10) = [6) [4) Y [4)
o Consider |11) , [1)2) where (11| 1n) =a# 1or 0
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No-cloning Theorem (Proof)

Proof: By contradiction. Assume that we could copy:
@ Then there exists a unitary:
U [0) = [} 1) ¥ [9)
o Consider |11) , [1)2) where (11| 1n) =a# 1or 0
e Consider an ancilla initialised at |0), and then the inner
product between [¢)1) © |0) and |¢) @ |0):

(1] @ (O))(|42) ® 10)) = (41| 92) (0]0) =a (1)
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No-cloning Theorem (Proof)

Proof: By contradiction. Assume that we could copy:
@ Then there exists a unitary:
UG I0) = [} [4) V' [}
o Consider |11) , [1)2) where (11| 1n) =a# 1or 0
e Consider an ancilla initialised at |0), and then the inner
product between [¢)1) © |0) and |¢) @ |0):

(1] @ (O))(|42) ® 10)) = (41| 92) (0]0) =a (1)

@ Inner products are invariant under any unitary:

(1] @ (O))(Ip2) ®10)) = ((¢1] @ (O UTU(|2) ® |0))
= (1l @ (W1])([1b2) @ [¥2))
= (1] ¥a) (Y1] ) = &° (2)
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No-cloning Theorem (Proof)

Proof: By contradiction. Assume that we could copy:
@ Then there exists a unitary:
U [0) = [} 1) ¥ [9)
o Consider |11) , [1)2) where (11| 1n) =a# 1or 0
e Consider an ancilla initialised at |0), and then the inner
product between [¢)1) © |0) and |¢) @ |0):

(1] @ (O))(|42) ® 10)) = (41| 92) (0]0) =a (1)

@ Inner products are invariant under any unitary:

(V1@ (0)(l2) ®10)) = ((¥a] ® (O)U'U(l¢2) ® |0))
= (] @ W1)(l2) © [¢2))
= (i) (Ualte) =2°  (2)
e From Eq. (1) and Eq. (2) we have a = a° possible only if
(11| 12) = 1 or 0 reaching contradiction [J
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Implications of No-Cloning

@ Security of QKD relies on this. If one could copy the BB84
states, then the adversary could measure one copy in each
basis, and then compromise the security completely.

@ No-Cloning is essential for the indistringuishability too

Q: Can you come up with a way to distinguish states if you
had a copying machine?

@ Can put a bound on how well one can copy an unknown
quantum state — this is used in certain security proofs
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Monogamy of Entanglement

The "maximally” entangled states have some unique properties
© Perfect correlation: Alice’s and Bob's results are perfectly
correlated in all bases
&T) =

(|00>+|11>) (\++>+|——>)

3\
3\
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Monogamy of Entanglement

The "maximally” entangled states have some unique properties
© Perfect correlation: Alice’s and Bob's results are perfectly
correlated in all bases

1 1
ﬁ(|00> +11)) = \ﬁ(HH +1=-))

This is not the case for “partially” entangled e.g.

%) =

9=/ 2100)+ /11 = <\[\++\ )+ 1)+ 504 -1 >—\—>)>

which clearly is not perfectly correlated
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Monogamy of Entanglement

© Monogamy: If two qubits are maximally entangled, then they
are separable with respect to any third qubit
pag = Tre(page) = [97) ag (®T| = pase = [07) 45 (®7| @ pE

e By knowing A and B are strongly (quantum) correlated, we
know that A and B are not correlated with anything else!
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Monogamy of Entanglement

© Monogamy: If two qubits are maximally entangled, then they
are separable with respect to any third qubit

pag = Tre(page) = [97) 4 (PF] = page = |07) 15 (7| ® pe

e By knowing A and B are strongly (quantum) correlated, we
know that A and B are not correlated with anything else!

@ Need a measure to quantify how entangled are two subsystems
(see later)

@ This can be used both to define properly what “perfect
correlation” means, and to demonstrate that they are not
correlated with third systems
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Implications of Monogamy of Entanglement

@ Is the basis for entanglement-based QKD protocols (e.g.
BBM92 and E91) security.

@ Even for other QKD protocols, their formal security is proven
by reduction to entanglement-based protocols.

e Can quantify this since the more quantumly-correlated with
one system, the closer it is to being uncorrelated with other
systems.
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Measure of Entanglement

o Bipartite state psz, how can we measure how entangled it is?
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Measure of Entanglement

o Bipartite state psz, how can we measure how entangled it is?

@ Assume pure (global) state pag = [¥) (¥| 45
Entanglement Entropy: S(pa) = —Trpalogpa = S(ps),
where pa, pg the reduced density matrices

@ This measures entanglement (check that separable states
[11) o @ |1)2) g have zero entanglement entropy)
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Entanglement Entropy: S(pa) = —Trpalogpa = S(ps),
where pa, pg the reduced density matrices

@ This measures entanglement (check that separable states
[11) o @ |1)2) g have zero entanglement entropy)
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) 45 = J5(100) +[11)) (check!)

12/17

Petros Wallden Lecture 19: Properties of Quantum Systems and Crypto



Measure of Entanglement

o Bipartite state psz, how can we measure how entangled it is?

@ Assume pure (global) state pag = [¥) (¥| 45
Entanglement Entropy: S(pa) = —Trpalogpa = S(ps),
where pa, pg the reduced density matrices

@ This measures entanglement (check that separable states
[11) o @ |1)2) g have zero entanglement entropy)

e For qubit, maximum entanglement is given by:
) 45 = J5(100) +[11)) (check!)

@ A general (for mixed states too) measure of entanglement:
Relative Entropy of Entanglement: Measures the minimum
relative entropy between our state pag and any separable state

DREE(PAB) - minnABE separable states S(PAB HO.AB)
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Teleportation

@ Setting: Alice and Bob share a pair of entangled qubits

&F) = 0) 0>B\2|1>A D

There is no quantum channel between them (i.e. no
quantum state can be physically sent)

They can classically communicate

Alice has an unknown state [¢)) - = a|0)- + b|1)
(Alice does NOT know a and b)
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Teleportation

@ Setting: Alice and Bob share a pair of entangled qubits

&F) = 0) 0>B\2|1>A D

There is no quantum channel between them (i.e. no
quantum state can be physically sent)

They can classically communicate

Alice has an unknown state [¢)) - = a|0)- + b|1)
(Alice does NOT know a and b)

@ Task: Alice wants to send the state |¢)) to Bob
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Teleportation

@ The overall initial state (entangled pair plus unknown state) is
(&) 45 1) -, where qubits A and C are in Alice's lab, while
qubit B in Bob's.
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Teleportation

@ The overall initial state (entangled pair plus unknown state) is
(&) 45 1) -, where qubits A and C are in Alice's lab, while
qubit B in Bob's.

@ Alice measures her two qubits in the Bell basis
{0 ac 197D ac, W ) ac . V) ack
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Teleportation

@ The overall initial state (entangled pair plus unknown state) is
(&) 45 1) -, where qubits A and C are in Alice's lab, while
qubit B in Bob's.

@ Alice measures her two qubits in the Bell basis

{0 ac 1P ) ac, W ) ac . V) ack
Note: The following identities hold

00) = J5(|0%) +|®7)) ; [01) = T5(|W) + [W™))
[10) = 5([WF) = [w7)) ; [11) = J5(|oF) — 7))

S-S
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Teleportation

@ The overall initial state (entangled pair plus unknown state) is
(&) 45 1) -, where qubits A and C are in Alice's lab, while
qubit B in Bob's.

@ Alice measures her two qubits in the Bell basis

{0 ac 1P ) ac, W ) ac . V) ack
Note: The following identities hold

00) = J5(10F) +[7)) 1 01) = 5(WF) + [v7))
10) = 5(IWH) = [W7)) : [11) = (/%) — 7))

@ The state (before the Bell measurement) can be written as:
5 ) ag [¥)c =
1/2[|®%) ac (2l0)g + b[1)g) + [®7)ac (a]0) g — b 1))+
+ W ac(all)g +b10)g) + W) ac(—all)g + b[0)g)]
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Teleportation

@ Alice by making a Bell measurement, she gets as outcome one
of the four states and collapses the state to one of the four
terms in the previous expression (brown)
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Teleportation

@ Alice by making a Bell measurement, she gets as outcome one
of the four states and collapses the state to one of the four
terms in the previous expression (brown)

@ Depending on the outcome, Alice sends to Bob using a

classical channel a “correction” to make:
1 0

‘¢+>AC_>HB; 0 —1

Wihac > Xa = |} ol i W hac @0 = |} ]
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Teleportation

@ Alice by making a Bell measurement, she gets as outcome one
of the four states and collapses the state to one of the four
terms in the previous expression (brown)

@ Depending on the outcome, Alice sends to Bob using a

classical channel a “correction” to make:
1 0

‘¢+>AC_>HB; 0 —1

O )ac = 28 = {

Wihac > Xa = |} ol i W hac @0 = |} ]

@ Bob in all four cases ends up with the state |¢) ; completing
the teleportation

15/17

Petros Wallden Lecture 19: Properties of Quantum Systems and Crypto



Teleportation

@ Alice by making a Bell measurement, she gets as outcome one
of the four states and collapses the state to one of the four
terms in the previous expression (brown)

@ Depending on the outcome, Alice sends to Bob using a

classical channel a “correction” to make:
1 0

‘¢+>AC_>HB; 0 —1

O )ac = 28 = {

01 _ 0 —1
s = Xe = |7 o] i v e = —@0e =[] ]
@ Bob in all four cases ends up with the state |¢) ; completing
the teleportation

Note: To complete the teleportation, some corrections are
needed which Alice communicates classically to Bob.
Otherwise she could “signal” faster than the speed of light!
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Teleportation

Pictorially:

Unknown qubit

lv) —>

EPR

Alice

2bitc

pair

' Bob

lassical message
—

—

—> )

Teleported qubit

Classical Channel + Entanglement = Quantum Channel

Petros Wallden
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Teleportation and QOTP

@ Let us label the outcomes as 2-bit string ab
®T) - 00 ; |®7) =01
v —10 ; V)11

@ We can then rewrite the output state as:

X3Zb )
@ This is really the QOTP where the padding is the outcomes
Alice got in her Bell measurement

@ The state for Bob (without knowing Alice's outcomes/secret
key) is totally random

Contains no information and thus doesn't violate non-signalling

@ Bob cannot know whether Alice has made the measurement
(and thus teleportation) or that he holds one side of a Bell pair
@ Conversely in QOTP Bob could have received one side of a Bell
pair, and not the padded state, thus he has no information! .
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