Quantum Cyber Security Lecture 1: Introduction

Petros Wallden & Mina Doosti

University of Edinburgh

16th January 2024

This Lecture

- Logistics
- Motivation: Quantum Computers and Security
- 3 Quantum Cyber Security: Definition and Course Content

Part I

Logistics

Contacts

- Petros Wallden (Course Organiser & Lecturer)
 petros.wallden@ed.ac.uk
- Mina Doosti (Lecturer)
 mdoosti@ed.ac.uk
- Marine Demarty (TA)
 Marine.Demarty@ed.ac.uk
- Sean Thrasher (Tutor)
 S.Thrasher@sms.ed.ac.uk
- Chirag Wadhwa (Tutor)
 chirag.wadhwa@ed.ac.uk

Structure of Course

- Lectures
 - Two per week (Tuesday and Thursday at 11:10 12:00)
 - In-person: Tuesday's Lister-Learning-and-teaching-centre LLTC
 2.3

Thursday's Appleton Tower AT 2.06

- Recoding available
- Tutorials
 - Once per week (Group 1 Wednesday 10:00 10:50; Group 2 Wednesday 14:10 - 15:00; Group 3 Thursday 15:10-16:00)
 - Three or Two groups (randomly allocated)
 - In-person at: Group 1 AT 2.04; Group 2 AT 2.07; Group 3 AT 2.07) MAY CHANGE
 - Starts at week 3 (31st January)
- Q& A after classes (altern. contact us via email or at Teams)

Assessment

- Coursework 25%
 - One assignment released 11th March 2024
 - Due at 28th March 2024 (details to follow)
- Exam 75%
 - Two questions to choose out of three
 - Further advice at the revision lecture (last)

Resources

• Main textbook (additional references and resources will be given for each topic if not covered in this):

"Quantum Computation and Quantum Information" by Michael A. Nielsen & Isaac L. Chuang

- 2 Review paper: Advances in Quantum Cryptography (link here)
- Lecture Notes: https://opencourse.inf.ed.ac.uk/qcs/schedule. Recordings from the Learn page of the course.
- You can also register at the piazza of the course for questions (mainly for students interactions)

Part II

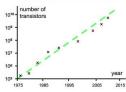
Motivation: Quantum Computers and Security

- Quantum Physics is a very successful theory
- Quantum Physics has many counter-intuitive properties
- Size of transistors in microchip are approaching quantum scale

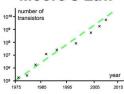
- Quantum Physics is a very successful theory
- Quantum Physics has many counter-intuitive properties
- Size of transistors in microchip are approaching quantum scale

Main Question

Can we built a computer using as basic information elements quantum systems, and will this give us extra power?


- Quantum Physics is a very successful theory
- Quantum Physics has many counter-intuitive properties
- Size of transistors in microchip are approaching quantum scale


Main Question


Can we built a computer using as basic information elements quantum systems, and will this give us extra power?

- Q: What computational power would a QC have?
- A: Greater than classical probabilistic BPP ⊆ BQP
- Q: Is it possible to built such computing device?
- A: Yes! No fundamental reason stopping us (engineering)

Moore's Law

Bit	Qubit
Takes values either 0 or 1	Can behave as being simultane-
	ously 0 and 1: $\alpha 0\rangle + \beta 1\rangle$
Measurement reveals value	Measurement disturbs
Can be copied	Cannot be copied
Strings are described w.r.t. sin-	Strings cannot be described
gle bits (local)	w.r.t. single qubits (non-local)
Behave probabilistically	"Complex probabilities"

Quantum Computers: Is it a serious threat?

- Quantum Computers can solve efficiently factoring and discrete log (Factoring, RSAP, Discrete Log, DHP)
- Intractable problems (classical hardness guarantees security)
 - ⇒ Tractable problems (for Quantum Computers)

Quantum Computers: Is it a serious threat?

- Quantum Computers can solve efficiently factoring and discrete log (Factoring, RSAP, Discrete Log, DHP)
- Intractable problems (classical hardness guarantees security)
 - ⇒ Tractable problems (for Quantum Computers)

Take-home message

If a scalable quantum computer is built, most of current cryptography breaks (from emails, bank transactions to national security secrets)!

Quantum Computers: Is it a serious threat?

- Quantum Computers can solve efficiently factoring and discrete log (Factoring, RSAP, Discrete Log, DHP)
- Intractable problems (classical hardness guarantees security)
 - ⇒ Tractable problems (for Quantum Computers)

Take-home message

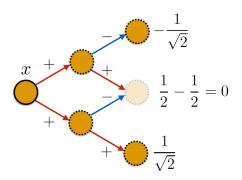
If a scalable quantum computer is built, most of current cryptography breaks (from emails, bank transactions to national security secrets)!

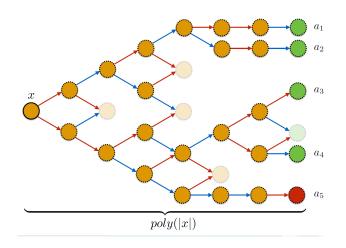
- Known since 1990's
- Requires unprecedented control of quantum systems

Huge recent initiative in Quantum Technologies
 Companies: Google, IBM, Microsoft, Amazon, Intel, D-Wave, Rigetti, IonQ, etc
 Governments: UK, EU, USA, China, Canada, etc (£billions)
 Developments in Quantum Technologies are accelerating and the prospect of practical QT is becoming real

- Huge recent initiative in Quantum Technologies
 Companies: Google, IBM, Microsoft, Amazon, Intel, D-Wave, Rigetti, IonQ, etc
 Governments: UK, EU, USA, China, Canada, etc (£billions)
 Developments in Quantum Technologies are accelerating and the prospect of practical QT is becoming real
- Security can be broken retrospectively

- Huge recent initiative in Quantum Technologies
 Companies: Google, IBM, Microsoft, Amazon, Intel, D-Wave, Rigetti, IonQ, etc
 Governments: UK, EU, USA, China, Canada, etc (£billions)
 Developments in Quantum Technologies are accelerating and the prospect of practical QT is becoming real
- Security can be broken retrospectively
- Years (possibly decades), are needed to develop/replace all protocols with "quantum-safe" protocols


- Huge recent initiative in Quantum Technologies
 Companies: Google, IBM, Microsoft, Amazon, Intel, D-Wave, Rigetti, IonQ, etc
 Governments: UK, EU, USA, China, Canada, etc (£billions)
 Developments in Quantum Technologies are accelerating and the prospect of practical QT is becoming real
- Security can be broken retrospectively
- Years (possibly decades), are needed to develop/replace all protocols with "quantum-safe" protocols


Take-home message

There is a serious medium-time threat that scalable quantum computers will become available. Counter-actions should start now.

- Could offer significant computational speed-ups
- Can perform more types of operations
- Quantum computers behave as probabilistic computers but with complex-valued "probabilities"

- Could offer significant computational speed-ups
- Can perform more types of operations
- Quantum computers behave as probabilistic computers but with complex-valued "probabilities"
- Probability is the mod square of the sum of the complex amplitudes

- For speed-up: need an algorithm that many terms cancel each other
- Non-trivial: need suitable algorithm design for each task

- For speed-up: need an algorithm that many terms cancel each other
- Non-trivial: need suitable algorithm design for each task

$$\bullet |\sum_i a_i|^2 = \sum_i |a_i|^2 + \sum_{i \neq j} a_i^* a_j$$

First term: classical probabilities

Second term: Amplify or cancel probability (interference)

- For speed-up: need an algorithm that many terms cancel each other
- Non-trivial: need suitable algorithm design for each task

$$\bullet |\sum_i a_i|^2 = \sum_i |a_i|^2 + \sum_{i \neq j} a_i^* a_j$$

First term: classical probabilities

Second term: Amplify or cancel probability (interference)

ullet Classical systems: random amplitudes o interference pprox zero

On the Power of Quantum Computation

Myth 1

Quantum Computers are much faster in performing operations than Classical Computers

On the Power of Quantum Computation

Myth 1

Quantum Computers are much faster in performing operations than Classical Computers

Reality

Quantum computers are **not** faster. Speed-up is obtained because quantum theory allows algorithms/operations impossible for classical computers.

On the Power of Quantum Computation

Myth 2

Quantum Computers simultaneously perform all branches of a (probabilistic) computation and can use all that information

On the Power of Quantum Computation

Myth 2

Quantum Computers simultaneously perform all branches of a (probabilistic) computation and can use all that information

Reality

QC span the space of possibilities in a peculiar way (behave as complex probabilities). However, at the end of the computation the result is obtained by a **single read-out/measurement** and "unrealised" paths do not contribute.

On the Power of Quantum Computation

Myth 3

Quantum Computers give equally impressive computational speed-up to all problems

On the Power of Quantum Computation

Myth 3

Quantum Computers give equally impressive computational speed-up to all problems

Reality

Quantum computers can give from exponential speed-up (factoring) to much smaller quadratic speed-up (search). The exact optimal quantum algorithm depends on the problem and is crucial for quantum cryptanalysis.

What it takes to be Quantum-Safe

Myth 4

No crypto protocol based on computational assumptions can be secure against quantum attacks. Therefore we can only use information theoretic security

What it takes to be Quantum-Safe

Myth 4

No crypto protocol based on computational assumptions can be secure against quantum attacks. Therefore we can only use information theoretic security

Reality

Quantum computers give speed-ups, but are real devices with well defined limitations. Can base crypto on quantum computational assumptions provided (i) there isn't an efficient quantum algorithm, as for some major cryptosystems (RSA, EC-DSA) and (ii) new security analysis is performed and security parameters are chosen

What it takes to be Quantum-Safe

Myth 5

Using problems that are hard for a quantum computer suffices to make a crypto protocol secure against any quantum attack

Myths and Realities

What it takes to be Quantum-Safe

Myth 5

Using problems that are hard for a quantum computer suffices to make a crypto protocol secure against any quantum attack

Reality

This is **necessary but not sufficient** condition. New quantum cryptanalysis, new security definitions and new proof techniques are also needed.

Part III

Quantum Cyber Security: Definition and Course Content

Quantum Cyber Security (QCS)

Definition

Quantum Cyber Security is the field that studies *every* impact of the development of quantum technologies on the security and privacy of communications and computations

Quantum Cyber Security (QCS)

Definition

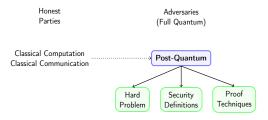
Quantum Cyber Security is the field that studies *every* impact of the development of quantum technologies on the security and privacy of communications and computations

 Disruptive: Adversaries with Quantum Computers or QTech E.g. Quantum computers solve efficiently factoring and discrete log ⇒ RSA, DSA, ECDSA break

If a scalable quantum computer is built, most of current crypto breaks (from emails, bank transactions to national security secrets)!

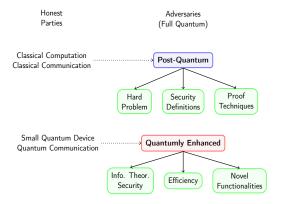
Quantum Cyber Security (QCS)

Definition

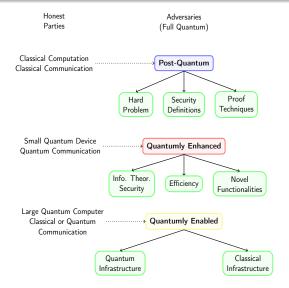

Quantum Cyber Security is the field that studies *every* impact of the development of quantum technologies on the security and privacy of communications and computations

 Disruptive: Adversaries with Quantum Computers or QTech E.g. Quantum computers solve efficiently factoring and discrete log ⇒ RSA, DSA, ECDSA break

If a scalable quantum computer is built, most of current crypto breaks (from emails, bank transactions to national security secrets)!


New Opport: Honest with QTech better security/efficiency
 E.g. Quantum Key Distribution (QKD). Quantumness used to enable Key Distribution with information theoretic security

Quantum Cyber Security Landscape: Three Categories


See our review "Cyber Security in the Quantum Era" in CACM

Quantum Cyber Security Landscape: Three Categories

See our review "Cyber Security in the Quantum Era" in CACM

Quantum Cyber Security Landscape: Three Categories

See our review "Cyber Security in the Quantum Era" in CACM

 Introduction to Quantum Information & Computation (6 Lectures)

- Introduction to Quantum Information & Computation (6 Lectures)
- Quantum Key Distribution (4 Lectures). First QKD lecture next week (before completing background).

- Introduction to Quantum Information & Computation (6 Lectures)
- Quantum Key Distribution (4 Lectures). First QKD lecture next week (before completing background).
- Quantum Coin Flipping (1 Lecture)
- Quantum secure two-party functionalities (1 Lecture)
- Quantum Encryption & Quantum Authentication (1 Lecture)
- Other functionalities, protocols (1 Lectures)

- Introduction to Quantum Information & Computation (6 Lectures)
- Quantum Key Distribution (4 Lectures). First QKD lecture next week (before completing background).
- Quantum Coin Flipping (1 Lecture)
- Quantum secure two-party functionalities (1 Lecture)
- Quantum Encryption & Quantum Authentication (1 Lecture)
- Other functionalities, protocols (1 Lectures)
- Post-quantum cryptography (3 Lectures)
- Guest Lecture(s), Revision (2 Lectures)

- First part is heavy in maths, but the purpose (cyber security) will become clearer in later parts
- Practically, once used in the notation, it becomes much more easy to follow and use

- First part is heavy in maths, but the purpose (cyber security) will become clearer in later parts
- Practically, once used in the notation, it becomes much more easy to follow and use
- Bear with us

- First part is heavy in maths, but the purpose (cyber security) will become clearer in later parts
- Practically, once used in the notation, it becomes much more easy to follow and use
- Bear with us

My favourite starting quote in a maths book:

"(the reader) should not be discouraged if (they) find (they) do not have the prerequisites for reading the prerequisites"

- First part is heavy in maths, but the purpose (cyber security) will become clearer in later parts
- Practically, once used in the notation, it becomes much more easy to follow and use
- Bear with us

- My favourite starting quote in a maths book:
 "(the reader) should not be discouraged if (they) find (they) do not have the prerequisites for reading the prerequisites"
- But this is NOT the case in this course!
 We hope you will enjoy it!