Quantum Cyber Security
Lecture 4: Quantum Information Part II

Mina Doosti

What do we want to learn in the next four lectures?

- Understanding the mathematics of quantum states or What's the most general way to describe quantum systems?
- Learning about quantum measurements and their most general mathematical description
- Learning about quantum operations and their most general mathematical description and their properties
- Learning some specific properties of quantum information and some basic concepts in information theory

Describe

Observe

Evolve

As a carrier of Information

Quantum system beyond one qubit

One qubit state lives in a Hilbert space of dimension 2
$|\psi\rangle \in \mathcal{H}$

A complex-valued vector in $\mathcal{H}\left(\right.$ or $\left.\mathcal{H}^{2}\right)$

What if we have a larger system? How do we describe it?
Higher dimension: You can also have a d-dimensional vector in a d-dimensional Hilbert space
$|\psi\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) \in H^{3} \quad d=3 \quad|\phi\rangle=\frac{1}{2}\left(\begin{array}{l}1 \\ i \\ 1 \\ 1\end{array}\right) \in H^{4} \quad d=4$
We can also have n qubits
The state of a n-qubit system lives in 2^{n} dimensional Hilbert space $\left(d=2^{n}\right)$. (why?)

Ok, so far, we have the first postulate of quantum mechanics! But if we have n qubit (let's say 2) they each have their own quantum state as well... so how do we talk about them?

How to compose quantum systems?

Two Hilbert spaces \mathcal{H}_{A} and \mathcal{H}_{B} can form a new Hilbert space $\mathcal{H}_{A B}$ which includes vectors that describes both system A and B
$\operatorname{dim} \mathcal{H}_{A B}=\operatorname{dim} \mathcal{H}_{A} \times \operatorname{dim} \mathcal{H}_{B}$
Its basis is built from basis of \mathcal{H}_{A} and \mathcal{H}_{B}

How? By tensor product $\quad \mathcal{H}_{A} \otimes \mathcal{H}_{B}=\mathcal{H}_{A B}$
We can compose vector spaces by tensor product.

Tensor product definition:

Let V and W be two vector spaces with $\operatorname{dim} \mathrm{m}$ and n . The tensor product $V \otimes W$ of these vector spaces is a vector space of dimension $m \times n$ to which is associated a bilinear map that maps a pair $(v, w), v \in V, w \in$ W to an element of $V \otimes W$ denoted as $v \otimes w$.

Let $|i\rangle$ and $|j\rangle$ be an orthonormal bases for V and W respectively. Then $|i\rangle \otimes|j\rangle$ is an orthonormal basis for $V \otimes W$, i.e. $|\psi\rangle=\sum_{i j} \psi_{i j}|i\rangle \otimes|j\rangle$

Matrix representation:

$$
A \otimes B=\sum_{i j k l} c_{i j k l}|i\rangle\langle j| \otimes|k\rangle\langle l| \quad A \otimes B=\left[\begin{array}{cccc}
A_{11} B & A_{12} B & \ldots & A_{1 n} B \\
A_{21} B & A_{22} B & \ldots & A_{2 n} B \\
\vdots & \vdots & \vdots & \vdots \\
A_{m 1} B & A_{m 2} B & \ldots & A_{m n} B
\end{array}\right]
$$

Example with Dirac notation:

1) $\left.|0\rangle \otimes|+\rangle=|0\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=\frac{1}{\sqrt{2}}[|0\rangle \otimes|0\rangle+|0\rangle \otimes|1\rangle]=\frac{1}{\sqrt{2}}[|00\rangle+|0|\rangle\right]$
2) $|-\rangle \otimes|\rightarrow \otimes|+\rangle=\frac{1}{2 \sqrt{2}}[(|0\rangle-|1\rangle) \otimes(|0\rangle-|1\rangle) \otimes(|0\rangle+|1\rangle)]=\frac{1}{2 \sqrt{2}}[|000\rangle+|001\rangle-|100\rangle-|101\rangle$
3) $\left.\left.|01\rangle \otimes|\rightarrow=| 01\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=\frac{1}{\sqrt{2}}[|0| 0\rangle-|0| 1\right\rangle\right]$

Example with matrix notation:

$$
\begin{aligned}
& \text { Example with matrix notation: } \\
& |0\rangle \otimes|0\rangle=|00\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \times\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \\
|0\rangle \otimes|1\rangle=|01\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
1 \times\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \quad \rightarrow \frac{1}{\sqrt{2}}\binom{1}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
1 \\
\sqrt{2} \\
1 \\
\sqrt{2}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right) \\
\left|\psi_{A B}\right\rangle=\left|+_{A}\right\rangle \otimes\left|\|_{B}\right\rangle \\
\left(\begin{array}{ll}
1 & 2 \\
0 & 4
\end{array}\right) \otimes\left(\begin{array}{ll}
2 & 1 \\
3 & i
\end{array}\right)=\left(\begin{array}{lll}
1 \times\left(\begin{array}{ll}
2 & 1 \\
3 & i
\end{array}\right) & 2 \times\left(\begin{array}{l}
2 \\
3 \\
i
\end{array}\right) \\
0 \times\left(\begin{array}{ll}
2 & 1 \\
3 & i
\end{array}\right) & \operatorname{ax}\left(\begin{array}{ll}
2 & 1 \\
3 & i
\end{array}\right)
\end{array}\right)=\left(\begin{array}{cccc}
2 & 1 & 4 & 2 \\
3 & i & 6 & 2 i \\
0 & 0 & 8 & 4 \\
0 & 0 & 12 & 4 i
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

Tensor product has the following properties:

- $c(|v\rangle \otimes|w\rangle)=(c|v\rangle) \otimes|w\rangle=|v\rangle \otimes(c|w\rangle)$ where c is a scalar.
- $\left(\left|v_{1}\right\rangle+\left|v_{2}\right\rangle\right) \otimes|w\rangle=\left|v_{1}\right\rangle \otimes|w\rangle+\left|v_{2}\right\rangle \otimes|w\rangle$
- $|v\rangle \otimes\left(\left|w_{1}\right\rangle+\left|w_{2}\right\rangle\right)=|v\rangle \otimes\left|w_{1}\right\rangle+|v\rangle \otimes\left|w_{2}\right\rangle$
- The tensor product is not commutative in general i.e. $|v\rangle \otimes|w\rangle \neq|w\rangle \otimes|v\rangle$
- We denote a vector tensored with itself k times as $|\psi\rangle^{\otimes k}$
- If A is a linear operator in V and B linear operator in W , then: $(A \otimes B)(|v\rangle \otimes|w\rangle)=A|v\rangle \otimes B|w\rangle$

Example 1:

$$
\begin{aligned}
& O_{1}\left|\psi_{A}\right\rangle=\left|\phi_{A}\right\rangle \quad O_{2}\left|\psi_{B}\right\rangle=\left|\phi_{B}\right\rangle \\
& O_{1} \otimes O_{2} \text { b } \\
& \qquad \begin{array}{ll}
\text { Act on } \frac{B}{=} & O_{1} \otimes O_{2}\left(\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle\right)=O_{1}\left|\psi_{A}\right\rangle \otimes O_{2}\left|\psi_{B}\right\rangle=\left|\phi_{A}\right\rangle \otimes\left|\phi_{B}\right\rangle
\end{array} .
\end{aligned}
$$

Example 2:

$$
\left\{\begin{array}{l}
x|0\rangle=|1\rangle \\
z|1\rangle=\langle-1| 1| \rangle
\end{array}\right.
$$

$$
x \otimes z \underbrace{0}_{\substack{\mid 01}}|=\underbrace{|0\rangle} \otimes z| 1\rangle=|1\rangle \otimes(-1)|1\rangle=-| | 1\rangle
$$

Example 3:

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad H \otimes X=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} x & \frac{1}{\sqrt{2}} X \\
\frac{1}{\sqrt{2}} x & -\frac{1}{\sqrt{2}} x
\end{array}\right)=\left(\begin{array}{cccc}
0 & 1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
\frac{1}{\sqrt{2}} & 0 & 1 / \sqrt{2} & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & -1 / \sqrt{2} \\
\frac{2}{\sqrt{2}} & 0 & -1 / \sqrt{2} & 0
\end{array}\right)
$$

What else is there in $\mathcal{H}_{A B}$?

$$
\begin{aligned}
& \left.\left|\psi_{A B}\right\rangle=\frac{1}{\sqrt{2}}[|\phi \phi\rangle+|\phi \hat{\phi}\rangle] \in H_{A B} \quad \begin{array}{l}
\left|\psi_{A B}\right\rangle \neq|\phi\rangle \quad \text { Any vector here! } \\
\left|\psi_{A}\right\rangle \neq|\phi\rangle \quad\left|\psi_{B}\right\rangle \neq|\phi\rangle
\end{array} \right\rvert\, \begin{array}{l}
\left|\psi_{B}\right\rangle \neq|\phi\rangle
\end{array}
\end{aligned}
$$

It seems that the vector representation is not enough!
We need a more general way to describe quantum states

Ensembles of quantum states

quit: $\left.\rho=\frac{1}{2}|0 \times 0|+\frac{1}{2} \right\rvert\,+x+1$

$$
\rho=\underset{\substack{b \\ 401}}{\underset{\sim}{P} \mid}\left|\Psi_{R} \times \Psi_{R}\right|+\underset{\substack{1 \\ 60 \%}}{P_{2}}\left|\Psi_{G} \times \Psi_{G}\right|
$$

A density operator is a linear operator $\rho \in \mathcal{L}\left(\mathcal{H}^{d}\right): \mathcal{H}^{d} \rightarrow \mathcal{H}^{d}$ with the following properties:

```
\rho is Hermitian (or self-adjoint) i.e: }\rho=\mp@subsup{\rho}{}{\dagger
```

$\operatorname{Tr}[\rho]=1: \rho$ is normalised
ρ is positive (or more precisely positive semidefinite): $\rho \geq 0$

Eigenvalues being real, positive and normalised
ρ can be represented by a $d \times d$ matirx
Why these properties? You can think of a quantum systems described by a density matrix, as generalised probability distributions.

From state vector to density matrices:

$$
|\psi\rangle \text { pure state } \longrightarrow \rho=|\psi X \psi| \rightarrow \text { density matrix }
$$

$$
|00\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \rightarrow \rho=|00 \times 00|=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

1) $|0| X 0\left|\left\lvert\,=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)\left(\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right)=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)\right.\right.$
2) $1+y x+y\left|=\frac{1}{2}(|0\rangle+i \|\rangle\right)\left(\langle 0|-i\langle 11)=\frac{1}{2}\left[\left|0 X_{0}\right|-i|0 \times 1|+i| | x_{0}|+|1 \times 1|]\right.\right.$ $|+y\rangle=\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle)$
3) $\frac{1}{2} 1000 \times 000\left|+\frac{1}{2}\right| 111 \times 111 \left\lvert\,=\frac{1}{2}\left(\begin{array}{c}1 \\ \vdots \\ \vdots \\ \vdots\end{array}\right)\left(\begin{array}{lll}1 & \cdots & 0\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}0 \\ \vdots \\ \vdots \\ 1\end{array}\right)(\cdots \cdots 1)=\frac{1}{2}\left(\begin{array}{ccc}1 & \cdots & \ldots \\ 0 & & 0 \\ \vdots \\ 0 & \cdots & \\ \vdots\end{array}\right)\right.$
4) $\rho_{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \quad \rho_{B}=\frac{1}{2}\left(\begin{array}{cc}1 & -i \\ i & 1\end{array}\right) \quad \rho_{A} \otimes \rho_{B}=\left(\begin{array}{cccc}1 / 2 & -i / 2 & 0 & 0 \\ i / 2 & 1 / 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
5) Is $\rho=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ a density matrix? $\times N_{0}$

Bloch sphere

$$
\rho=\frac{3}{4}| | x| |+\frac{1}{4}|0 \times 0| \longrightarrow
$$

Maximally mixed state: same distance from all axis

$$
\rho=\frac{1}{2}|0 x 0|+\frac{1}{2}| | x| | \quad \text { also } \quad \rho=\frac{1}{2}\left|+x+1+\frac{1}{2}\right|-x-1=\frac{1}{2}
$$

Maximally mixed state in dimension d: $\rho_{m m}=\frac{\mathbb{1}_{d}}{d}$

$$
\left\{\begin{array}{lll}
P_{1}=\frac{1}{2} & \rightarrow & 100\rangle \\
P_{2}=\frac{1}{4} & \rightarrow & 1+1\rangle \\
P_{3}=\frac{1}{4} & \rightarrow & |11\rangle
\end{array}\right.
$$

$$
\rho=\sum_{x} P_{x}\left|\psi_{x}\right\rangle\left\langle\psi_{x}\right|
$$

Let's write down the density matrix that describes this ensemble:

$$
\left.\rho=\frac{1}{2}|00 X 00|+\frac{1}{4}|+1 X+1|+\frac{1}{4}|1| X 11 \right\rvert\,
$$

Entanglement

If you can write the state of a composite system as tensor product of its subsystems, the state is separable.

$$
\left|\psi_{A B}\right\rangle=\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle
$$

$$
\text { ex: }|0\rangle_{A} \otimes|1\rangle_{B} \quad \text { or } \frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|01\rangle=|0\rangle \otimes\left(\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=|0\rangle \otimes|+\rangle\right.
$$

If the state cannot be written as a separable state, it is called an entangled state. In other words, for an entangled state, it is impossible to attribute a pure state to any of the subsystems.

$$
|E P R\rangle=\frac{1}{\sqrt{2}}\left(\left|O_{A} O_{B}\right\rangle+\left|I_{A} 1_{B}\right\rangle\right)
$$

Maybe the problem is the basis! Let's write it in another basis

$$
\begin{aligned}
\left.\frac{1}{\sqrt{2}}(|00\rangle+|1|\rangle\right) & \left.\left.\left.=\frac{1}{2 \sqrt{2}}[(1+\rangle+|-\rangle) \otimes(|+\rangle+|-\rangle)+(1+\rangle-|-\rangle\right) \otimes(1+\rangle-|-\rangle\right)\right] \\
& \left.\left.\left.\left.=\frac{1}{2 \sqrt{2}}[1++\rangle+|+\rangle\right\rangle+|-\rangle\right\rangle+|--\rangle+|++\rangle-|+\rangle-\right\rangle-|-\rangle+|--\rangle\right] \\
& =\frac{1}{\sqrt{2}}[|++\rangle+|--\rangle] \quad \text { still not separable! }
\end{aligned}
$$

$$
\left|\psi_{A B}\right\rangle=|E P R\rangle=\frac{1}{\sqrt{2}}[|00\rangle+|\|\rangle]
$$

$$
\rho_{A}=\operatorname{Tr}_{B}\left[\left|\psi_{A B} X \psi_{A B}\right|\right]
$$

$$
\rho_{B}=\operatorname{Tr}_{A}\left[\left|\psi_{A B} \times \psi_{A B}\right|\right]
$$

Called reduced density matrix

The state of the subsystems can be described by density matrices.

For a separable state we have:

$$
\rho_{A B}=\rho_{A} \otimes \rho_{B}
$$

Let $|i\rangle,|j\rangle$ and $|k\rangle,|l\rangle$ be orthonormal basis for A and B respectively. $\quad M_{A B}=\sum_{i j k l} c_{i j k l}|i\rangle\left\langle\left. j\right|_{A} \otimes \mid k\right\rangle\left\langle\left. l\right|_{B}\right.$
The partial trace over B is defined as:

$$
\begin{aligned}
& M_{A}=T r_{B}\left(M_{A B}\right) \\
& =\sum_{i j k l} c_{i j k l}|i\rangle\left\langlej | _ { A } \otimes \operatorname { T r } \left(|k\rangle\left\langle\left. l\right|_{B}\right)\right.\right. \\
& =\sum_{i j k l} c_{i j k l}|i\rangle\left\langle\left. j\right|_{A} \otimes\langle l \mid k\rangle_{B}\right. \\
& =\sum_{i j k l} c_{i j k l \mid}|i\rangle\left\langle\left. j\right|_{A} \otimes \delta_{k l}\right. \\
& =\sum_{i j} \sum_{k} c_{i j k k}|i\rangle\left\langle\left. j\right|_{A}\right.
\end{aligned}
$$

The partial trace over A can be defined similarly.
Quick note about trace: $\operatorname{Tr}[\mathrm{ABC}]=\operatorname{Tr}[\mathrm{CAB}]$ (Cyclic property of the trace)

Let's calculate reduced density matrices of EPR state:

$$
\begin{aligned}
& \left.|E P R\rangle=\frac{1}{\sqrt{2}}(100\rangle+|11\rangle\right) \\
& \rho_{A B}=|E P R X E P R|=\frac{1}{2}\left[\left|0_{A B} X_{O_{A}} \|_{B}\right|+\left|0_{A B} X_{A}\right|_{A B}\left|+\left|\prod_{A B} X_{O_{A}} 0_{B}\right|+\left|\left.\right|_{A B} X\right| 1\right|\right] \\
& \left.\left.\rho_{A}=\operatorname{Tr}_{B}\left(\rho_{A B}\right)=\frac{1}{2}\left[\left|0 X_{0}\right|_{A}\left(\left\langle 0 \mid X_{0}\right\rangle_{B}\right)+|0 \times 1|(\langle 0|| \rangle)_{B}^{0}+\left|1 X_{0}\right|(\langle 1 / 0\rangle)_{B}+||X|| \quad\langle\nu|| |\right\rangle\right)_{B}\right] \\
& =\frac{1}{2}\left[10 x_{0}|+|1 \times 1|]_{A}\right. \\
& \rho_{B}=\operatorname{Tr}_{A}\left(\rho_{A B}\right)=\frac{1}{2}\left[\left|0 x_{0}\right|+||x||\right]_{B}
\end{aligned}
$$

One density operator to rule them all!

$$
\begin{array}{ll}
\text { Mure state } & \text { Mixed state } \\
\operatorname{rank} 1 & \sum_{x} p_{x}\left|\psi_{x} X \psi_{x}\right|
\end{array}
$$

Measurements

Measurement is the way to extract (classical) information from a quantum system.

You have seen one-qubit measurements. But in general, the following rule applies to quantum measurements:

Born Rule:

The measured result for an observable 0 , on a quantum system $|\psi\rangle$ is given by its eigenvalues λ The probability of getting a specific eigenvalue λ_{i} is equal to $\mathrm{p}(\mathrm{i})=\langle\psi| P_{i}|\psi\rangle$ or more generally for a density matrix ρ is given by $p(i)=\operatorname{Tr}\left[P_{i} \rho P_{i}^{\dagger}\right]$
Where P_{i} is the projection onto the eigenspace of O corresponding to λ_{i}

But there are more general way to extract information from the most general quantum systems.

1. Quantum Computation and Quantum Information by Nielsen \& Chuang: 2.1.7, 2.4
2. Introduction to Quantum Cryptography by Thomas Vidick and Stephanie Wehner: chapter 2
3. Quantum Information Theory by Mark M. Wilde: chapter 3
