Problem 1

Consider the encryption defined using the secret key $k=a$ as follows. If the input state is $\rho_{\psi}=|\psi\rangle\langle\psi|$, then

$$
\begin{aligned}
\operatorname{Enc}_{a}\left(\rho_{\psi}\right) & =H^{a} \rho_{\psi} H^{a} \\
\operatorname{Dec}_{a}\left(\rho_{\psi}\right) & =H^{a} \rho_{\psi} H^{a}
\end{aligned}
$$

(a) Check the encryption scheme satisfies correctness.

Solution. For correctness we need to check that $\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}\left(\rho_{\psi}\right)\right)=\rho_{\psi}$ for any input state ρ_{ψ}. In our case we have that

$$
\operatorname{Dec}_{a}\left(\operatorname{Enc}_{a}\left(\rho_{\psi}\right)\right)=H^{a}\left(H^{a} \rho_{\psi} H^{a}\right) H^{a}=\left(H^{2}\right)^{a} \rho_{\psi}\left(H^{2}\right)^{a}=I \rho_{\psi} I=\rho_{\psi}
$$

(b) Which are the possible encryptions for the following two quantum states.
i. $\left|\psi_{1}\right\rangle=|0\rangle$.

Solution. The input state is $\rho_{\psi_{1}}=|0\rangle\langle 0|$. If $a=0$ then $\operatorname{Enc}_{a}\left(\rho_{\psi_{1}}\right)=H^{0} \rho_{\psi_{1}} H^{0}=|0\rangle\langle 0|$. If $a=1$ then $\operatorname{Enc}_{a}\left(\rho_{\psi_{1}}\right)=H^{1} \rho_{\psi_{1}} H^{1}=H|0\rangle\langle 0| H=|+\rangle\langle+|$.
ii. $\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{1+(\sqrt{2}-1)^{2}}}(|0\rangle+(\sqrt{2}-1)|1\rangle)$.

Solution. The input state is

$$
\rho_{\psi_{2}}=\frac{1}{1+(\sqrt{2}-1)^{2}}(|0\rangle+(\sqrt{2}-1)|1\rangle)(\langle 0|+(\sqrt{2}-1)\langle 1|) .
$$

If $a=0$ then $\operatorname{Enc}_{a}\left(\rho_{\psi_{1}}\right)=H^{0} \rho_{\psi_{2}} H^{0}=\rho_{\psi_{2}}$. For $a=1$, first notice that $\left|\psi_{2}\right\rangle$ remains invariant when applying H. That is, $H\left|\psi_{2}\right\rangle=\left|\psi_{2}\right\rangle$. Thus, if $a=1$ then $\operatorname{Enc}_{a}\left(\rho_{\psi_{1}}\right)=$ $H^{1} \rho_{\psi_{1}} H^{1}=H\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right| H=\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|=\rho_{\psi_{2}}$.
(c) What are the average ciphertexts $\rho_{E}\left(\psi_{1}\right)$ and $\rho_{E}\left(\psi_{2}\right)$?

Solution. The average ciphertexts can be written using part (b) as

$$
\begin{aligned}
& \rho_{E}\left(\psi_{1}\right)=\frac{1}{2} \sum_{a \in\{0,1\}} H^{a} \rho_{\psi_{1}} H^{a}=\frac{1}{2}(|0\rangle\langle 0|+|+\rangle\langle+|) \\
& \rho_{E}\left(\psi_{2}\right)=\frac{1}{2} \sum_{a \in\{0,1\}} H^{a} \rho_{\psi_{2}} H^{a}=\frac{1}{2}\left(\rho_{\psi_{2}}+\rho_{\psi_{2}}\right)=\rho_{\psi_{2}}=\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right| .
\end{aligned}
$$

(d) Compute the fidelity of $\rho_{E}\left(\psi_{1}\right)$ and $\rho_{E}\left(\psi_{2}\right)$.

Solution. Because $\rho_{E}\left(\psi_{2}\right)=\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|$ is a pure state, we can use the simplified expression
for fidelity in the case one of the states is pure.

$$
\begin{aligned}
& F\left(\rho_{E}\left(\psi_{2}\right), \rho_{E}\left(\psi_{1}\right)\right) \\
= & \left\langle\psi_{2}\right| \rho_{E}\left(\psi_{1}\right)\left|\psi_{2}\right\rangle=\frac{1}{2}\left\langle\psi_{2}\right|(|0\rangle\langle 0|+|+\rangle\langle+|)\left|\psi_{2}\right\rangle \\
= & \frac{1}{2+2(\sqrt{2}-1)^{2}}(\langle 0|+(\sqrt{2}-1)\langle 1|)(|0\rangle\langle 0|+|+\rangle\langle+|)(|0\rangle+(\sqrt{2}-1)|1\rangle) \\
= & \frac{1}{4+4(\sqrt{2}-1)^{2}}(\langle 0|+(\sqrt{2}-1)\langle 1|)(3|0\rangle\langle 0|+|0\rangle\langle 1|+|1\rangle\langle 0|+|1\rangle\langle 1|)(|0\rangle+(\sqrt{2}-1)|1\rangle) \\
= & \frac{1}{4+4(\sqrt{2}-1)^{2}}(3\langle 0|+\langle 1|+(\sqrt{2}-1)\langle 0|+(\sqrt{2}-1)\langle 1|)(|0\rangle+(\sqrt{2}-1)|1\rangle) \\
= & \frac{1}{4+4(\sqrt{2}-1)^{2}}\left(3+(\sqrt{2}-1)+(\sqrt{2}-1)+(\sqrt{2}-1)^{2}\right) \\
= & \frac{1}{4+4(\sqrt{2}-1)^{2}} \cdot 4=\frac{1}{4-2 \sqrt{2}} \approx 0.854 .
\end{aligned}
$$

(e) Using the bounds between fidelity and trace distance, argue whether the encryption is secure. In other words, do there exist any $\left|\psi_{1}\right\rangle \neq\left|\psi_{2}\right\rangle$ such that $\rho_{E}\left(\psi_{1}\right)=\rho_{E}\left(\psi_{2}\right)$?
Solution. Using the general inequalities relating fidelity and trace distance

$$
1-\sqrt{F(\rho, \sigma)} \leq D(\rho, \sigma) \leq \sqrt{1-F(\rho, \sigma)},
$$

we get in our case

$$
0<0.076 \approx 1-\frac{1}{\sqrt{4-2 \sqrt{2}}} \leq D\left(\rho_{E}\left(\psi_{2}\right), \rho_{E}\left(\psi_{1}\right)\right)
$$

Therefore, the encryption is not information-theoretically secure, as we have two distinct input states for which the trace distance between their averaged quantum ciphertexts is strictly greater than 0 . In particular, the above inequalities mean that someone can distinguish between the two cases with at least 0.076 advantage over a random guess.

Problem 2

Consider the Regev public-key cryptosystem with the parameters $q=17$ and $n=4$. The private key is defined as $s=(0,13,9,11)$ and the public key is defined by $m=4$ LWE samples

$$
\begin{gathered}
\left(a_{1}=(14,15,5,2), b_{1}=8\right), \\
\left(a_{2}=(13,14,14,6), b_{2}=16\right), \\
\left(a_{3}=(6,10,13,1), b_{3}=3\right), \\
\left(a_{4}=(9,5,9,6), b_{4}=9\right) .
\end{gathered}
$$

(a) What is the encryption (a, c) for the message $\mu=1$ if we pick the set $S=\{2,4\}$?

Solution. To encrypt the message μ, we first compute

$$
\begin{aligned}
a & =\sum_{i \in S} a_{i}=a_{2}+a_{4}=(13,14,14,6)+(9,5,9,6)=(22,19,23,12), \\
b & =\sum_{i \in S} b_{i}=b_{2}+b_{4}=16+9=25 .
\end{aligned}
$$

Now we take a and b modulo q and we get $a=(5,2,6,12)$ and $b=8$. Finally,

$$
c=b+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor=8+1 \cdot 8=16
$$

Therefore, the ciphertext is $\operatorname{Enc}(\mu)=(a, c)=((5,2,6,12), 16)$.
(b) Decrypt (a, c) to verify the correctness of the cryptosystem.

Solution. To decrypt $\operatorname{Enc}(\mu)=(a, c)$ using the secret key s we first compute

$$
\langle a, s\rangle=5 \cdot 0+2 \cdot 13+6 \cdot 9+12 \cdot 11=212
$$

Next, we compute

$$
\begin{aligned}
\langle a, s\rangle-c & \equiv 212-16 \quad(\bmod q) \\
& \equiv 196 \quad(\bmod q) \\
& \equiv 196 \quad(\bmod 17) \\
& \equiv 9 \quad(\bmod 17) .
\end{aligned}
$$

Finally, we observe that this quantity is closer to $\left\lfloor\frac{q}{2}\right\rfloor=8$ than to 0 , and so we conclude that $\mu=1$.

