Quantum Cyber Security Lecture 3: Quantum Key Distribution I

Petros Wallden

University of Edinburgh
23rd January 2024

Outline of Quantum Key Distribution Lectures

- Lecture 3: Motivation and idea of QKD; The first protocol (BB84) and intuition of security
- Lecture 8: Proper Security proof of BB84
- Lecture 9: Other QKD protocols
- Lecture 11: Device-independent QKD and quantum non-locality

Outline of Quantum Key Distribution Lectures

- Lecture 3: Motivation and idea of QKD; The first protocol (BB84) and intuition of security
- Lecture 8: Proper Security proof of BB84
- Lecture 9: Other QKD protocols
- Lecture 11: Device-independent QKD and quantum non-locality

Reference: Advances in Quantum Cryptography, Pirandola et al 2019, https://arxiv.org/abs/1906.01645

Cyber Security \& Privacy: General

In modern communications there are many essential tasks requiring privacy and security properties guaranteed.

Cyber Security \& Privacy: General

In modern communications there are many essential tasks requiring privacy and security properties guaranteed.
Examples of tasks:
(1) Encryption: Two parties communicate where no third party can learn anything about the content of the communication
(2) Authentication: Parties communicate knowing that messages received come from the legitimate party (public messages)
(3) Digital Signatures: A message with the guarantee of authenticity, integrity and non-repudiation
(1) Computational Security: Security guaranteed when adversaries do not have the computational power/time to "break" it
(1) Computational Security: Security guaranteed when adversaries do not have the computational power/time to "break" it

- Frequently relies on assuming that certain problems are hard to solve (need exponential time)
- Security may break if better (classical) algorithms are found, or new devices (quantum computers), or much faster (classical) computers, or given sufficient time.
- Security could break retrospectively (revealing past secrets)
(1) Computational Security: Security guaranteed when adversaries do not have the computational power/time to "break" it
- Frequently relies on assuming that certain problems are hard to solve (need exponential time)
- Security may break if better (classical) algorithms are found, or new devices (quantum computers), or much faster (classical) computers, or given sufficient time.
- Security could break retrospectively (revealing past secrets)
(2) Information Theoretic Security (ITS): Cannot be broken irrespective of the computational power of the adversary ("Perfect Security")
(1) Computational Security: Security guaranteed when adversaries do not have the computational power/time to "break" it
- Frequently relies on assuming that certain problems are hard to solve (need exponential time)
- Security may break if better (classical) algorithms are found, or new devices (quantum computers), or much faster (classical) computers, or given sufficient time.
- Security could break retrospectively (revealing past secrets)
(2) Information Theoretic Security (ITS): Cannot be broken irrespective of the computational power of the adversary ("Perfect Security")

Quantum Computers (when scalable) can break computationally secure cryptosystems (RSA, DSA, ECDSA)

Information Theoretic Secure Encryption: One-Time-Pad

- Message to be sent $x=x_{1} x_{2} \cdots x_{n}$ called plaintext
- Encrypted message $c=c_{1} c_{2} \cdots c_{n}$ called ciphertext
- Adversaries learn nothing about x from accessing c
- Message to be sent $x=x_{1} x_{2} \cdots x_{n}$ called plaintext
- Encrypted message $c=c_{1} c_{2} \cdots c_{n}$ called ciphertext
- Adversaries learn nothing about x from accessing c
- The only (essentially) ITS encryption is the One-Time-Pad:
(1) A secret key k of same size with the plaintext $|x|=|k|=n$
(2) The secret key is known to sender and receiver and no other party has any information about it

Information Theoretic Secure Encryption: One-Time-Pad

- Message to be sent $x=x_{1} x_{2} \cdots x_{n}$ called plaintext
- Encrypted message $c=c_{1} c_{2} \cdots c_{n}$ called ciphertext
- Adversaries learn nothing about x from accessing c
- The only (essentially) ITS encryption is the One-Time-Pad:
(1) A secret key k of same size with the plaintext $|x|=|k|=n$
(2) The secret key is known to sender and receiver and no other party has any information about it
(3) Encryption: Bitwise addition modulo 2 of the plaintext and the secret key: $c=c_{1} c_{2} \cdots c_{n}:=\left(x_{1} \oplus k_{1}\right)\left(x_{2} \oplus k_{2}\right) \cdots\left(x_{n} \oplus k_{n}\right)$
(9) Decryption: Bitwise addition modulo 2 of the ciphertext and the secret key: $\left(c_{1} \oplus k_{1}\right)\left(c_{2} \oplus k_{2}\right) \cdots\left(c_{n} \oplus k_{n}\right)=$ $=\left(x_{1} \oplus k_{1} \oplus k_{1}\right)\left(x_{2} \oplus k_{2} \oplus k_{2}\right) \cdots\left(x_{n} \oplus k_{n} \oplus k_{n}\right)=x_{1} x_{2} \cdots x_{n}=x$

Information Theoretic Secure Encryption: One-Time-Pad

- Message to be sent $x=x_{1} x_{2} \cdots x_{n}$ called plaintext
- Encrypted message $c=c_{1} c_{2} \cdots c_{n}$ called ciphertext
- Adversaries learn nothing about x from accessing c
- The only (essentially) ITS encryption is the One-Time-Pad:
(1) A secret key k of same size with the plaintext $|x|=|k|=n$
(2) The secret key is known to sender and receiver and no other party has any information about it
(3) Encryption: Bitwise addition modulo 2 of the plaintext and the secret key: $c=c_{1} c_{2} \cdots c_{n}:=\left(x_{1} \oplus k_{1}\right)\left(x_{2} \oplus k_{2}\right) \cdots\left(x_{n} \oplus k_{n}\right)$
(4) Decryption: Bitwise addition modulo 2 of the ciphertext and the secret key: $\left(c_{1} \oplus k_{1}\right)\left(c_{2} \oplus k_{2}\right) \cdots\left(c_{n} \oplus k_{n}\right)=$ $=\left(x_{1} \oplus k_{1} \oplus k_{1}\right)\left(x_{2} \oplus k_{2} \oplus k_{2}\right) \cdots\left(x_{n} \oplus k_{n} \oplus k_{n}\right)=x_{1} x_{2} \cdots x_{n}=x$ Example: $x=1011, k=0110$
Encryption: $c=(1 \oplus 0)(0 \oplus 1)(1 \oplus 1)(1 \oplus 0)=1101$
Decryption: $(1 \oplus 0)(1 \oplus 1)(0 \oplus 1)(1 \oplus 0)=1011=x$

Inf Theor Sec Encryption: Large Secret Key (One-Time-Pad)

Inf Theor Sec Encryption: Large Secret Key (One-Time-Pad)
Shannon's Thm: $|s| \geq|m|$ (key larger than message)

Inf Theor Sec Encryption: Large Secret Key (One-Time-Pad)
Shannon's Thm: $|s| \geq|m|$ (key larger than message)
Inf Theor Sec Authentication: Short Secret Key
(Wegman-Carter)

Inf Theor Sec Encryption: Large Secret Key (One-Time-Pad) Shannon's Thm: $|s| \geq|m|$ (key larger than message)
Inf Theor Sec Authentication: Short Secret Key (Wegman-Carter)

Inf Theor Sec Encryption: Large Secret Key (One-Time-Pad) Shannon's Thm: $|s| \geq|m|$ (key larger than message)
Inf Theor Sec Authentication: Short Secret Key (Wegman-Carter)

Two spatially separated parties want to share a Large Secret Key

Two spatially separated parties want to share a Large Secret Key

The Task: Key Distribution Background

Two spatially separated parties want to share a Large Secret Key

The Task: Key Distribution Background

Two spatially separated parties want to share a Large Secret Key

Two spatially separated parties want to share a Large Secret Key
Alice Possible Quantumly

Two spatially separated parties want to share a Large Secret Key

Replace Auth Class Channel with Short Key k
Alice Possible with QKD

QKD uses untrusted quantum communication and achieves:
Information Theoretic Secure Secret Key Expansion
Alice Possible with QKD

From Short-Key sufficient for Inf Theor Sec Authentication
Obtain Long-Key sufficient for Inf Theor Sec Encryption

QKD is commercially available currently

QKD is commercially available currently

Does not require a quantum computer

QKD is commercially available currently

Does not require a quantum computer

Satellite QKD

Bennett and Brassard 1984 first QKD protocol
Followed "quantum money" of Wiesner

Bennett and Brassard 1984 first QKD protocol Followed "quantum money" of Wiesner

Alice

- Sends a string of qubits each from the set $\{|h\rangle,|v\rangle,|+\rangle,|-\rangle\}$
- For each position (i) chooses randomly pair of bits $\left(a^{(i)}, x^{(i)}\right)$
- $x^{(i)}$ selects the basis: $x^{(i)}=0 \rightarrow\{|h\rangle,|v\rangle\} ; x^{(i)}=1 \rightarrow\{|+\rangle,|-\rangle\}$
- $a^{(i)}$ selects state: $a^{(i)}=0 \rightarrow\{|h\rangle$ or $|+\rangle\} ; a^{(i)}=1 \rightarrow\{|v\rangle$ or $|-\rangle\}$
- Stores string of pairs: $\left(a^{(1)}, x^{(1)}\right),\left(a^{(2)}, x^{(2)}\right), \cdots,\left(a^{(n)}, x^{(n)}\right)$

Bennett and Brassard 1984 first QKD protocol Followed "quantum money" of Wiesner

Alice

- Sends a string of qubits each from the set $\{|h\rangle,|v\rangle,|+\rangle,|-\rangle\}$
- For each position (i) chooses randomly pair of bits $\left(a^{(i)}, x^{(i)}\right)$
- $x^{(i)}$ selects the basis: $x^{(i)}=0 \rightarrow\{|h\rangle,|v\rangle\} ; x^{(i)}=1 \rightarrow\{|+\rangle,|-\rangle\}$
- $a^{(i)}$ selects state: $a^{(i)}=0 \rightarrow\{|h\rangle$ or $|+\rangle\} ; a^{(i)}=1 \rightarrow\{|v\rangle$ or $|-\rangle\}$
- Stores string of pairs: $\left(a^{(1)}, x^{(1)}\right),\left(a^{(2)}, x^{(2)}\right), \cdots,\left(a^{(n)}, x^{(n)}\right)$ Bob
- For each qubit (i) chooses randomly basis $y^{(i)}$ and measures
- Obtains result $b^{(i)}:\left(b^{(1)}, y^{(1)}\right),\left(b^{(2)}, y^{(2)}\right), \cdots,\left(b^{(n)}, y^{(n)}\right)$

Only part that quantum was required!

The correlations between $a^{(i)}$'s and $b^{(i)}$'s and the bound on correlations these bit-strings have with any bit-string Eve can produce are impossible to achieve classically (see next)

Only part that quantum was required!

The correlations between $a^{(i)}$'s and $b^{(i)}$'s and the bound on correlations these bit-strings have with any bit-string Eve can produce are impossible to achieve classically (see next)

Subsequent Public Communication

- Alice/Bob announce the bases $x^{(i)}, y^{(i)}$ ONLY They keep the positions where $x^{(i)}=y^{(i)}$ raw key

Only part that quantum was required!

The correlations between $a^{(i)}$'s and $b^{(i)}$'s and the bound on correlations these bit-strings have with any bit-string Eve can produce are impossible to achieve classically (see next)

Subsequent Public Communication

- Alice/Bob announce the bases $x^{(i)}, y^{(i)}$ ONLY They keep the positions where $x^{(i)}=y^{(i)}$ raw key
- If there is no eavesdropping $a^{(i)}=b^{(i)} \forall i$ of the raw key

Only part that quantum was required!

The correlations between $a^{(i)}$'s and $b^{(i)}$'s and the bound on correlations these bit-strings have with any bit-string Eve can produce are impossible to achieve classically (see next)

Subsequent Public Communication

- Alice/Bob announce the bases $x^{(i)}, y^{(i)}$ ONLY They keep the positions where $x^{(i)}=y^{(i)}$ raw key
- If there is no eavesdropping $a^{(i)}=b^{(i)} \forall i$ of the raw key
- Parameter Estimation Phase

They choose fraction f of the raw key randomly and announce $a^{(i)}, b^{(i)}$ to estimate the correlation of their strings: QBER - Quantum-Bit Error Rate
Also can bound the correlation third parties have

Example:
Obtaining the Raw Key

Example:
Obtaining the Raw Key

Example:
Obtaining the Raw Key

Intuition for Security:

- Measurements affect the quantum state - can detect amount of eavesdropping and abort if high (more than 11% QBER)
- Copying unknown qubits is impossible (No-Cloning Thm)

Intuition for Security:

- Measurements affect the quantum state - can detect amount of eavesdropping and abort if high (more than 11% QBER)
- Copying unknown qubits is impossible (No-Cloning Thm)

Cannot intercept, copy and resend! Ideas for attacks?

Intuition for Security:

- Measurements affect the quantum state - can detect amount of eavesdropping and abort if high (more than 11% QBER)
- Copying unknown qubits is impossible (No-Cloning Thm)

Cannot intercept, copy and resend! Ideas for attacks?

Question

What about intercept, measure and resend?

Forging attempts: Intercept, measure and resend

- We assume that Alice and Bob used same basis $x^{(i)}=y^{(i)}$ (otherwise (i) is not in the raw key)
- We assume that Alice and Bob used same basis $x^{(i)}=y^{(i)}$ (otherwise (i) is not in the raw key)
- Eve measures in basis $z^{(i)}$
- With probability $p_{1}=1 / 2$ the basis $x^{(i)} \neq z^{(i)}$ (otherwise no eavesdropping is detected)
- After the measurement, Eve sends the output which is a state from the basis $z^{(i)}$
- We assume that Alice and Bob used same basis $x^{(i)}=y^{(i)}$ (otherwise (i) is not in the raw key)
- Eve measures in basis $z^{(i)}$
- With probability $p_{1}=1 / 2$ the basis $x^{(i)} \neq z^{(i)}$ (otherwise no eavesdropping is detected)
- After the measurement, Eve sends the output which is a state from the basis $z^{(i)}$
- Bob measures in the $x^{(i)} \neq z^{(i)}$ basis
- With probability $p_{2}=1 / 2=|\langle+\mid h\rangle|^{2}$ Bob obtains each of the two outcomes $b^{(i)}$, i.e. with $p_{2}=1 / 2$ Bob obtains the different outcome from what Alice sent
- We assume that Alice and Bob used same basis $x^{(i)}=y^{(i)}$ (otherwise (i) is not in the raw key)
- Eve measures in basis $z^{(i)}$
- With probability $p_{1}=1 / 2$ the basis $x^{(i)} \neq z^{(i)}$ (otherwise no eavesdropping is detected)
- After the measurement, Eve sends the output which is a state from the basis $z^{(i)}$
- Bob measures in the $x^{(i)} \neq z^{(i)}$ basis
- With probability $p_{2}=1 / 2=|\langle+\mid h\rangle|^{2}$ Bob obtains each of the two outcomes $b^{(i)}$, i.e. with $p_{2}=1 / 2$ Bob obtains the different outcome from what Alice sent
- Alice and Bob detect 25% QBER, i.e. $p_{1} \times p_{2}=1 / 4$

Full proof and final steps

Full security proof \Rightarrow all possible attacks of Eve

Full proof and final steps

Full security proof \Rightarrow all possible attacks of Eve
Alice: bit-string A; Bob: bit-string B
Eve: bit-string E the best guess she can make

Full security proof \Rightarrow all possible attacks of Eve
Alice: bit-string A; Bob: bit-string B
Eve: bit-string E the best guess she can make
Can bound correlations of E with A, B given estimated correlation (QBER) of A, B from Parameter Estimation

Full proof and final steps

Full security proof \Rightarrow all possible attacks of Eve
Alice: bit-string A; Bob: bit-string B
Eve: bit-string E the best guess she can make
If $\mathbf{Q B E R}$ low then A, B more correlated than A, E or B, E.

$$
H(A: B)>H(A: E)
$$

Alice/Bob advantage in the final post-processing:
Final Classical Post-Processing

Full security proof \Rightarrow all possible attacks of Eve
Alice: bit-string A; Bob: bit-string B
Eve: bit-string E the best guess she can make
If $\mathbf{Q B E R}$ low then A, B more correlated than A, E or B, E.

$$
H(A: B)>H(A: E)
$$

Alice/Bob advantage in the final post-processing:

> Final Classical Post-Processing

Information Reconciliation (IR): Exchange information
(error-correcting codes) to make $A^{\prime}=B^{\prime}$ (extra info leaked to Eve)

Full proof and final steps

Full security proof \Rightarrow all possible attacks of Eve
Alice: bit-string A; Bob: bit-string B
Eve: bit-string E the best guess she can make
If $\mathbf{Q B E R}$ low then A, B more correlated than A, E or B, E.

$$
H(A: B)>H(A: E)
$$

Alice/Bob advantage in the final post-processing:

Final Classical Post-Processing

Information Reconciliation (IR): Exchange information (error-correcting codes) to make $A^{\prime}=B^{\prime}$ (extra info leaked to Eve)

Privacy Amplification (PA): Distil shorter key completely secret from Eve (use universal hash functions to amplify privacy)

Realistic QKD and post-processing

- Realistic systems have noise: QBER $\neq 0$ even if honest
- Cannot tell errors from noise Vs errors from eavesdropping

Realistic QKD and post-processing

- Realistic systems have noise: QBER $\neq 0$ even if honest
- Cannot tell errors from noise Vs errors from eavesdropping
- QBER is used for:
(1) Estimate correlation of Alice's raw bit-string A with Bob's B
(2) Bound the max correlation that any adversary's bit string E can have with A (using QM and specific details of protocol)

Realistic QKD and post-processing

- Realistic systems have noise: QBER $\neq 0$ even if honest
- Cannot tell errors from noise Vs errors from eavesdropping
- QBER is used for:
(1) Estimate correlation of Alice's raw bit-string A with Bob's B
(2) Bound the max correlation that any adversary's bit string E can have with A (using QM and specific details of protocol)
- If (A, B) "correlation" is higher than (A, E) then it is possible for Alice and Bob to distil an (identical) bit-string $A^{\prime \prime}$ totally secret from Eve (using IR \& PA)
- The key-rate R, highest possible noise-tolerance and maximum distance possible all depend on the advantage $H(A: B)-H(A: E)$

Insights to Remember

- QKD achieves ITS secret key expansion
- QKD uses classical authenticated channel
- BB84 requires sending/measuring single qubits in two bases
- Eavesdropping is detected in Parameter Estimation Phase
- If eavesdropping is high (QBER above threshold) we abort
- If eavesdropping is low, there is classical algorithm (IR, PA) to generate a perfectly secret shared key

Insights to Remember

- QKD achieves ITS secret key expansion
- QKD uses classical authenticated channel
- BB84 requires sending/measuring single qubits in two bases
- Eavesdropping is detected in Parameter Estimation Phase
- If eavesdropping is high (QBER above threshold) we abort
- If eavesdropping is low, there is classical algorithm (IR, PA) to generate a perfectly secret shared key
Satellite QKD is real!
https://www.youtube.com/watch?v=YYbp-v4W_yg

