

Quantum Cyber Security Lecture 6: Quantum Information Part IV

Mina Doosti

Concern standar. N F Q R H A T I C 1 F G R U H

We learn about:

- Generalised quantum operations
 - CPTP maps / quantum channels
 - Examples of CPTP maps
 - The concept of "noisy quantum states"
- Some well-known quantum channels for qubits
- Purification
- Schmidt decomposition
- Steinspring Dilation

CPTP Maps / Quantum channels

We have seen how to transform a pure state into another pure state (unitary) and also a mixed state to another mixed state (again by applying a unitary)

But how do we map pure states to mixed states? We need a transformation other than unitary matrices.

Let's use the same idea of having a unitary on a larger space:

$$\mathcal{E}(\rho) = Tr_B[U(\rho \otimes |a\rangle \langle a|_B)U^{\dagger}]$$

CPTP Maps / Quantum channels with Krause operators

EHA

0, (e ('b I @ 3)

V dimensions d'

positive for all subsystems

oractors

density matrix

Let $|e_k\rangle$ be the orthogonal basis of the space B and $\rho = \sum_j \lambda_j |\psi_j\rangle \langle \psi_j |$ be the spectral decomposition of ρ .

Now we have a good way to define quantum channels.

informatics

CPTP map definition: A quantum channel is defined by the "superoperator" \mathcal{E} which is a completely positive trace-preserving map. positive E(p) >>0 to produce $\mathcal{E} \in \mathcal{B}[\mathcal{B}[\mathcal{H}]]$ but also

And it can be described by Kraus operators $E_k : \mathcal{E}(\rho) = \sum_k E_k \rho E_k^{\dagger}$

This is also called operator-sum representation.

Note that the Kraus decomposition is not unique!

Unitary Channels and State Preparation Channels

Unitaries are CPTP maps:

the UNIVERSITY of EDINBURGH

$$E_u(p) = UpU^{\dagger}$$
 only one Kraws operator $E_i = U$

Preparing a specific quantum state can also be described by a quantum channel:

We want to prepare state
$$|\Psi\rangle \in \mathcal{H} \longrightarrow \operatorname{Let}$$
's define: $E_1 = |\Psi \times 0| = E_2 = |\Psi \times 1|$
 $\operatorname{chucle}: \sum_{k} E_{k}^{\dagger} E_{k} = I \longrightarrow |0 \times \Psi | \Psi \times 0| + |1 \times \Psi | \Psi \times 1| = |0 \times 0| + |1 \times 1| = I$
 $\mathcal{E}(10 \times 0|) = E_1 |0 \times 0| E_1^{\dagger} + E_2 |0 \times 0| E_2^{\dagger} = |4 \times 0| 0 \times 0| 0 \times 1| + |1 \Psi \times 1| 0 \times 0| 1 \times 4| = |1 \Psi \times \Psi| \checkmark$
 We can also prepare any ensemble state for an clanical basis $\{|e_j\rangle\}_{j=1}^{n}$
 We the Kraus operators $E_j = |\Psi_j \times e_j|$

POVMs can also be describes as a channel. They are also called quantum-to-classical channels (classical output)

$$\{M_{i}\}_{i=1}^{K} \rightarrow PONM \quad \text{Let's define} \quad M_{i} = E_{i}^{\dagger}E_{i} \rightarrow Krows operators \\ P_{i} = tr(M_{i}p) = tr(E_{i}pE_{i}^{\dagger}) \\ \text{The outcome of a measurement should be a "classical" basis, let's say $\{1e_{i}\}_{i=1}^{K}$
Now let's define $E_{i} = E_{i}|\Psi\rangle = E_{i}|\Psi\rangle \otimes |e_{i}\rangle \\ \mathcal{E}_{ROVM} = \sum_{i=1}^{K} E_{i}pE_{i}^{\dagger} = \sum_{i=1}^{K} E_{i}pE_{i}^{\dagger} \otimes |e_{i}\times e_{i}| = \sum_{i=1}^{K} \frac{E_{i}pE_{i}^{\dagger}}{tr(E_{i}pE_{i}^{\dagger})} \otimes tr(E_{i}pE_{i}^{\dagger}) |e_{i}\times e_{i}| \\ P_{i} \rightarrow Post-measurement state$$$

Noise: Interpretation of quantum channel output

We can interpret the mixedness of an output of a CPTP map as "quantum noise".

THE UNIVERSITY of EDINBURGH

informatics

Another intuition: When states get mixed, you have less certainty (more noise). Why?

pure state
$$|\psi\rangle \rightarrow$$
 there is a Measuret $\mathcal{E}(|\psi X\psi|) = \mathcal{D} = \frac{1}{2} |\psi X\psi| + \frac{1}{2} |\psi' X\psi'|$
i which I know
this is $|\psi\rangle$ with $p=1$
uncertainty because of "mixedness"

Meet some famous quantum channels

(1) Bit-filip arrow
$$|0\rangle \rightarrow |1\rangle$$

phase filip errow $|0\rangle \rightarrow |1\rangle$
both $\rightarrow \gamma$
(2) Dephasing channel
 $|0\rangle_{A} \rightarrow \sqrt{1-p} |0\rangle_{A}|0\rangle_{E} + \sqrt{p} |0\rangle_{A}|1\rangle_{E}$
 $|1\rangle \rightarrow -11\rangle$
(2) Dephasing channel
 $|0\rangle_{A} \rightarrow \sqrt{1-p} |0\rangle_{A}|0\rangle_{E} + \sqrt{p} |0\rangle_{A}|1\rangle_{E}$
 $|1\rangle \rightarrow -11\rangle$
 $|1$

3) Amplitude damping channel
$$|0\rangle_A |0\rangle_E \rightarrow |0\rangle_A |0\rangle_E$$
 \longrightarrow Models the laws of
 $|1\rangle_A |0\rangle_E \rightarrow \sqrt{1-p} |1\rangle_A |0\rangle_E + \sqrt{p} |0\rangle_A |1\rangle_E$ Everge in quarter
systems

.

$$E_{0} = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-p} \end{pmatrix} \qquad E_{1} = \begin{pmatrix} 0 & \sqrt{p} \\ 0 & 0 \end{pmatrix}$$

Can we go back from a mixed state to a pure state? Can we purify mixed states?

What does it mean the purify a quantum state?

Purification Definition: Given a density matrix ρ_A , a pure state $|\psi_{AB}\rangle$ is a purification of ρ_A if $\rho_A = Tr_B[|\psi\rangle\langle\psi|_{AB}]$

How can we purify an arbitrary density matrix?
1) let's diagonalize
$$\mathcal{D}_{A} \rightarrow \mathcal{D}_{A} = \sum_{j=1}^{d} \lambda_{j} |\Phi_{j} \times \Phi_{j}|$$

2) let's add another system B with basis $\{le_{j}\}_{g}^{d_{g}}$ but $d_{g} = d_{A}$
3) het's make the pure state : $|\Psi_{AB}\rangle = \sum_{j=1}^{d_{A}} \langle\lambda_{j}|\Phi_{j}\rangle \otimes |e_{j}\rangle_{g} \rightarrow purification$
check: $\operatorname{Tr}_{B} \left[|\Psi_{AB} \times \Psi_{AB}|\right] = \sum_{k=1}^{d_{g}} \int_{j=1}^{d_{g}} \langle e_{k} | \lambda_{j} | \Phi_{j} \times \Phi_{j}|_{g} \otimes |e_{j} \times e_{j}|_{g} | e_{k}\rangle = \int_{j=1}^{d} \lambda_{j} |\Phi_{j} \times \Phi_{j}|_{g} = \mathcal{D}_{A}$

There is a mathematical tool that clarifies this better!

Schmidt decomposition: Suppose $|\psi_{AB}\rangle$ is a pure state of a composite system, AB. Then there exist orthonormal states $|i_A\rangle$ for system A, and orthonormal states $|i_B\rangle$ of system B such that

$$|\psi_{AB}
angle = \sum_{i} \sqrt{\lambda_{i}} |i_{A}
angle |i_{B}
angle$$

where $\sqrt{\lambda_i}$ are non-negative real numbers satisfying $\sum_i \lambda_i = 1$ are known as Schmidt coefficients.

The number of non-zero values λ_i is called the **Schmidt rank** or **Schmidt number**.

Schmidt decomposition is the reason why we can do purification for any arbitrary state.

Many interesting properties of quantum systems are related to Schmidt decomposition.

by Schmidt dec.
$$P_A = \sum_i \lambda_i |i_A \times i_A|$$
 $P_B = \sum_i \lambda_i |i_B \times i_B| \rightarrow \text{the reduced density matrices}$
have some eigenvalues!

Schmidt decomposition also gives a method to measure entanglement. If the Schmidt rank is 1, the state is a product state

$$|\psi_{AB}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \rightarrow \text{Schmidt decomp.}$$
?

Stinespring Dilation or Isometric extension of a quantum channel

We saw that quantum channels can be described by unitaries on an expanded system. More generally:

Stinespring Theorem: For any CPTP map $\mathcal{E}: \mathcal{H}_1 \to \mathcal{H}_2$ There exists a linear map $V: \mathcal{H}_1 \to \mathcal{H}_2 \otimes \mathbb{C}^e$ such that: $\mathcal{E}(\rho) = Tr_e[V\rho V^{\dagger}]$

If the dimensions are the same, V is a unitary and we have our original picture

the university of edinburgh

$$p - [U] - Tre[U(polexel)U^{\dagger}]$$

e - [U] -

In general V is not unitary (if dimensions don't match), and it is an isometry, but this form is enough to compute Kraus operators and so get a quantum channel.

- 1. Quantum Computation and Quantum Information by Nielsen & Chuang: 8.2, 8.3, 2.5
- 2. Introduction to Quantum Cryptography by *Thomas Vidick and Stephanie Wehner*: chapter 4: 4.2