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informatics In this lecture...

We learn about:

* Generalised quantum measurements
* POVM
* Projective measurements

* Quantum operations or how quantum states are evolved
* Unitary (noiseless) quantum operations
* Quantum gates as unitary operators

* Entangling and non-entangling operations
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informatics Measurements (recap)

Measurement is the way to extract (classical) information from a quantum system.

In general, the following rule applies to qguantum measurements:

Born Rule:
The measured result for an observable O, on a quantum system |1/) is given by its eigenvalues /

The probability of getting a specific eigenvalue A, is equal to p(i) = (V[P )
or more generally for a density matrix p is given by p(i) = Tr|P,pP.']
Where 7, is the projection onto the eigenspace of O corresponding to /;

Now let’s learn about more general measurements in QM.
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POVM (Positive Operator-Valued Measurement) is the most general class of measurements in quantum mechanics

Definition: A POVM on C? is a set of positive semidefinite (Mj > 0) matrices {Mj}j such that:

J

The probability p; of obtaining the outcome j when performing the measurement {Mj}j is given by:
pj = Tr[M;p]

This is the generalisation of the Born rule.

Note that the post measurement state is not directly determined by the POVM formalism. For that we need a new tool!
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Definition: Let {Mj}j be a POVM on C%. A Kraus operator representation of M is a set of matrices Kj such that:

vj M; = K'K;

Also remember that due to POVM condition we have:

T —
2.5k =1e

J

Now we can write the post-measurement state of a POVM with respect to its Krause operator! Let’s say
the outcome j is obtained after measuring a density matrix p then the post-measurement state is:

pj = Kipk]
j pom—
Tr[K K;p]

Note: If T'r [K]TKJp] = 0 the probability of getting outcome j is 0, and hence there is no post-measurement state in that

case.
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Projective measurements, the measurements we have seen so far, are a subclass of POVMs.
Let’s see their formal definition:

Definition: A projective measurement (also called von Neumann measurement) is given by a set of orthogonal
projector (projection operator) F; :

2 . -
Pf=P and ;P =1

The probability of observing outcome j after applying this measurement to state p is given by:
pj = Tr[Pip] (orp; = (1/)|P]|1/)) for pure states)

And the post measurement state is:
Piph
Tr[Pip]

Pj =

As a POVM, the Kraus operators for a projective measurement are specified as: K; = P; ,/Mj
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informatics Example: Measuring Parity with POVM

Measuring parity of a 2-qubit system
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Now let’s see what happens if we measure one of the qubits of a 2 qubit system
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Let’s define a POVM with 3 possible outcomes!
Imagine we have two possible states, and we want to distinguish them via measurement. We want the following cases:

cone 1 It's avlcone 1 cone. 23 Ltn eulcame 2 cae 3: X don't %now !
“‘"t) lq)7.>
My T Mo o & My =T
& L
o1, X, | A 1-HM,- M,

Yt s rad by =0y 1$,N = 1+ M,= a|-X-\ Ma= g1 XI] My= Looi-%-14phXI )
Lt'» meosune stedi [+
P, = r(«l-X-1 1+X+1) = o p, = Er( A1l (1+%X+1) = B Pz - £

2

You can then optimise the value of @ and f8 to find the measurement that has the least possible “I don’t know” error!
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From a question during the lecture: Why we don’t measure only in Hadamard basis? What’s the difference?
(g wWe meodwe in “ao‘wwol i H—),l-—)% ba.w) y GuN MMM OMOJ'OM N .
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The evolution of pure quantum states is given by a unitary transformation: U|y;,,) = |Y{,u:) (second postulate)

Unitary operator: Is a linear operator on a Hilbert space that preserves the inner product. UUT = UTU =1

Herm, Ham

'

Fun (and important) fact: U = e'# try to prove it!
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Rotation gates:

R.(0) = e'"%/2) = cos(0/2)I — isin(0/2)X = [ cos 6/2 —isinO/z] 2

—is8inf/2  cos0/2
i : [cosf/2 —sin6/2

8) = /2 — cos(9/2)I — isin(6/2)Y = | ] :
- R,(0) =e cos(0/2)I — isin(6/2) sin6/2  cos6/2 , Au} roh&o;n
. [ p—10/2 0 .V) Q(gb.'lh\\ﬂ“

R.(0) = e\~2/?) = cos(6/2)I — isin(0/2)Z = | ° . ]
(6)=e cos(0/2)1 ~isin(0/2)2 = |© T, ] 4 e
1) RTY PP
Rate)= ¢

More math-y nerdy stuff: Bloch sphere shows Lie algebra for the group of unitary matrices on qubit that is SU(2) is isomorphic to the Lie
algebra of the group of three-dimensional rotations SO(3)

Unitary evolution of a density matrix: p,,+ = Upj,UT

£ \ |
V=X ,31;_\05("\“\' ‘;‘_\‘X-\ Poir = ‘EX\_\_:’NX"V\_ZE* “7:){1':)(;\-2S = )—?-“““\-'_‘\‘X-\
- Wy L -1=v  =4-l
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By composition (tensor product):

ont out ool
V,EU.0U, 19,9, 9> = Ulq>e V19> @Us19,> = l97deld, > e 19,5

Two-qubit gates:
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Some unitary operators entangle separate systems. How?
.1 0
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In quantum information entanglement is a resource.

Non-entangling operators are the ones that consume this resource or don’t change it.

For instance, if you are only allowed to do Local Operation and Classical Communication, you cannot
create or increase entanglement. This class is called “LOCC”.

Q

IR : *
Alia Gloa0y+ latgy| Bob
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' »Sq?oﬂrlojok.l 3ob aﬂ&iu R
Alice agplies H

Hﬂ@“‘&["ﬁ(lﬂ)ﬂl\)}) = —‘\zz:\\‘\‘"\‘\?‘\‘ =<9 ] > Bane slofe

Formally defining the LOCC operations helps us to “quantify” the amount of entanglement.

If you are super interested: chitambar, Eric, Debbie Leung, Laura Mancinska, Maris Ozols, and Andreas Winter. "Everything you always wanted to know about LOCC (but were afraid
to ask)." Communications in Mathematical Physics 328 (2014): 303-326.
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1. Quantum Computation and Quantum Information by Nielsen & Chuang: 2.2
2. Introduction to Quantum Cryptography by Thomas Vidick and Stephanie Wehner: chapter 2: 2.3

3. Quantum Information Theory by Mark M. Wilde: chapter 4:4.1,4.2,4.3
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