Sl
Y W \~. THE UNIVERSITY of EDINBURGH

& o

N bEEd BEEK ®
V- informatics
6[)11\1‘3“\%

Quantum Cyber Security
Lecture 4: Quantum Information Part Il

Mina Doosti



SNLVE,
Y 3 rj’, THE UNIVERSITY of EDINBURGH

- informatics Overview

What do we want to learn in the next four lectures?

Understanding the mathematics of quantum states or
What’s the most general way to describe quantum systems?

* Learning about and their most general mathematical description

* Learning about and their most general mathematical description and
their properties

Learning some specific properties of quantum information and some basic concepts in
information theory

ER ® B ]

As a carrier of
Information

Describe
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One qubit state lives in a Hilbert space of dimension 2 S e H
. (3
A complex-valued vector in H (or H ?) C“‘“(”Q’“*&/

What if we have a larger system? How do we describe it?

You can also have a d-dimensional vector in a d-dimensional Hilbert space
|

‘Ll)>:\]l—:7.('7> e.]l_(_g d:?) ‘¢>:%(f> = )_t‘t Ol:Lr

We can also have n qubits
The state of a n-qubit system lives in 2™ dimensional Hilbert space (d = 2").

Ok, so far, we have the first postulate of quantum mechanics!
But if we have n qubit (let’s say 2) they each have their own quantum state as well...
so how do we talk about them?
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7 Haue —

Two Hilbert spaces H4 and Hp can form a new Hilbert space H 45 which includes vectors that
describes both system A and B

dim}[AB = dlm}[A X dlm}[B

Its basis is built from basis of H, and Hp

How? By tensor product Hy Q@ Hg = Hyp

We can compose vector spaces by tensor product.
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Tensor product definition:

Let V and W be two vector spaces with dim m and n. The tensor product I’ & W/ of these vector spaces is a
vector space of dimension m X n to which is associated a bilinear map that maps a pair (v,w),v € V,w €

W to an element of V @ W denoted as v @ w.

Let |i) and |j) be an orthonormal bases for V and W respectively. Then |i) @ |j) is an orthonormal basis for

VW, ie [Y) = 2l @)

Matrix representation:

A®B =) el (il ® kXl A®B =

ijkl

A1 B A B

A1pB T
A, B

ApnB]




Tensor product examples

Example with Dirac notation:

/\ > \l> :l \ao \o|
1) 1oy iey = 1958 (1 1) = Fle>@lep + 1020 J= 4 Deo> 1 1015
2) \—>® | >®,+> = ’ E<\°> H>)®(\°> H>>®(‘°>+“>>] ‘ [)ooo>_\. \ool>-—'|oo>—\|ol>
D lel>ei=p _
> )0)>® (‘D>"’“>> —-—{\O)O> "’|°“>3

Example with matrix notation:

o 1o - (o(4) = (1) - (¢ |
loy® 11> = 1ol _ (l)@ (oz> = (Lt((o"))) = iz> l“)@ (D() = (?2 ("))
G g |

'q)m3> = l-\',,)@ \le\)

(‘ 2 ®(7. \): ‘X(Z;,\;) Z.X(3‘-l'>

6 2
. 2
= ¢
2 e 4
‘DX( ) G X kz (- ) 9 © .
30 0 o 12 ki



wiLVE,
Y ‘@) THE UNIVERSITY of EDINBURGH

& informatics Properties of tensor product

Tensor product has the following properties:

 c(jv) ® w)) = (c|v) Q |w) = |v) ® (c|w)) where cis a scalar.

* (lv) +v2) @ W) = |v1) & [w) + [v2) ® [w)

* V)@ (Iwr) + [w2) = [v) & [wy) + [v) & [wy)

* The tensor product is not commutative in general i.e. |[v) Q |w) # [w) Q |v)
« We denote a vector tensored with itself k times as [1)®*

« If Aisa linear operator in \V and B linear operator in W, then: (A @ B)(|v) ® |w)) = A|v) ® B|w)
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Example 1:
O, 14> = [Py 0, 1%) = 1D
O(@Ol
( Y ]
At on A Ack on B 0,00, (¥yy0idy) = O\\¥pr @ O 1Yy = 195 ® 1y
Example 2: —~
iX\°>: 1> Xaz o> = Xlod>® ZUd= SO = -\
Z Y= \J —
Example 3: ‘ \ o & ° 4y
Ly LK > G
© (P8 Vo = oA o \ o
H=g( 1) x=C0 o) HeoX = (\/ " ) & %
AR TR ° Vo o -l
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6” “ag > Hﬂ} \/e,c{'or M\

The other side of the first postulate!

by #14> [P ¥ Ko
Py 7 1Gy 1> # 18

It seems that the vector representation is not enough!

We need a more general way to describe quantum states
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Ensembles of quantum states
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A density operator is a linear operatorp € L(.‘I—[d): H? - H? with the following properties:

p is Hermitian (or self-adjoint) i.e: p = pT

Tr[p] = 1:pis normalised _—_ > Eigenvalues being real, positive and
: . : - e normalised
p is positive (or more precisely positive semidefinite): p = 0
p can be represented by a d X d matirx
Why these properties? You can think of a quantum systems described by a density matrix, as generalised

probability distributions.

From state vector to density matrices:

PSS pow st —— p=1dXdl — J.O/M}]LJ, madrix

\ 0
oov = (1) = p=looxee] = (2)ueed s o



Density Matrix: Examples
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(o] (<]

2) [tHX+4| = 1{(\0>+L\\>>Q<ol_.1<||> - _%[\oxol..qolenu)(o(+||><n1

4
|l o \ ""> P@ = .7'
Lr) JJA:. <o o) P&:_‘i(z l A ~P@ /2 l/'l o o
o o) ) o
o o o ©
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& (Q o
by = € (3(8,) oy + € 8in(By) 1)
\7
Globod phene

? .
A r=(Ce Q3inkd, Sn P30 . Co3
Y pur- 14/) — @ro_’w. Vector ( Bin noy 9)

————————————— e : = L (] = 71 _
e 1+ ﬁ_(\>+n>) 0= % Q=0
A\m&“& Dol A pune stodis Rank 1 density matrices < Tr[pz] =1

ngide s ol Hea mixed Ahodis Mixture of 2 or more pure states

) ,
%IIXH-tZrbXOl Ma»dmv‘ﬂ'a mixed stoda 1 Dome dir fomnea 6‘\%@@1 OLws

3
P = LZ'\°Y°\'* LZ"W\\ also pP= -.IZ-_\‘l'X-\-l‘\' \?:\“X’l' 7

Maximally mixed state in dimension d: p,;;m =
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P, :12.’ —7 oo’ _P:' Zq: Pm\k'\)xx&"’m_\
P, = ‘: — It
p.-L — VD
37 1

Let’s write down the density matrix that describes this ensemble:

— c—

2

= L |ooX oo +l4\+|><+1\ P X
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If you can write the state of a composite system as tensor | b
b,y ® &
product of its subsystems, the state is separable. Asy = a2 5

ex: \O)A@li.}& or ,\oo>+ ‘ \o\> = \°>®( UO)‘\"D) = \°>@H'>

If the state cannot be written as a separable state, itis called an entangled state. In other words, for an
entangled state, it is impossible to attribute a pure state to any of the subsystems.

IEPRY = =(0n0ey + 1n LeY)

Maybe the problem is the basis! Let’s write it in another basis

\'l_i(\oo‘)—\- niS) = Z_‘_&{(\),)H_»@(H)*Ié) T () - [_>)®(\f>'\‘7ﬂ

[H'O + l+7/ ’Z‘Zé*'\—‘)Jf \+*>‘\7l7 - \/+> f \—_>1

st et &PM“M \

zﬁ_

= _‘ﬁ[ 4y + = |
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@@ [bpgy = LEPRY = Lllood + (1)

P, = T\r&‘_ \k\*A@(‘\’Ae\] Pq = g L \“PAQX“PAGII

Called reduced density matrix

> Troce oot &th‘a}s{'m R l.

The state of the subsystems can be described by density matrices.

For a separable state we have: ﬂ% — ® j)f.’:
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Let |i), |j) and |k), |l) be orthonormal basis for A and B respectively. Mg = Z CijralD) Gla @ [kXllp
ikl

The partial trace over B is defined as:
My = Trg(Myp)

_ Z Ciirali) (la ® Tr(lkXllg)

ijkl

= z Cijklli) (]lA ® <l|k>B

ijkl

= z Cijkt|D) Ula & g

ijkl

_ zzci,-kk i) (/4
ij k

The partial trace over A can be defined similarly.

Quick note about trace: Tr|ABC] = Tr[CAB] (Cyclic property of the trace)
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Let’s calculate reduced density matrices of EPR state:

[EPR = ;—_—(\00‘}—\— lll>)

2

o © o “ ‘\\XH]
PH(SZ |[EPRXEPR| = \f \°A°BK°,‘°B\—\— \OABX)A(%‘ N \&l%A B\ | AR ARG

. ‘ o 0 |
Py=lrgCp )= L [ \oxo)A( 40/(o>9+ \oYH<<o/t>)6+ 1Xe) (CF9)5 | X [<)/(I>>A

= L[ texe+ 11Xl ],

P :TF ( =
Q A Pp‘g) lz—[)o)(ol-{—\\)(”}‘s
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Pure state Mixed state Separable state Entangled state
[bX | T ol X, | BT IR Wi 4 140014
Yomk 4 \&\/z)\(q,‘)l

P =To U xd) )
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Measurement is the way to extract (classical) information from a quantum system.

You have seen one-qubit measurements. But in general, the following rule applies to quantum measurements:

Born Rule:
The measured result for an observable O, on a quantum system is given by its eigenvalues

The probability of getting a specific eigenvalue /; is equal to

or more generally for a density matrix p is given by
Where F; is the projection onto the eigenspace of O corresponding to

But there are more general way to extract information from the most general quantum systems.

We will learn more about general measurements in the next lecture!
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1. Quantum Computation and Quantum Information by Nielsen & Chuang: 2.1.7, 2.4
2. Introduction to Quantum Cryptography by Thomas Vidick and Stephanie Wehner: chapter 2

3. Quantum Information Theory by Mark M. Wilde: chapter 3
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