Quantum Cyber Security Lecture 2: Quantum Information Basics I

Petros Wallden

University of Edinburgh

18th January 2024

Motivation: From Bit-strings to Qubit-strings

- Units of quantum information are qubits
- Registers consists of strings of qubits

Motivation: From Bit-strings to Qubit-strings

- Units of quantum information are qubits
- Registers consists of strings of qubits
- Qubit-strings $|110\rangle$ are (unit) vectors with complex coefficients E.g. $|\psi\rangle=\frac{1}{\sqrt{2}}(|101\rangle+i|011\rangle)$

Motivation: From Bit-strings to Qubit-strings

- Units of quantum information are qubits
- Registers consists of strings of qubits
- Qubit-strings $|110\rangle$ are (unit) vectors with complex coefficients E.g. $|\psi\rangle=\frac{1}{\sqrt{2}}(|101\rangle+i|011\rangle)$
- Operations (Gates) and Observables are linear maps (matrices): E.g. $H|x\rangle=\frac{1}{\sqrt{2}} \sum_{y \in\{0,1\}}(-1)^{x y}|y\rangle$

Motivation: From Bit-strings to Qubit-strings

- Units of quantum information are qubits
- Registers consists of strings of qubits
- Qubit-strings $|110\rangle$ are (unit) vectors with complex coefficients E.g. $|\psi\rangle=\frac{1}{\sqrt{2}}(|101\rangle+i|011\rangle)$
- Operations (Gates) and Observables are linear maps (matrices): E.g. $H|x\rangle=\frac{1}{\sqrt{2}} \sum_{y \in\{0,1\}}(-1)^{x y}|y\rangle$
- To extract classical information we require measurements
- Measurements are probabilistic: The coefficients determine the probability. E.g. $|\psi\rangle=\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle$, then x occurs with probability $\left|a_{x}\right|^{2}$

Motivation: From Bit-strings to Qubit-strings

- Units of quantum information are qubits
- Registers consists of strings of qubits
- Qubit-strings $|110\rangle$ are (unit) vectors with complex coefficients E.g. $|\psi\rangle=\frac{1}{\sqrt{2}}(|101\rangle+i|011\rangle)$
- Operations (Gates) and Observables are linear maps (matrices): E.g. $H|x\rangle=\frac{1}{\sqrt{2}} \sum_{y \in\{0,1\}}(-1)^{x y}|y\rangle$
- To extract classical information we require measurements
- Measurements are probabilistic: The coefficients determine the probability. E.g. $|\psi\rangle=\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle$, then x occurs with probability $\left|a_{x}\right|^{2}$
- Multi-qubit operations can generate "entanglement": system behaves "holistically" (non-locally - see later)

Motivation: From Bit-strings to Qubit-strings

- Units of quantum information are qubits
- Registers consists of strings of qubits
- Qubit-strings $|110\rangle$ are (unit) vectors with complex coefficients E.g. $|\psi\rangle=\frac{1}{\sqrt{2}}(|101\rangle+i|011\rangle)$
- Operations (Gates) and Observables are linear maps (matrices): E.g. $H|x\rangle=\frac{1}{\sqrt{2}} \sum_{y \in\{0,1\}}(-1)^{x y}|y\rangle$
- To extract classical information we require measurements
- Measurements are probabilistic: The coefficients determine the probability. E.g. $|\psi\rangle=\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle$, then x occurs with probability $\left|a_{x}\right|^{2}$
- Multi-qubit operations can generate "entanglement": system behaves "holistically" (non-locally - see later)
- Q: Why we have speed-up?

A: Like classical probabilistic algorithms BUT with complex "probabilities"

Definitions with Examples

A Qubit is a 2-dimensional unit vector

- For formal definitions look at: Math Supplement; Nielsen \& Chuang; or first lectures of IQC (https://opencourse.inf. ed.ac.uk/iqc/course-materials/schedule or an older version http://pwallden.gr/courseiqc.asp)

Definitions with Examples

A Qubit is a 2-dimensional unit vector

- We will denote a vector \vec{v} as $|v\rangle$

Definitions with Examples

A Qubit is a 2-dimensional unit vector

- The unit vectors in the x-axis as $|0\rangle$ and in the y-axis as $|1\rangle$

Definitions with Examples

A Qubit is a 2-dimensional unit vector

- Another basis (45% rotated) is given by the vectors

Definitions with Examples

A Qubit is a 2-dimensional unit vector

- General Qubit: $|\psi\rangle=a|0\rangle+b|1\rangle$ where
$||\psi\rangle|^{2}=1=|a|^{2}+|b|^{2}$ and a, b are complex numbers in general

Definitions with Examples

A Qubit is a 2-dimensional unit vector

- Can be expressed in the blue basis: $|\psi\rangle=\frac{(a+b)}{\sqrt{2}}|+\rangle+\frac{(a-b)}{\sqrt{2}}|-\rangle$

Definitions with Examples

- Vector (notation) $|\psi\rangle$ is called "ket". Example: $|\psi\rangle=a|0\rangle+b|1\rangle$
- Dual vector is denoted $\langle\psi|$ and is called "bra". Coefficients are complex conjugate of the coefficients of the vectors Example: $\langle\psi|=a^{*}\langle 0|+b^{*}\langle 1|$
- Inner product (c.f. dot-product) is taken between a vector and a dual vector (c.f. "bra-ket").
- Vector (notation) $|\psi\rangle$ is called "ket".

Example: $|\psi\rangle=a|0\rangle+b|1\rangle$

- Dual vector is denoted $\langle\psi|$ and is called "bra". Coefficients are complex conjugate of the coefficients of the vectors
Example: $\langle\psi|=a^{*}\langle 0|+b^{*}\langle 1|$
- Inner product (c.f. dot-product) is taken between a vector and a dual vector (c.f. "bra-ket").
- Orthogonal vectors have zero inner product so: $\langle 0 \mid 1\rangle=\langle 1 \mid 0\rangle=0$ and $\langle 0 \mid 0\rangle=\langle 1 \mid 1\rangle=1$
- Example: $\left\langle\psi_{2} \mid \psi_{1}\right\rangle=a_{2}^{*} a_{1}+b_{2}^{*} b_{1}=\left\langle\psi_{1} \mid \psi_{2}\right\rangle^{*}$ Let $\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) ;\left|\psi_{2}\right\rangle=\frac{1}{2}(i|0\rangle+\sqrt{3}|1\rangle)$
Check: $\left\langle\psi_{1} \mid \psi_{1}\right\rangle=\left\langle\psi_{2} \mid \psi_{2}\right\rangle=1$ and
$\left\langle\psi_{2} \mid \psi_{1}\right\rangle=\frac{\sqrt{3}-i}{2 \sqrt{2}} ;\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\frac{\sqrt{3}+i}{2 \sqrt{2}}$

Definitions with Examples

In matrix notation:
Vectors: $\left|\psi_{1}\right\rangle=\binom{a_{1}}{b_{1}}$ and Dual Vectors: $\left\langle\psi_{2}\right|=\left(\begin{array}{ll}a_{2}^{*} & b_{2}^{*}\end{array}\right)$

In matrix notation:
Vectors: $\left|\psi_{1}\right\rangle=\binom{a_{1}}{b_{1}}$ and Dual Vectors: $\left\langle\psi_{2}\right|=\left(\begin{array}{ll}a_{2}^{*} & b_{2}^{*}\end{array}\right)$

- Operations (gates) and Observables correspond to linear maps
(Complex valued) Matrix with matrix elements $m_{i j}$
$M=\left(\begin{array}{ll}m_{00} & m_{01} \\ m_{10} & m_{11}\end{array}\right)=\sum_{i, j \in\{0,1\}} m_{i j}|i\rangle\langle j|$
- Outer Product between a vector and a dual vector (opposite order of inner "ket-bra"):
$\left|\psi_{1}\right\rangle\left\langle\psi_{2}\right|=\left(\begin{array}{ll}a_{1} a_{2}^{*} & a_{1} b_{2}^{*} \\ b_{1} a_{2}^{*} & b_{1} b_{2}^{*}\end{array}\right)$

Definitions with Examples

$$
\begin{aligned}
& \text { Example: } A=\left(\begin{array}{ll}
1 & 1+i \\
2 & 3+2 i
\end{array}\right)=|0\rangle\langle 0|+(1+i)|0\rangle\langle 1|+ \\
& +2|1\rangle\langle 0|+(3+2 i)|1\rangle\langle 1|
\end{aligned}
$$

Example: $A=\left(\begin{array}{cc}1 & 1+i \\ 2 & 3+2 i\end{array}\right)=|0\rangle\langle 0|+(1+i)|0\rangle\langle 1|+$
$+2|1\rangle\langle 0|+(3+2 i)|1\rangle\langle 1|$

- Adjoint (Hermitian conjugate) of an operator is defined as: transpose and conjugate element-wise
Example: $A^{\dagger}=\left(\begin{array}{cc}1 & 2 \\ 1-i & 3-2 i\end{array}\right)$ Note: $|v\rangle^{\dagger}=\langle v|$ and
$(A|v\rangle)^{\dagger}=\langle v| A^{\dagger}$ and
$(A B)^{\dagger}=B^{\dagger} A^{\dagger}$

Example: $A=\left(\begin{array}{cc}1 & 1+i \\ 2 & 3+2 i\end{array}\right)=|0\rangle\langle 0|+(1+i)|0\rangle\langle 1|+$
$+2|1\rangle\langle 0|+(3+2 i)|1\rangle\langle 1|$

- Adjoint (Hermitian conjugate) of an operator is defined as: transpose and conjugate element-wise
Example: $A^{\dagger}=\left(\begin{array}{cc}1 & 2 \\ 1-i & 3-2 i\end{array}\right)$ Note: $|v\rangle^{\dagger}=\langle v|$ and
$(A|v\rangle)^{\dagger}=\langle v| A^{\dagger}$ and
$(A B)^{\dagger}=B^{\dagger} A^{\dagger}$
- An operator B is called Hermitian (or self-adjoint) if $B^{\dagger}=B$
- Hermitian operators have real eigenvalues

Example: $A=\left(\begin{array}{cc}1 & 1+i \\ 2 & 3+2 i\end{array}\right)=|0\rangle\langle 0|+(1+i)|0\rangle\langle 1|+$
$+2|1\rangle\langle 0|+(3+2 i)|1\rangle\langle 1|$

- Adjoint (Hermitian conjugate) of an operator is defined as: transpose and conjugate element-wise
Example: $A^{\dagger}=\left(\begin{array}{cc}1 & 2 \\ 1-i & 3-2 i\end{array}\right)$ Note: $|v\rangle^{\dagger}=\langle v|$ and
$(A|v\rangle)^{\dagger}=\langle v| A^{\dagger}$ and
$(A B)^{\dagger}=B^{\dagger} A^{\dagger}$
- An operator B is called Hermitian (or self-adjoint) if $B^{\dagger}=B$
- Hermitian operators have real eigenvalues

Example: The matrix A above is NOT Hermitian, while the matrix B is
$B=\left(\begin{array}{cc}1 & 2+3 i \\ 2-3 i & 5\end{array}\right)=B^{\dagger}$

Definitions with Examples

- An important class of Hermitian operators are the Projection operators which are defined as: $P^{2}=P$
These operators, restrict/project a vector to some subspace of the total Hilbert space

Definitions with Examples

- An important class of Hermitian operators are the Projection operators which are defined as: $P^{2}=P$
These operators, restrict/project a vector to some subspace of the total Hilbert space
Example: $P=|0\rangle\langle 0|=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ this projects to the subspace defined by the vector $|0\rangle$

Definitions with Examples

- An important class of Hermitian operators are the Projection operators which are defined as: $P^{2}=P$
These operators, restrict/project a vector to some subspace of the total Hilbert space
Example: $P=|0\rangle\langle 0|=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ this projects to the subspace defined by the vector $|0\rangle$
- An operator U is called unitary if $U U^{\dagger}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

Definitions with Examples

- An important class of Hermitian operators are the Projection operators which are defined as: $P^{2}=P$
These operators, restrict/project a vector to some subspace of the total Hilbert space
Example: $P=|0\rangle\langle 0|=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ this projects to the subspace defined by the vector $|0\rangle$
- An operator U is called unitary if $U U^{\dagger}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

Unitary operators preserve the inner product of vectors $\langle v \mid w\rangle=\langle v| U^{\dagger} U|w\rangle$

- Operations/gates/channels for (pure) quantum states are unitaries and they map quantum states to quantum states $U|\psi\rangle=|\phi\rangle$ noting that $\langle\phi \mid \phi\rangle=1=\langle\psi| U^{\dagger} U|\psi\rangle=\langle\psi \mid \psi\rangle$
Examples: Identity I; Pauli X, Y and Z gates

$$
\begin{array}{rc}
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) & Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{array}
$$

Hadamard H

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Example:

- The quantum NOT-gate is the Pauli X :

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Acts as the NOT-gate to computational basis vectors: $|0\rangle \rightarrow|1\rangle$ and $|1\rangle \rightarrow|0\rangle$
For a general qubit: $\alpha|0\rangle+\beta|1\rangle \rightarrow \alpha|1\rangle+\beta|0\rangle$

$$
\alpha|0\rangle+\beta|1\rangle-X \quad \alpha|1\rangle+\beta|0\rangle
$$

- Measurement (projective) for pure states
- Computational basis: Given the state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ we measure in the $\{|0\rangle,|1\rangle\}$ basis
- With probability $|\alpha|^{2}$ we get the outcome 0 ; output state is $|0\rangle$
- With probability $|\beta|^{2}$ we get the outcome 1 ; output state is $|1\rangle$
- General basis: We express the state in that basis and repeat Example: To measure in the $\{|+\rangle,|-\rangle\}$ basis we re-express $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ in that basis:
$|\psi\rangle=\frac{(a+b)}{\sqrt{2}}|+\rangle+\frac{(a-b)}{\sqrt{2}}|-\rangle$
- Outcome + with prob $\left|\frac{(a+b)}{\sqrt{2}}\right|^{2}$ and final state $|+\rangle$
- Outcome - with prob $\left|\frac{(a-b)}{\sqrt{2}}\right|^{2}$ and final state $|-\rangle$
- Check: What happens if one measures $|+\rangle$ in the $\{|0\rangle,|1\rangle\}$ and in the $\{|+\rangle,|-\rangle\}$ bases?
- Measurement formally: Given two projection P_{1}, P_{2} where $P_{1}+P_{2}=I$
- Outcome cor. to P_{1} with probability $\langle\psi| P_{1}|\psi\rangle$ and output state $\left(P_{1}|\psi\rangle\right) \frac{1}{\sqrt{\langle\psi| P_{1}|\psi\rangle}}$
- Outcome cor. to P_{2} with probability $\langle\psi| P_{2}|\psi\rangle$ and output state $\left(P_{2}|\psi\rangle\right) \frac{1}{\sqrt{\langle\psi| P_{2}|\psi\rangle}}$
- Note: the sum of probabilities is one:

$$
\begin{gathered}
\langle\psi| P_{1}|\psi\rangle+\langle\psi| P_{2}|\psi\rangle=\langle\psi|\left(P_{1}|\psi\rangle+P_{2}|\psi\rangle\right)= \\
=\langle\psi|\left(P_{1}+P_{2}\right)|\psi\rangle=\langle\psi| I|\psi\rangle=1
\end{gathered}
$$

Definitions with Examples

- We call trace of an operator A the following $\operatorname{Tr}(A)=\sum_{i} A_{i i}$ and is defined for square matrices
- We call trace of an operator A the following $\operatorname{Tr}(A)=\sum_{i} A_{i i}$ and is defined for square matrices Example: $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ and $\operatorname{Tr}(A)=a_{11}+a_{22}$
- We call trace of an operator A the following $\operatorname{Tr}(A)=\sum_{i} A_{i i}$ and is defined for square matrices
Example: $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ and $\operatorname{Tr}(A)=a_{11}+a_{22}$
The trace is cyclic symmetric:
$\operatorname{Tr}(A B C)=\operatorname{Tr}(B C A)=\operatorname{Tr}(C A B)$
- We call trace of an operator A the following $\operatorname{Tr}(A)=\sum_{i} A_{i i}$ and is defined for square matrices
Example: $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ and $\operatorname{Tr}(A)=a_{11}+a_{22}$
The trace is cyclic symmetric:
$\operatorname{Tr}(A B C)=\operatorname{Tr}(B C A)=\operatorname{Tr}(C A B)$
The trace of an operator is invariant under unitary similarity transformations $A \rightarrow U A U^{\dagger}$
$\operatorname{Tr}\left(U A U^{\dagger}\right)=\operatorname{Tr}\left(U^{\dagger} U A\right)=\operatorname{Tr}(A)$

Density Matrices and Mixed States

- We represented q-states as vectors $|\psi\rangle$

Density Matrices and Mixed States

- We represented q-states as vectors $|\psi\rangle$

We can also represent the states as operators, which we call density matrices: $\rho_{\psi}=|\psi\rangle\langle\psi|$

Density Matrices and Mixed States

- We represented q-states as vectors $|\psi\rangle$

We can also represent the states as operators, which we call density matrices: $\rho_{\psi}=|\psi\rangle\langle\psi|$
Examples:
(1) $|0\rangle \longrightarrow|0\rangle\langle 0|=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$

Density Matrices and Mixed States

- We represented q-states as vectors $|\psi\rangle$

We can also represent the states as operators, which we call density matrices: $\rho_{\psi}=|\psi\rangle\langle\psi|$
Examples:
(1) $|0\rangle \longrightarrow|0\rangle\langle 0|=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
(2) $|+\rangle:=1 / \sqrt{2}(|0\rangle+|1\rangle) \longrightarrow|+\rangle\langle+|=1 / 2\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$

Density Matrices and Mixed States

- We represented q-states as vectors $|\psi\rangle$

We can also represent the states as operators, which we call density matrices: $\rho_{\psi}=|\psi\rangle\langle\psi|$
Examples:
(1) $|0\rangle \longrightarrow|0\rangle\langle 0|=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
(2) $|+\rangle:=1 / \sqrt{2}(|0\rangle+|1\rangle) \longrightarrow|+\rangle\langle+|=1 / 2\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$

- Using this representation we can represent the state of quantum systems that are not completely known.

Density Matrices and Mixed States

- We represented q-states as vectors $|\psi\rangle$

We can also represent the states as operators, which we call density matrices: $\rho_{\psi}=|\psi\rangle\langle\psi|$
Examples:
(1) $|0\rangle \longrightarrow|0\rangle\langle 0|=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
(2) $|+\rangle:=1 / \sqrt{2}(|0\rangle+|1\rangle) \longrightarrow|+\rangle\langle+|=1 / 2\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$

- Using this representation we can represent the state of quantum systems that are not completely known.
- Definition: Assume that the (real) quantum state is one of a number of states $\left\{\left|\psi_{i}\right\rangle\right\}_{i}$, each of them occurring with probability p_{i}. We call $\left\{p_{i},\left|\psi_{i}\right\rangle\right\}$ an ensemble of states.

Density Matrices and Mixed States

- We represented q-states as vectors $|\psi\rangle$

We can also represent the states as operators, which we call density matrices: $\rho_{\psi}=|\psi\rangle\langle\psi|$
Examples:
(1) $|0\rangle \longrightarrow|0\rangle\langle 0|=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
(2) $|+\rangle:=1 / \sqrt{2}(|0\rangle+|1\rangle) \longrightarrow|+\rangle\langle+|=1 / 2\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$

- Using this representation we can represent the state of quantum systems that are not completely known.
- Definition: Assume that the (real) quantum state is one of a number of states $\left\{\left|\psi_{i}\right\rangle\right\}_{i}$, each of them occurring with probability p_{i}. We call $\left\{p_{i},\left|\psi_{i}\right\rangle\right\}$ an ensemble of states.
The state of this system is described by the following density matrix: $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$

Density Matrices and Mixed States

- Definition: When a density matrix ρ cannot be expressed in terms of a single pure state $\rho \neq|\psi\rangle\langle\psi| \forall \psi$, we say that it is a mixed state
- Definition: When a density matrix ρ cannot be expressed in terms of a single pure state $\rho \neq|\psi\rangle\langle\psi| \forall \psi$, we say that it is a mixed state
- The mixed states include two types of randomness:
(1) Classical randomness since we do not know which is the (real) pure quantum state. This randomness is due to the lack of knowledge that we (the observers) have. Is the same with the randomness of classical physics (epistemic).

Density Matrices and Mixed States

- Definition: When a density matrix ρ cannot be expressed in terms of a single pure state $\rho \neq|\psi\rangle\langle\psi| \forall \psi$, we say that it is a mixed state
- The mixed states include two types of randomness:
(1) Classical randomness since we do not know which is the (real) pure quantum state. This randomness is due to the lack of knowledge that we (the observers) have. Is the same with the randomness of classical physics (epistemic).
(2) Fundamental quantum randomness. This is due to the fact that even if we know the exact pure quantum state (have maximum information about the system), multiple outcomes may occur.

Example: Classical Vs Quantum Randomness

- Mixed state:

$$
\rho_{1}=1 / 2|0\rangle\langle 0|+1 / 2|1\rangle\langle 1|=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

Example: Classical Vs Quantum Randomness

- Mixed state:

$$
\rho_{1}=1 / 2|0\rangle\langle 0|+1 / 2|1\rangle\langle 1|=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

- Pure state (equal superposition):

$$
\rho_{2}=|+\rangle\langle+|=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

- Mixed state:

$$
\rho_{1}=1 / 2|0\rangle\langle 0|+1 / 2|1\rangle\langle 1|=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

- Pure state (equal superposition):

$$
\rho_{2}=|+\rangle\langle+|=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

- Measured in computational basis $\{|0\rangle,|1\rangle\}$ both give same probabilities (but for ρ_{1} is classical randomness while for ρ_{2} is quantum randomness).
- Measured in the Hadamard basis $\{|+\rangle,|-\rangle\}$ give very different probabilities
- Mixed state:

$$
\rho_{1}=1 / 2|0\rangle\langle 0|+1 / 2|1\rangle\langle 1|=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

- Pure state (equal superposition):

$$
\rho_{2}=|+\rangle\langle+|=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

- Measured in computational basis $\{|0\rangle,|1\rangle\}$ both give same probabilities (but for ρ_{1} is classical randomness while for ρ_{2} is quantum randomness).
- Measured in the Hadamard basis $\{|+\rangle,|-\rangle\}$ give very different probabilities
- Difference between maximally mixed and equal superposition!

Density Matrices

Definition: A density matrix is a matrix (or operator) ρ that:
(1) is Hermitian $\rho^{\dagger}=\rho$
(2) positive semi-definite (i.e. has non-negative eigenvalues)
(3) has unit trace $\operatorname{Tr}(\rho)=1$

Definition: A density matrix is a matrix (or operator) ρ that:
(1) is Hermitian $\rho^{\dagger}=\rho$
(2) positive semi-definite (i.e. has non-negative eigenvalues)
(3) has unit trace $\operatorname{Tr}(\rho)=1$

Exercise: Check that these conditions are satisfied
(1) for pure density matrices
(2) for density matrices of the form $\rho=\sum_{i} p_{i}|\psi\rangle\langle\psi|$

Mixed States

- Different ensembles can result to the same density matrix!
- Different ensembles can result to the same density matrix!

Example: $\rho=\left(\begin{array}{cc}3 / 4 & 0 \\ 0 & 1 / 4\end{array}\right)$
Ensemble 1: $\{p(0)=3 / 4,|0\rangle, p(1)=1 / 4,|1\rangle\}$
Ensemble 2: $\{p(a)=1 / 2,|a\rangle, p(b)=1 / 2,|b\rangle\}$ where $|a\rangle=\sqrt{\frac{3}{4}}|0\rangle+\sqrt{\frac{1}{4}}|1\rangle$
$|b\rangle=\sqrt{\frac{3}{4}}|0\rangle-\sqrt{\frac{1}{4}}|1\rangle$

- Different ensembles can result to the same density matrix!

Example: $\rho=\left(\begin{array}{cc}3 / 4 & 0 \\ 0 & 1 / 4\end{array}\right)$
Ensemble 1: $\{p(0)=3 / 4,|0\rangle, p(1)=1 / 4,|1\rangle\}$
Ensemble 2: $\{p(a)=1 / 2,|a\rangle, p(b)=1 / 2,|b\rangle\}$ where $|a\rangle=\sqrt{\frac{3}{4}}|0\rangle+\sqrt{\frac{1}{4}}|1\rangle$
$|b\rangle=\sqrt{\frac{3}{4}}|0\rangle-\sqrt{\frac{1}{4}}|1\rangle$
Check that: $\rho=\frac{1}{2}|a\rangle\langle a|+\frac{1}{2}|b\rangle\langle b|=\frac{3}{4}|0\rangle\langle 0|+\frac{1}{4}|1\rangle\langle 1|$

Operations and Measurements for Mixed States

- More information will be given in later lectures.
- Operations: $\rho \rightarrow U_{\rho} U^{\dagger}$; norm same $\operatorname{Tr}\left(U_{\rho} U^{\dagger}\right)=\operatorname{Tr}(\rho)=1$

Example: Evolve by X the state $\rho=\left(\begin{array}{cc}3 / 4 & 0 \\ 0 & 1 / 4\end{array}\right)$.

$$
X \rho X^{\dagger}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
3 / 4 & 0 \\
0 & 1 / 4
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 / 4 & 0 \\
0 & 3 / 4
\end{array}\right)
$$

Operations and Measurements for Mixed States

- More information will be given in later lectures.
- Operations: $\rho \rightarrow U_{\rho} U^{\dagger}$; norm same $\operatorname{Tr}\left(U_{\rho} U^{\dagger}\right)=\operatorname{Tr}(\rho)=1$

Example: Evolve by X the state $\rho=\left(\begin{array}{cc}3 / 4 & 0 \\ 0 & 1 / 4\end{array}\right)$.

$$
X \rho X^{\dagger}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
3 / 4 & 0 \\
0 & 1 / 4
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 / 4 & 0 \\
0 & 3 / 4
\end{array}\right)
$$

- Measurements: Projective measurement P_{1}, P_{2}, at state ρ.
- Probability of outcomes $p_{1}=\operatorname{Tr}\left(P_{1} \rho\right) ; p_{2}=\operatorname{Tr}\left(P_{2} \rho\right)$
- State after measurement

$$
\rho_{1}=P_{1} \rho P_{1} \frac{1}{\operatorname{Tr}\left(P_{1} \rho\right)} ; \rho_{2}=P_{2} \rho P_{2} \frac{1}{\operatorname{Tr}\left(P_{2} \rho\right)}
$$

Observables and Expectation Values

- Observable $O=O^{\dagger}$ is a Hermitian matrix

Observables and Expectation Values

- Observable $O=O^{\dagger}$ is a Hermitian matrix
- Expectation value of O given pure state $|\psi\rangle$ is given by "sandwich-ing" it:

$$
\langle O\rangle_{\psi}=\langle\psi| O|\psi\rangle
$$

Observables and Expectation Values

- Observable $O=O^{\dagger}$ is a Hermitian matrix
- Expectation value of O given pure state $|\psi\rangle$ is given by "sandwich-ing" it:

$$
\langle O\rangle_{\psi}=\langle\psi| O|\psi\rangle
$$

- Expectation value of O given mixed state $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ is given by (cf cyclic trace):

$$
\langle O\rangle_{\rho}=\operatorname{Tr}(O \rho)=\sum_{i} p_{i}\left\langle\psi_{i}\right| O\left|\psi_{i}\right\rangle
$$

Observables and Expectation Values

- Observable $O=O^{\dagger}$ is a Hermitian matrix
- Expectation value of O given pure state $|\psi\rangle$ is given by "sandwich-ing" it:

$$
\langle O\rangle_{\psi}=\langle\psi| O|\psi\rangle
$$

- Expectation value of O given mixed state $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ is given by (cf cyclic trace):

$$
\langle O\rangle_{\rho}=\operatorname{Tr}(O \rho)=\sum_{i} p_{i}\left\langle\psi_{i}\right| O\left|\psi_{i}\right\rangle
$$

- Possible values of measuring the observable are the eigenvalues
- Probability of each outcome is given by projecting on the corresponding eigenspace

