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We learn about:

Generalised quantum operations
* CPTP maps / quantum channels
* Examples of CPTP maps
* The concept of “noisy quantum states”

Some well-known quantum channels for qubits

Purification

Schmidt decomposition

Steinspring Dilation
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We have seen how to transform a pure state into another pure state (unitary) and also a mixed state to another mixed
state (again by applying a unitary)

But how do we map pure states to mixed states? We need a transformation other than unitary matrices.
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Let’s use the same idea of having a unitary on a larger space:

E(p) = Tr5[U(p®|aXaly)UT]
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Let |ex) be the orthogonal basis of the space Band p = X 4; |1,bj) (z/;j| be the spectral decomposition of p.
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Now we have a good way to define quantum channels.

CPTP map definition: A quantum channel is defined by the “superoperator”& which is a completely positive trace-preserving
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Note that the Kraus decomposition is not unique! pw&‘m b»r oM bu?,bff%
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Unitaries are CPTP maps:
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Preparing a specific quantum state can also be described by a quantum channel:
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POVMs can also be describes as a channel. They are also called quantum-to-classical channels (classical output)
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We can interpret the mixedness of an output of a CPTP map as “quantum noise”.
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Another intuition: When states get mixed, you have less certainty (more noise). Why?
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Can we go back from a mixed state to a pure state? Can we purify mixed states?

What does it mean the purify a quantum state?

Purification Definition: Given a density matrix p,, a pure state [y 45) is a purification of p, if py = Trg[|W) W] 45]
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There is a mathematical tool that clarifies this better!
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Schmidt decomposition: Suppose [ 45) is a pure state of a composite system, AB. Then there exist orthonormal
states |iy) for system A, and orthonormal states |ig) of system B such that

|l/)AB> = z \/A_iliAHiB)

i
where ,/A; are non-negative real numbers satisfying ;; 4; = 1 are known as Schmidt coefficients.

The number of non-zero values 4; is called the Schmidt rank or Schmidt number.
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Many interesting properties of quantum systems are related to Schmidt decomposition.

. [eaX< - A [gXe o recuced dampity matrion
‘oa\ B dmidy dic. PAz Z‘ }‘ol“F)X h\ pi’f— i;- L1eX %\ 7 9\:,\»». e/ScwuL :;B voiw-bf

Schmidt decomposition also gives a method to measure entanglement. If the Schmidt rank is 1, the state is a product state
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We saw that quantum channels can be described by unitaries on an expanded system. More generally:

Stinespring Theorem: For any CPTP map &: H; — H, There exists a linear map V: H; = H, ® C° such that:
E(p) =Tr, [V,DVT]

If the dimensions are the same, V is a unitary and we have our original picture

P == Tr V(P lexel)V']
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In general V is not unitary (if dimensions don’t match), and it is an isometry, but this form is enough to compute Kraus
operators and so get a quantum channel.
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1. Quantum Computation and Quantum Information by Nielsen & Chuang: 8.2 , 8.3, 2.5

2. Introduction to Quantum Cryptography by Thomas Vidick and Stephanie Wehner: chapter 4: 4.2
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