Problem 1

Consider the four Bell states

$$
\begin{aligned}
& \left|\Phi^{+}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}, \quad\left|\Phi^{-}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}} \\
& \left|\Psi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}, \quad\left|\Psi^{-}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}
\end{aligned}
$$

Those maximally entangled states form an orthonormal basis of the two-qubit Hilbert space $\mathcal{H}=\mathbb{C}^{4}$ 。
(a) Verify that the Bell states form an orthonormal family of states, i.e., that they are pair-wise orthogonal, and each of them is normalised.
Solution. We need to prove that for any two distinct Bell states $|\Psi\rangle,\left|\Psi^{\prime}\right\rangle$, they are orthogonal, i.e., $\left\langle\Psi \mid \Psi^{\prime}\right\rangle=0$. As an example we consider $|\Phi\rangle$ and $\left|\Phi^{\prime}\right\rangle$ but the derivation is similar for other pairs:

$$
\begin{aligned}
\left\langle\Phi^{+} \mid \Phi^{-}\right\rangle & =\frac{\langle 00|+\langle 11|}{\sqrt{2}} \frac{|00\rangle-|11\rangle}{\sqrt{2}}=\frac{\langle 00 \mid 00\rangle-\langle 00 \mid 11\rangle+\langle 11 \mid 00\rangle-\langle 11 \mid 11\rangle}{2} \\
& =\frac{1-0+0-1}{2}=0
\end{aligned}
$$

where we have used the fact that $\{|0\rangle,|1\rangle\}$ is an orthonormal basis. Let us show that $\left|\Phi^{+}\right\rangle$ has norm 1:

$$
\begin{aligned}
\left\langle\Phi^{+} \mid \Phi^{+}\right\rangle & =\frac{\langle 00|+\langle 11|}{\sqrt{2}} \frac{|00\rangle+|11\rangle}{\sqrt{2}}=\frac{\langle 00 \mid 00\rangle+\langle 00 \mid 11\rangle+\langle 11 \mid 00\rangle+\langle 11 \mid 11\rangle}{2} \\
& =\frac{1+0+0+1}{2}=1
\end{aligned}
$$

A similar derivation for other Bell states then allows us to conclude that all of them are normalised. Since they are also pair-wise orthogonal, they form an orthonormal family of states.
(b) Simplify the following:
i. $X \otimes X\left|\Psi^{-}\right\rangle$

Solution.

$X \otimes X\left|\Psi^{-}\right\rangle=X \otimes X \frac{|01\rangle-|10\rangle}{\sqrt{2}}=\frac{X \otimes X|01\rangle-X \otimes X|10\rangle}{\sqrt{2}}=\frac{|10\rangle-|01\rangle}{\sqrt{2}}=-\left|\Psi^{-}\right\rangle$
ii. $X \otimes Z\left|\Psi^{-}\right\rangle$

Solution.

$$
X \otimes Z\left|\Psi^{-}\right\rangle=\frac{X \otimes Z|01\rangle-X \otimes Z|10\rangle}{\sqrt{2}}=\frac{-|11\rangle-|00\rangle}{\sqrt{2}}=-\left|\Phi^{+}\right\rangle
$$

iii. $Z \otimes X\left|\Psi^{-}\right\rangle$

Solution.

$$
Z \otimes X\left|\Psi^{-}\right\rangle=\frac{Z \otimes X|01\rangle-Z \otimes X|10\rangle}{\sqrt{2}}=\frac{|00\rangle+|11\rangle}{\sqrt{2}}=\left|\Phi^{+}\right\rangle
$$

iv. $Z \otimes Z\left|\Psi^{-}\right\rangle$

Solution.

$$
Z \otimes Z\left|\Psi^{-}\right\rangle=\frac{Z \otimes Z|01\rangle-Z \otimes Z|10\rangle}{\sqrt{2}}=\frac{-|01\rangle+|10\rangle}{\sqrt{2}}=-\left|\Psi^{-}\right\rangle
$$

Problem 2

Consider the CHSH "game" described in the lecture. Assume that Alice and Bob share the quantum state

$$
\left|\Phi^{+}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}} .
$$

Recall that

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

If $x=0$ Alice measures the observable $A_{0}=Z$, and if $x=1$ Alice measures the observable $A_{1}=X$. If $y=0$ Bob measures the observable $B_{0}=\frac{1}{\sqrt{2}}(X+Z)$, and if $y=1$ Bob measures the observable $B_{1}=\frac{1}{\sqrt{2}}(X-Z)$.
(a) Compute the correlator $E_{00}=\left\langle\Phi^{+}\right| A_{0} \otimes B_{0}\left|\Phi^{+}\right\rangle=\left\langle\Phi^{+}\right| Z \otimes \frac{1}{\sqrt{2}}(X+Z)\left|\Phi^{+}\right\rangle$.

Solution.

$$
\begin{aligned}
E_{00} & =\left\langle\Phi^{+}\right| A_{0} \otimes B_{0}\left|\Phi^{+}\right\rangle=\left\langle\Phi^{+}\right| Z \otimes \frac{1}{\sqrt{2}}(X+Z)\left|\Phi^{+}\right\rangle \\
& =\frac{1}{\sqrt{2}}\left\langle\Phi^{+}\right| Z \otimes X\left|\Phi^{+}\right\rangle+\frac{1}{\sqrt{2}}\left\langle\Phi^{+}\right| Z \otimes Z\left|\Phi^{+}\right\rangle
\end{aligned}
$$

Let us define $D=\left\langle\Phi^{+}\right| Z \otimes X\left|\Phi^{+}\right\rangle$and $E=\left\langle\Phi^{+}\right| Z \otimes Z\left|\Phi^{+}\right\rangle$so that $E_{00}=\frac{1}{\sqrt{2}}(D+E)$. We first compute the term D. To compute D, we start from

$$
\begin{aligned}
Z \otimes X\left|\Phi^{+}\right\rangle & =\frac{1}{\sqrt{2}}(Z \otimes X)(|00\rangle+|11\rangle) \\
& =\frac{1}{\sqrt{2}}[(Z \otimes X)|00\rangle+(Z \otimes X)|11\rangle] \\
& =\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
D & =\left\langle\Phi^{+}\right| Z \otimes X\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}\left\langle\Phi^{+}\right|(|01\rangle-|10\rangle) \\
& =\frac{1}{2}(\langle 00|+\langle 11|)(|01\rangle-|10\rangle)=0 .
\end{aligned}
$$

To compute E, we start from

$$
\begin{aligned}
Z \otimes Z\left|\Phi^{+}\right\rangle & =\frac{1}{\sqrt{2}}(Z \otimes Z)(|00\rangle+|11\rangle) \\
& =\frac{1}{\sqrt{2}}[(Z \otimes Z)|00\rangle+(Z \otimes Z)|11\rangle] \\
& =\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) .
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
E & =\left\langle\Phi^{+}\right| Z \otimes Z\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}\left\langle\Phi^{+}\right|(|00\rangle+|11\rangle) \\
& =\frac{1}{2}(\langle 00|+\langle 11|)(|00\rangle+|11\rangle)=1
\end{aligned}
$$

Therefore, we obtain

$$
E_{00}=\frac{D+E}{\sqrt{2}}=\frac{0+1}{\sqrt{2}}=\frac{1}{\sqrt{2}}
$$

(b) Compute the quantity $\beta=E_{00}-E_{01}+E_{10}+E_{11}$ and show that it attains the maximum Bell inequality violation $2 \sqrt{2}$, as given in the lectures.
Solution. We will proceed similarly to the previous part to compute E_{01}, E_{10}, and E_{11}. First, we see that

$$
\begin{aligned}
E_{01} & =\frac{1}{\sqrt{2}}\left\langle\Phi^{+}\right| Z \otimes X\left|\Phi^{+}\right\rangle-\frac{1}{\sqrt{2}}\left\langle\Phi^{+}\right| Z \otimes Z\left|\Phi^{+}\right\rangle \\
& =\frac{D-E}{\sqrt{2}}=-\frac{1}{\sqrt{2}}
\end{aligned}
$$

In the case of E_{10}, we have

$$
E_{10}=\frac{1}{\sqrt{2}}\left\langle\Phi^{+}\right| X \otimes X\left|\Phi^{+}\right\rangle+\frac{1}{\sqrt{2}}\left\langle\Phi^{+}\right| X \otimes Z\left|\Phi^{+}\right\rangle
$$

Let us define $F=\left\langle\Phi^{+}\right| X \otimes X\left|\Phi^{+}\right\rangle$and $G=\left\langle\Phi^{+}\right| X \otimes Z\left|\Phi^{+}\right\rangle$so that $E_{10}=\frac{1}{\sqrt{2}}(F+G)$.
We first compute the term F. To compute F, we start from

$$
\begin{aligned}
X \otimes X\left|\Phi^{+}\right\rangle & =\frac{1}{\sqrt{2}}(X \otimes X)(|00\rangle+|11\rangle) \\
& =\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
F & =\left\langle\Phi^{+}\right| X \otimes X\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}\left\langle\Phi^{+}\right|(|00\rangle+|11\rangle) \\
& =\frac{1}{2}(\langle 00|+\langle 11|)(|00\rangle+|11\rangle)=1
\end{aligned}
$$

To compute G, we start from

$$
\begin{aligned}
X \otimes Z\left|\Phi^{+}\right\rangle & =\frac{1}{\sqrt{2}}(X \otimes Z)(|00\rangle+|11\rangle) \\
& =\frac{1}{\sqrt{2}}(|10\rangle-|01\rangle)
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
G & =\left\langle\Phi^{+}\right| X \otimes Z\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}\left\langle\Phi^{+}\right|(|10\rangle-|01\rangle) \\
& =\frac{1}{2}(\langle 00|+\langle 11|)(|10\rangle-|01\rangle)=0
\end{aligned}
$$

Therefore, we obtain

$$
E_{10}=\frac{F+G}{\sqrt{2}}=\frac{1}{\sqrt{2}} .
$$

For the case of E_{11}, we have

$$
\begin{aligned}
E_{11} & =\frac{1}{\sqrt{2}}\left\langle\Phi^{+}\right| X \otimes X\left|\Phi^{+}\right\rangle-\frac{1}{\sqrt{2}}\left\langle\Phi^{+}\right| X \otimes Z\left|\Phi^{+}\right\rangle \\
& =\frac{F-G}{\sqrt{2}}=\frac{1}{\sqrt{2}} .
\end{aligned}
$$

Combining all of these, we obtain the quantity

$$
\beta=\frac{1}{\sqrt{2}}-\left(-\frac{1}{\sqrt{2}}\right)+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=2 \sqrt{2} .
$$

Problem 3

Consider the same setting of the game as in Problem 1, but with the difference that now Alice and Bob share the state $|\psi\rangle=\frac{1}{\sqrt{3}}|00\rangle+\sqrt{\frac{2}{3}}|11\rangle$. Compute the quantity β in this case.
Solution. We start with the expressions for each correlator

$$
\begin{aligned}
& E_{00}=\langle\psi| Z \otimes \frac{1}{\sqrt{2}}(X+Z)|\psi\rangle, \\
& E_{01}=\langle\psi| Z \otimes \frac{1}{\sqrt{2}}(X-Z)|\psi\rangle, \\
& E_{10}=\langle\psi| X \otimes \frac{1}{\sqrt{2}}(X+Z)|\psi\rangle, \\
& E_{11}=\langle\psi| X \otimes \frac{1}{\sqrt{2}}(X-Z)|\psi\rangle .
\end{aligned}
$$

For E_{00}, we have

$$
E_{00}=\frac{1}{\sqrt{2}}(\langle\psi| Z \otimes X|\psi\rangle+\langle\psi| Z \otimes Z|\psi\rangle)
$$

To compute the first term $D=\langle\psi| Z \otimes X|\psi\rangle$, we first use the fact that

$$
Z \otimes X|\psi\rangle=(Z \otimes X) \frac{1}{\sqrt{3}}|00\rangle+(Z \otimes X) \frac{\sqrt{2}}{\sqrt{3}}|11\rangle=\frac{1}{\sqrt{3}}|01\rangle-\frac{\sqrt{2}}{\sqrt{3}}|10\rangle,
$$

which gives us

$$
D=\left(\frac{1}{\sqrt{3}}\langle 00|+\frac{\sqrt{2}}{\sqrt{3}}\langle 11|\right)\left(\frac{1}{\sqrt{3}}|01\rangle-\frac{\sqrt{2}}{\sqrt{3}}|10\rangle\right)=0 .
$$

Dor the second term $E=\langle\psi| Z \otimes Z|\psi\rangle$,

$$
Z \otimes Z|\psi\rangle=(Z \otimes Z) \frac{1}{\sqrt{3}}|00\rangle+(Z \otimes Z) \frac{\sqrt{2}}{\sqrt{3}}|11\rangle=\frac{1}{\sqrt{3}}|00\rangle+\frac{\sqrt{2}}{\sqrt{3}}|11\rangle=|\psi\rangle,
$$

which gives us

$$
E=\langle\psi \mid \psi\rangle=1 .
$$

Thus, we have

$$
E_{00}=\frac{D+E}{\sqrt{2}}=\frac{1}{\sqrt{2}} .
$$

From the computed quantities, we can also deduce directly that

$$
E_{01}=\frac{1}{\sqrt{2}}\langle\psi| Z \otimes X|\psi\rangle-\frac{1}{\sqrt{2}}\langle\psi| Z \otimes Z|\psi\rangle=\frac{D-E}{\sqrt{2}}=-\frac{1}{\sqrt{2}} .
$$

For E_{10}, we have

$$
E_{10}=\frac{1}{\sqrt{2}}\langle\psi| X \otimes X|\psi\rangle+\frac{1}{\sqrt{2}}\langle\psi| X \otimes Z|\psi\rangle .
$$

To compute $F=\langle\psi| X \otimes X|\psi\rangle$, we start from

$$
X \otimes X|\psi\rangle=\frac{1}{\sqrt{3}}(X \otimes X)|00\rangle+\frac{\sqrt{2}}{\sqrt{3}}(X \otimes X)|11\rangle=\frac{1}{\sqrt{3}}|11\rangle+\frac{\sqrt{2}}{\sqrt{3}}|00\rangle,
$$

which gives us

$$
F=\left(\frac{1}{\sqrt{3}}\langle 00|+\frac{\sqrt{2}}{\sqrt{3}}\langle 11|\right)\left(\frac{1}{\sqrt{3}}|11\rangle+\frac{\sqrt{2}}{\sqrt{3}}|00\rangle\right)=\frac{\sqrt{2}}{3}+\frac{\sqrt{2}}{3}=\frac{2 \sqrt{2}}{3} .
$$

To compute $G=\langle\psi| X \otimes Z|\psi\rangle$, we start from

$$
X \otimes Z|\psi\rangle=\frac{1}{\sqrt{3}}(X \otimes Z)|00\rangle+\frac{\sqrt{2}}{\sqrt{3}}(X \otimes Z)|11\rangle=\frac{1}{\sqrt{3}}|10\rangle-\frac{\sqrt{2}}{\sqrt{3}}|01\rangle,
$$

which gives us

$$
G=\left(\frac{1}{\sqrt{3}}\langle 00|+\frac{\sqrt{2}}{\sqrt{3}}\langle 11|\right)\left(\frac{1}{\sqrt{3}}|10\rangle-\frac{\sqrt{2}}{\sqrt{3}}|01\rangle\right)=0 .
$$

Thus, we have

$$
E_{10}=\frac{F+G}{\sqrt{2}}=\frac{1}{\sqrt{2}} \cdot \frac{2 \sqrt{2}}{3}=\frac{2}{3} .
$$

From the computed quantities, we can also deduce directly that

$$
E_{11}=\frac{F-G}{\sqrt{2}}=\frac{2}{3} .
$$

Finally, we obtain the quantity

$$
\beta=\frac{1}{\sqrt{2}}-\left(-\frac{1}{\sqrt{2}}\right)+\frac{2}{3}+\frac{2}{3}=\sqrt{2}+\frac{4}{3} \approx 2.74<2 \sqrt{2} .
$$

Problem 4

Consider the same setting of the game as in Problem 1, but now Alice and Bob share a mixed state ρ that is given by the ensemble where with probability $p_{1}=1 / 4$ the state is

$$
\left|\psi_{1}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

with probability $p_{2}=1 / 4$ the state is

$$
\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{3}}|00\rangle+\sqrt{\frac{2}{3}}|11\rangle,
$$

and with probability $p_{3}=1 / 2$ the state is

$$
\left|\psi_{3}\right\rangle=|0\rangle \otimes|+\rangle .
$$

(a) Compute the correlator $E_{01}(\rho)=\operatorname{tr}\left[\rho\left(Z \otimes \frac{X-Z}{\sqrt{2}}\right)\right]$.

Solution. First notice that

$$
\begin{aligned}
E_{01}(\rho) & =\operatorname{tr}\left(\rho A_{0} \otimes B_{1}\right) \\
& =\operatorname{tr}\left[\left(p_{1}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+p_{2}\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+p_{3}\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right) A_{0} \otimes B_{0}\right] \\
& =p_{1} \operatorname{tr}\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| A_{0} \otimes B_{0}\right)+p_{2} \operatorname{tr}\left(\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right| A_{0} \otimes B_{0}\right)+p_{3} \operatorname{tr}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right| A_{0} \otimes B_{0}\right) \\
& =p_{1} E_{01}\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|\right)+p_{2} E_{01}\left(\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|\right)+p_{3} E_{01}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right) .
\end{aligned}
$$

As part of Problem 1, we calculated $E_{01}\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|\right)=-\frac{1}{\sqrt{2}}$. As part of Problem 2, we calculated $E_{01}\left(\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|\right)=-\frac{1}{\sqrt{2}}$. We now calculate the third term

$$
E_{01}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right)=\frac{1}{\sqrt{2}}\left\langle\psi_{3}\right| Z \otimes X\left|\psi_{3}\right\rangle-\frac{1}{\sqrt{2}}\left\langle\psi_{3}\right| Z \otimes Z\left|\psi_{3}\right\rangle .
$$

To do this, note that

$$
Z \otimes X\left|\psi_{3}\right\rangle=Z \otimes X\left(\frac{|00\rangle+|01\rangle}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|00\rangle=\left|\psi_{3}\right\rangle
$$

and thus

$$
\left\langle\psi_{3}\right| Z \otimes X\left|\psi_{3}\right\rangle=\left\langle\psi_{3} \mid \psi_{3}\right\rangle=1 .
$$

Also note that

$$
Z \otimes Z\left|\psi_{3}\right\rangle=Z \otimes Z\left(\frac{|00\rangle+|01\rangle}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}|00\rangle-\frac{1}{\sqrt{2}}|01\rangle
$$

and thus

$$
\left\langle\psi_{3}\right| Z \otimes Z\left|\psi_{3}\right\rangle=\frac{1}{2}(\langle 00|+\langle 01|)(|00\rangle-|01\rangle)=0 .
$$

We therefore have

$$
E_{01}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right)=\frac{1-0}{\sqrt{2}}=\frac{1}{\sqrt{2}} .
$$

Finally, combining $E_{01}\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|\right), E_{01}\left(\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|\right)$, and $E_{01}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right)$ we obtain

$$
E_{01}(\rho)=\frac{1}{4} \cdot\left(-\frac{1}{\sqrt{2}}\right)+\frac{1}{4} \cdot\left(-\frac{1}{\sqrt{2}}\right)+\frac{1}{2} \cdot\left(\frac{1}{\sqrt{2}}\right)=0 .
$$

(b) Determine the quantity β corresponding to this realisation of the CHSH game.

Solution. In the previous part, we showed $E_{01}(\rho)=0$. Similarly to the previous part,

$$
\begin{aligned}
& E_{00}(\rho)=p_{1} E_{00}\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|\right)+p_{2} E_{00}\left(\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|\right)+p_{3} E_{00}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right), \\
& E_{10}(\rho)=p_{1} E_{10}\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|\right)+p_{2} E_{10}\left(\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|\right)+p_{3} E_{10}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right), \\
& E_{11}(\rho)=p_{1} E_{11}\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|\right)+p_{2} E_{11}\left(\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|\right)+p_{3} E_{11}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right) .
\end{aligned}
$$

From Problem 1 we know

$$
E_{00}\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|\right)=E_{10}\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|\right)=E_{11}\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|\right)=\frac{1}{\sqrt{2}}
$$

and from Problem 2 we know

$$
E_{00}\left(\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|\right)=\frac{1}{\sqrt{2}}, \quad E_{10}\left(\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|\right)=E_{11}\left(\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|\right)=\frac{2}{3} .
$$

Hence, we only need to compute $E_{00}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right), E_{10}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right)$, and $E_{11}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right)$. For $E_{00}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right)$, we can use quantities calculated in the previous part to write

$$
E_{00}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right)=\frac{1}{\sqrt{2}}\left\langle\psi_{3}\right| Z \otimes X\left|\psi_{3}\right\rangle+\frac{1}{\sqrt{2}}\left\langle\psi_{3}\right| Z \otimes Z\left|\psi_{3}\right\rangle=\frac{1+0}{\sqrt{2}}=\frac{1}{\sqrt{2}} .
$$

For $E_{10}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right)$, we compute

$$
E_{00}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right)=\frac{1}{\sqrt{2}}\left\langle\psi_{3}\right| X \otimes X\left|\psi_{3}\right\rangle+\frac{1}{\sqrt{2}}\left\langle\psi_{3}\right| X \otimes Z\left|\psi_{3}\right\rangle .
$$

Noting that

$$
X \otimes X\left|\psi_{3}\right\rangle=X \otimes X\left(\frac{|00\rangle+|01\rangle}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}|11\rangle+\frac{1}{\sqrt{2}}|10\rangle
$$

so that

$$
\left\langle\psi_{3}\right| X \otimes X\left|\psi_{3}\right\rangle=\frac{1}{2}(\langle 00|+\langle 01|)(|11\rangle+|10\rangle)=0,
$$

and

$$
X \otimes Z\left|\psi_{3}\right\rangle=X \otimes Z\left(\frac{|00\rangle+|01\rangle}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}|10\rangle-\frac{1}{\sqrt{2}}|11\rangle
$$

so that

$$
\left\langle\psi_{3}\right| X \otimes Z\left|\psi_{3}\right\rangle=\frac{1}{2}(\langle 00|+\langle 01|)(|10\rangle-|11\rangle)=0 .
$$

Therefore, we obtain $E_{10}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right)=\frac{0+0}{\sqrt{2}}=0$. Similarly, for $E_{11}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right)$ we compute

$$
E_{11}\left(\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right)=\frac{1}{\sqrt{2}}\left\langle\psi_{3}\right| X \otimes X\left|\psi_{3}\right\rangle-\frac{1}{\sqrt{2}}\left\langle\psi_{3}\right| X \otimes Z\left|\psi_{3}\right\rangle=\frac{0-0}{\sqrt{2}}=0 .
$$

We now combine all computed quantities to obtain

$$
\begin{aligned}
& E_{00}(\rho)=\frac{1}{4} \cdot \frac{1}{\sqrt{2}}+\frac{1}{4} \cdot \frac{1}{\sqrt{2}}+\frac{1}{2} \cdot \frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}, \\
& E_{10}(\rho)=\frac{1}{4} \cdot \frac{1}{\sqrt{2}}+\frac{1}{4} \cdot \frac{2}{3}+\frac{1}{2} \cdot 0=\frac{1}{4 \sqrt{2}}+\frac{1}{6}, \\
& E_{11}(\rho)=\frac{1}{4} \cdot \frac{1}{\sqrt{2}}+\frac{1}{4} \cdot \frac{2}{3}+\frac{1}{2} \cdot 0=\frac{1}{4 \sqrt{2}}+\frac{1}{6} .
\end{aligned}
$$

Finally, we combine the four correlators to obtain

$$
\begin{aligned}
\beta & =E_{00}(\rho)-E_{01}(\rho)+E_{10}(\rho)+E_{11}(\rho) \\
& =\frac{1}{\sqrt{2}}-0+\left(\frac{1}{4 \sqrt{2}}+\frac{1}{6}\right)+\left(\frac{1}{4 \sqrt{2}}+\frac{1}{6}\right) \\
& =\frac{3}{2 \sqrt{2}}+\frac{1}{3} \approx 1.394
\end{aligned}
$$

Problem 5

In this problem, we will derive the Schmidt decomposition for a two-qubit bipartite system. That is, for any two-qubit bipartite state $|\psi\rangle_{A B}$, there exist orthonormal bases $\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle\right\}$ and $\left\{\left|f_{1}\right\rangle,\left|f_{2}\right\rangle\right\}$ for the single-qubit systems A and B respectively and positive constants c_{1} and c_{2} such that $|\psi\rangle_{A B}=c_{1}\left|e_{1}\right\rangle \otimes\left|f_{1}\right\rangle+c_{2}\left|e_{2}\right\rangle \otimes\left|f_{2}\right\rangle$.
(a) Consider any two orthonormal bases for the systems A and $B,\left\{\left|a_{1}\right\rangle,\left|a_{2}\right\rangle\right\}$ and $\left\{\left|b_{1}\right\rangle,\left|b_{2}\right\rangle\right\}$ respectively. Write $|\psi\rangle_{A B}$ in the matrix representation M_{ψ} with respect to these bases.
Solution. We can write the state with respect to the bases $\left\{\left|a_{1}\right\rangle,\left|a_{2}\right\rangle\right\}$ and $\left\{\left|b_{1}\right\rangle,\left|b_{2}\right\rangle\right\}$ as

$$
|\psi\rangle_{A B}=m_{11}\left|a_{1}\right\rangle \otimes\left|b_{1}\right\rangle+m_{12}\left|a_{1}\right\rangle \otimes\left|b_{2}\right\rangle+m_{21}\left|a_{2}\right\rangle \otimes\left|b_{1}\right\rangle+m_{22}\left|a_{2}\right\rangle \otimes\left|b_{2}\right\rangle
$$

This then gives us the matrix

$$
M_{\psi}=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right) .
$$

(b) Consider the singular value decomposition $M_{\psi}=U \Sigma V^{\dagger}$, where U and V are 2×2 unitaries and Σ is a diagonal matrix whose entries are the joint eigenvalues of the bipartite system. From this decomposition deduce $\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle\right\}$ and $\left\{\left|f_{1}\right\rangle,\left|f_{2}\right\rangle\right\}$. What are the constants c_{1} and c_{2} ?
Solution. Using the singular value decomposition for M_{ψ}, we have

$$
M_{\psi}=U \Sigma V^{\dagger}
$$

Given that U and V are 2×2 matrices and Σ is a diagonal matrix, we can write them as

$$
U=\left(\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right), \quad V=\left(\begin{array}{ll}
v_{11} & v_{12} \\
v_{21} & v_{22}
\end{array}\right), \quad \Sigma=\left(\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right) .
$$

Then, we can write M_{ψ} as

$$
M_{\psi}=\left(\begin{array}{ll}
u_{11} d_{1} v_{11}^{*}+u_{12} d_{2} v_{12}^{*} & u_{11} d_{1} v_{21}^{*}+u_{12} d_{2} v_{22}^{*} \\
u_{21} d_{1} v_{11}^{*}+u_{22} d_{2} v_{12}^{*} & u_{21} d_{1} v_{21}^{*}+u_{22} d_{2} v_{22}^{*}
\end{array}\right)
$$

which can alternatively be rewritten as

$$
\begin{aligned}
M_{\psi} & =d_{1}\binom{u_{11}}{u_{21}}\left(\begin{array}{ll}
v_{11}^{*} & v_{21}^{*}
\end{array}\right)+d_{2}\binom{u_{12}}{u_{22}}\left(\begin{array}{ll}
v_{12}^{*} & v_{22}^{*}
\end{array}\right) \\
& =d_{1}\binom{u_{11}}{u_{21}}\binom{v_{11}}{v_{21}}^{\dagger}+d_{2}\binom{u_{12}}{u_{22}}\binom{v_{12}}{v_{22}}^{\dagger}
\end{aligned}
$$

Now, if we use the notation $e_{1}=\binom{u_{11}}{u_{21}}, e_{2}=\binom{u_{12}}{u_{22}}, f_{1}=\binom{v_{11}}{v_{21}}$, and $f_{2}=\binom{v_{12}}{v_{22}}$, then we can write

$$
M_{\psi}=d_{1} \cdot e_{1} f_{1}^{\dagger}+d_{2} \cdot e_{2} f_{2}^{\dagger}
$$

Therefore, finally we have

$$
|\psi\rangle_{A B}=d_{1} \cdot e_{1} \otimes f_{1}+d_{2} \cdot e_{2} \otimes f_{2}
$$

Example. We now show here an example of the Schmidt decomposition. Take the two initial bases to be computational bases $\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle\right\}=\left\{\left|f_{1}\right\rangle,\left|f_{2}\right\rangle\right\}=\{|0\rangle,|1\rangle\}$. Let the state $|\psi\rangle_{A B}$ be described with respect to these bases as

$$
|\psi\rangle_{A B}=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{3}}|01\rangle+\frac{1}{\sqrt{6}}|11\rangle
$$

Then, we have

$$
M_{\psi}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
0 & \frac{1}{\sqrt{6}}
\end{array}\right)
$$

Now, we need to find the singular value decomposition for this matrix $M_{\psi}=U \Sigma V^{\dagger}$. To do this, the steps are the following:
i. Compute $W_{1}=M M^{\top}$ and $W_{2}=M^{\top} M$.
ii. Determine the eigenvalues of W_{1} and W_{2} and the eigenvectors corresponding to these eigenvalues.
iii. Normalise the eigenvectors. Then, the normalized eigenvectors corresponding to W_{1} are the columns of U and the normalized eigenvectors corresponding to W_{2} are the columns of V.
iv. The elements on the diagonal of Σ, placed in descending order, are the square roots of the eigenvalues of $W_{1}\left(\right.$ or $\left.W_{2}\right)$.
We have the matrices

$$
W_{1}=\left(\begin{array}{cc}
\frac{5}{6} & \frac{1}{\sqrt{18}} \\
\frac{1}{\sqrt{18}} & \frac{1}{6}
\end{array}\right), \quad W_{2}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} & \frac{1}{2}
\end{array}\right)
$$

For W_{1}, we have the eigenvalues $\lambda_{1}=\frac{3+\sqrt{6}}{6}$ and $\lambda_{2}=\frac{3-\sqrt{6}}{6}$, and the corresponding eigenvectors

$$
u_{1}=\binom{\sqrt{2}+\sqrt{3}}{1}, \quad u_{2}=\binom{\sqrt{2}-\sqrt{3}}{1}
$$

For W_{2}, we have the eigenvalues $\lambda_{1}=\frac{3+\sqrt{6}}{6}$ and $\lambda_{2}=\frac{3-\sqrt{6}}{6}$ and the corresponding eigenvectors

$$
v_{1}=\binom{1}{1}, \quad v_{2}=\binom{-1}{1}
$$

After normalising the eigenvectors, we obtain U and V as

$$
\begin{aligned}
& U=\left(\begin{array}{ll}
\frac{u_{1}}{\left\|u_{1}\right\|} & \frac{u_{2}}{\left\|u_{2}\right\|}
\end{array}\right)=\left(\begin{array}{cc}
\frac{\sqrt{2}+\sqrt{3}}{\sqrt{1+(\sqrt{2}+\sqrt{3})^{2}}} & \frac{\sqrt{2}-\sqrt{3}}{\sqrt{1+(\sqrt{2}-\sqrt{3})^{2}}} \\
\frac{1}{\sqrt{1+(\sqrt{2}+\sqrt{3})^{2}}} & \frac{1}{\sqrt{1+(\sqrt{2}-\sqrt{3})^{2}}}
\end{array}\right) \\
& V=\left(\begin{array}{ll}
\frac{v_{1}}{\left\|v_{1}\right\|} & \frac{v_{2}}{\left\|v_{2}\right\|}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) .
\end{aligned}
$$

As for the diagonal matrix,

$$
\Sigma \equiv\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{\lambda_{1}} & 0 \\
0 & \sqrt{\lambda_{2}}
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{\frac{3+\sqrt{6}}{6}} & 0 \\
0 & \sqrt{\frac{3-\sqrt{6}}{6}}
\end{array}\right)
$$

Finally, as we saw earlier, our Schmidt decomposition gives us

$$
|\psi\rangle_{A B}=\sigma_{1} \cdot u_{1} \otimes v_{1}+\sigma_{2} \cdot u_{2} \otimes v_{2}
$$

Problem 6

For a general quantum state $|\psi\rangle$, the number of nonzero constants (Schmidt coefficients) c_{i} in its Schmidt decomposition is called the "Schmidt number" for the state $|\psi\rangle$.
(a) Prove that a pure state $|\psi\rangle_{A B}$ of a two-qubit bipartite system is entangled if and only if its Schmidt number is greater than 1.
Solution. We will prove this by contraposition. That is, we will show that $|\psi\rangle_{A B}$ is a product state if and only if its Schmidt number is equal to 1.
$" \Longrightarrow "$ If $|\psi\rangle_{A B}$ is a product state, then it can be written in the form $|\psi\rangle_{A B}=c_{1}\left|e_{1}\right\rangle \otimes\left|f_{1}\right\rangle$. Therefore, its Schmidt number is equal to 1.
$" \Longleftarrow "$ For $|\psi\rangle_{A B}$, using the Schmidt decomposition and given that Schmidt number is equal to 1 , we know we can express the state in the form $|\psi\rangle_{A B}=c_{1}\left|e_{1}\right\rangle \otimes\left|f_{1}\right\rangle$. Therefore, $|\psi\rangle_{A B}$ is a product state.
(b) Suppose that $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ are two states of a two-qubit bipartite system (with components A and B) having identical Schmidt coefficients. Show that there are unitary transformations U on system A and V on system B such that $\left|\psi_{1}\right\rangle=(U \otimes V)\left|\psi_{2}\right\rangle$.
Solution. If $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ are two-qubit states, we can write them using the Schmidt decomposition with respect to some orthonormal bases $\left\{\left|e_{1}\right\rangle_{A},\left|e_{2}\right\rangle_{A}\right\}$ and $\left\{\left|f_{1}\right\rangle_{B},\left|f_{2}\right\rangle_{B}\right\}$ for $\left|\psi_{1}\right\rangle$, and $\left\{\left|e_{1}^{\prime}\right\rangle_{A},\left|e_{2}^{\prime}\right\rangle_{A}\right\}$ and $\left\{\left|f_{1}^{\prime}\right\rangle_{B},\left|f_{2}^{\prime}\right\rangle_{B}\right\}$ for $\left|\psi_{2}\right\rangle$. Given that the two states have identical Schmidt coefficients, they can be expressed as

$$
\begin{aligned}
& \left|\psi_{1}\right\rangle=c_{1}\left|e_{1}\right\rangle \otimes\left|f_{1}\right\rangle+c_{2}\left|e_{2}\right\rangle \otimes\left|f_{2}\right\rangle \\
& \left|\psi_{2}\right\rangle=c_{1}\left|e_{1}^{\prime}\right\rangle \otimes\left|f_{1}^{\prime}\right\rangle+c_{2}\left|e_{2}^{\prime}\right\rangle \otimes\left|f_{2}^{\prime}\right\rangle .
\end{aligned}
$$

Defining U and V as

$$
\begin{aligned}
U & =\left|e_{1}\right\rangle\left\langle e_{1}^{\prime}\right|+\left|e_{2}\right\rangle\left\langle e_{2}^{\prime}\right|, \\
V & =\left|f_{1}\right\rangle\left\langle f_{1}^{\prime}\right|+\left|f_{2}\right\rangle\left\langle f_{2}^{\prime}\right|,
\end{aligned}
$$

notice that

$$
\begin{aligned}
(U \otimes V)\left|\psi_{2}\right\rangle= & {\left[\left(\left|e_{1}\right\rangle\left\langle e_{1}^{\prime}\right|+\left|e_{2}\right\rangle\left\langle e_{2}^{\prime}\right|\right) \otimes\left(\left|f_{1}\right\rangle\left\langle f_{1}^{\prime}\right|+\left|f_{2}\right\rangle\left\langle f_{2}^{\prime}\right|\right)\right]\left(c_{1}\left|e_{1}^{\prime}\right\rangle \otimes\left|f_{1}^{\prime}\right\rangle+c_{2}\left|e_{2}^{\prime}\right\rangle \otimes\left|f_{2}^{\prime}\right\rangle\right) } \\
= & c_{1}\left(\left|e_{1}\right\rangle\left\langle e_{1}^{\prime}\right|+\left|e_{2}\right\rangle\left\langle e_{2}^{\prime}\right|\right)\left|e_{1}^{\prime}\right\rangle \otimes\left(\left|f_{1}\right\rangle\left\langle f_{1}^{\prime}\right|+\left|f_{2}\right\rangle\left\langle f_{2}^{\prime}\right|\right)\left|f_{1}^{\prime}\right\rangle \\
& +c_{2}\left(\left|e_{1}\right\rangle\left\langle e_{1}^{\prime}\right|+\left|e_{2}\right\rangle\left\langle e_{2}^{\prime}\right|\right)\left|e_{2}^{\prime}\right\rangle \otimes\left(\left|f_{1}\right\rangle\left\langle f_{1}^{\prime}\right|+\left|f_{2}\right\rangle\left\langle f_{2}^{\prime}\right|\right)\left|f_{2}^{\prime}\right\rangle \\
= & c_{1}\left|e_{1}\right\rangle \otimes\left|f_{1}\right\rangle+c_{2}\left|e_{2}\right\rangle \otimes\left|f_{2}\right\rangle \\
= & \left|\psi_{1}\right\rangle .
\end{aligned}
$$

