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This Lecture

Idistinguishability: theorem and implication

No-cloning: theorem and implication

Monogamy of Entanglement: theorem, implications and
measures of entanglement

Teleportation: what it is and its relation to Quantum
One-Time Pad
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Distinguishing Pure Quantum States

Assume a fixed set of possible states {|ψ1⟩ , · · · , |ψn⟩}
Alice chooses one of these states |ψi ⟩ and sends it to Bob

Challenge: Bob to find the index i ∈ {1, · · · , n} (can make
any measurement)
Case I: States |ψi ⟩ are orthogonal, i.e. ⟨ψi |ψj⟩ = δij
We perform a (projective) measurement that consist of the
following operators
Pi = |ψi ⟩ ⟨ψi | and P0 = I−

∑
i |ψi ⟩ ⟨ψi |

Exercise: Check that this measurement satisfies the
completeness relation
We can see easily that if the state |ψk⟩ is prepared, then
p(i) = ⟨ψk |Pi |ψk⟩ = δik and therefore Bob finds with
probability one the correct index.
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Distinguishing Pure Quantum States

Case II: Some of the states are not orthogonal

Theorem
Non-orthogonal pure states cannot be distinguished with certainty

Proof by contradiction:
Consider two non-orthogonal states ⟨ψ1|ψ2⟩ ≠ 0
Related to these are two measurement operators (not
necessarily projective) E1 = M†

1M1 and E2 = M†
2M2

If we can distinguish them perfectly it means that when Alice
sends |ψ1⟩ Bob has p(i = 1) = ⟨ψ1|E1 |ψ1⟩ = 1 and when
Alice sends |ψ2⟩ Bob has p(i = 2) = ⟨ψ2|E2 |ψ2⟩ = 1
From

∑
i Ei = I and ⟨ψ1|E1 |ψ1⟩ = 1 we conclude that

⟨ψ1|E2 |ψ1⟩ = 0 and thus
√
E2 |ψ1⟩ = 0

Since the two states are non-orthogonal we can write
|ψ2⟩ = α |ψ1⟩+ β |ϕ⟩ where ⟨ψ1 |ϕ⟩ = 0 is a unit vector
Then it follows : ⟨ψ2|E2 |ψ2⟩ = |β|2 ⟨ϕ|E2 |ϕ⟩ ≤ |β|2 < 1
which contradicts our assumption □
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Significance of Indistringuishability for Crypto

B92 QKD protocol relies on this impossibility.

One can also bound the probability of distinguishing, which is
related with how far from orthogonal are the states.

In many other quantum communication protocols this property
is essential (e.g. some protocols that achieve: Quantum
Digital Signatures, Quantum Coin-Flipping, Blind Quantum
Computing, etc)
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No-cloning Theorem

No-cloning Theorem
It is impossible to copy an unknown quantum state

Classically we can copy an (unknown) bit: CNOT(a 0) = a a
CNOT between unknown bit (control) and the 0 bit (target)
Does not work in QM:
Unknown state |ψ⟩ = a |0⟩+ b |1⟩ and
∧X = |00⟩ ⟨00|+ |01⟩ ⟨01|+ |11⟩ ⟨10|+ |10⟩ ⟨11|

∧X |ψ⟩ |0⟩ = a |00⟩+ b |11⟩

which is different than: |ψ⟩ |ψ⟩
No-deleting Theroem: The “time-reversed” version proves that
it is impossible to delete a qubit using unitary gates.
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No-cloning Theorem (Proof)
Proof: By contradiction. Assume that we could copy:
Then there exists a unitary:
U |ψ⟩ |0⟩ = |ψ⟩ |ψ⟩ ∀ |ψ⟩

Consider |ψ1⟩ , |ψ2⟩ where ⟨ψ1|ψ2⟩ = a ̸= 1 or 0
Consider an ancilla initialised at |0⟩, and then the inner
product between |ψ1⟩ ⊗ |0⟩ and |ψ2⟩ ⊗ |0⟩:

(⟨ψ1| ⊗ ⟨0|)(|ψ2⟩ ⊗ |0⟩) = ⟨ψ1|ψ2⟩ ⟨0| 0⟩ = a (1)

Inner products are invariant under any unitary:

(⟨ψ1| ⊗ ⟨0|)(|ψ2⟩ ⊗ |0⟩) = (⟨ψ1| ⊗ ⟨0|)U†U(|ψ2⟩ ⊗ |0⟩)
= (⟨ψ1| ⊗ ⟨ψ1|)(|ψ2⟩ ⊗ |ψ2⟩)
= ⟨ψ1|ψ2⟩ ⟨ψ1|ψ2⟩ = a2 (2)

From Eq. (1) and Eq. (2) we have a = a2 possible only if
⟨ψ1|ψ2⟩ = 1 or 0 reaching contradiction □
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Implications of No-Cloning

Security of QKD relies on this. If one could copy the BB84
states, then the adversary could measure one copy in each
basis, and then compromise the security completely.

No-Cloning is essential for the indistringuishability too

Q: Can you come up with a way to distinguish states if you
had a copying machine?

Can put a bound on how well one can copy an unknown
quantum state – this is used in certain security proofs
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Monogamy of Entanglement

The “maximally” entangled states have some unique properties
1 Perfect correlation: Alice’s and Bob’s results are perfectly

correlated in all bases

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) = 1√

2
(|++⟩+ |−−⟩)

This is not the case for “partially” entangled e.g.

|ψ⟩ =
√

2
3
|00⟩+

√
1
3
|11⟩ = 1

2

(√
2
3
(|+⟩+ |−⟩)(|+⟩+ |−⟩) +

√
1
3
(|+⟩ − |−⟩)(|+⟩ − |−⟩)

)

which clearly is not perfectly correlated
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Monogamy of Entanglement

2 Monogamy: If two qubits are maximally entangled, then they
are separable with respect to any third qubit

ρAB = TrE (ρABE ) = |Φ+⟩AB ⟨Φ+| ⇒ ρABE = |Φ+⟩AB ⟨Φ+| ⊗ ρE

By knowing A and B are strongly (quantum) correlated, we
know that A and B are not correlated with anything else!

Need a measure to quantify how entangled are two subsystems
(see later)
This can be used both to define properly what “perfect
correlation” means, and to demonstrate that they are not
correlated with third systems
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Implications of Monogamy of Entanglement

Is the basis for entanglement-based QKD protocols (e.g.
BBM92 and E91) security.

Even for other QKD protocols, their formal security is proven
by reduction to entanglement-based protocols.

Can quantify this since the more quantumly-correlated with
one system, the closer it is to being uncorrelated with other
systems.
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Measure of Entanglement

Bipartite state ρAB , how can we measure how entangled it is?

Assume pure (global) state ρAB = |ψ⟩ ⟨ψ|AB
Entanglement Entropy: S(ρA) = −TrρA log ρA = S(ρB),
where ρA, ρB the reduced density matrices

This measures entanglement (check that separable states
|ψ1⟩A ⊗ |ψ2⟩B have zero entanglement entropy)

For qubit, maximum entanglement is given by:
|Φ+⟩AB = 1√

2
(|00⟩+ |11⟩) (check!)

A general (for mixed states too) measure of entanglement:
Relative Entropy of Entanglement: Measures the minimum
relative entropy between our state ρAB and any separable state
DREE (ρAB) = minσAB∈ separable states S(ρAB∥σAB)
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Teleportation

Setting: Alice and Bob share a pair of entangled qubits

|Φ+⟩ =
|0⟩A |0⟩B + |1⟩A |1⟩B√

2

There is no quantum channel between them (i.e. no
quantum state can be physically sent)

They can classically communicate

Alice has an unknown state |ψ⟩C = a |0⟩C + b |1⟩C
(Alice does NOT know a and b)

Task: Alice wants to send the state |ψ⟩ to Bob
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Teleportation

The overall initial state (entangled pair plus unknown state) is
|Φ+⟩AB |ψ⟩C , where qubits A and C are in Alice’s lab, while
qubit B in Bob’s.

Alice measures her two qubits in the Bell basis
{|Φ+⟩AC , |Φ−⟩AC , |Ψ+⟩AC , |Ψ−⟩AC}
Note: The following identities hold
|00⟩ = 1√

2
(|Φ+⟩+ |Φ−⟩) ; |01⟩ = 1√

2
(|Ψ+⟩+ |Ψ−⟩)

|10⟩ = 1√
2
(|Ψ+⟩ − |Ψ−⟩) ; |11⟩ = 1√

2
(|Φ+⟩ − |Φ−⟩)

The state (before the Bell measurement) can be written as:
|Φ+⟩AB |ψ⟩C =
1/2[|Φ+⟩AC (a |0⟩B + b |1⟩B) + |Φ−⟩AC (a |0⟩B − b |1⟩B)+
+ |Ψ+⟩AC (a |1⟩B + b |0⟩B) + |Ψ−⟩AC (−a |1⟩B + b |0⟩B)]
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Teleportation

Alice by making a Bell measurement, she gets as outcome one
of the four states and collapses the state to one of the four
terms in the previous expression (brown)

Depending on the outcome, Alice sends to Bob using a
classical channel a “correction” to make:

|Φ+⟩AC → IB ; |Φ−⟩AC → ZB =

[
1 0
0 −1

]
|Ψ+⟩AC → XB =

[
0 1
1 0

]
; |Ψ−⟩AC → −(ZX )B =

[
0 −1
1 0

]
Bob in all four cases ends up with the state |ψ⟩B completing
the teleportation
Note: To complete the teleportation, some corrections are
needed which Alice communicates classically to Bob.
Otherwise she could “signal” faster than the speed of light!
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Teleportation

Pictorially:
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Teleportation and QOTP
Let us label the outcomes as 2-bit string ab

|Φ+⟩ → 00 ; |Φ−⟩ → 01
|Ψ+⟩ → 10 ; |Ψ−⟩ → 11

We can then rewrite the output state as:

X aZb |ψ⟩
This is really the QOTP where the padding is the outcomes
Alice got in her Bell measurement

The state for Bob (without knowing Alice’s outcomes/secret
key) is totally random

Contains no information and thus doesn’t violate non-signalling

Bob cannot know whether Alice has made the measurement
(and thus teleportation) or that he holds one side of a Bell pair

Conversely in QOTP Bob could have received one side of a Bell
pair, and not the padded state, thus he has no information!
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