Problem 1 Entropies of quantum states

Consider the four bipartite states (of systems A and B), whose representations in the computational basis are given by the following density matrices:

$$
\begin{gathered}
\rho_{1}=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right), \quad \rho_{2}=\frac{1}{4}\left(\begin{array}{cccc}
1 & 0 & 0 & \sqrt{3} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\sqrt{3} & 0 & 0 & 3
\end{array}\right), \quad \rho_{3}=\frac{1}{4}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right), \\
\rho_{4}=\frac{1}{4}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \rho_{5}=\frac{1}{4}\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1
\end{array}\right) .
\end{gathered}
$$

(a) For each state, compute the von Neumann entropies $S(A)$ and $S(B)$ of the reduced states, as well as the von Neumann entropy $S(A, B)$ of the whole state.
Solution. Let us consider only ρ_{2} as an example. Calculations for the other states are similar.
The state ρ_{2} can also be written in Dirac notation as

$$
\rho_{2}=\frac{1}{4}|00\rangle\langle 00|+\frac{\sqrt{3}}{4}|00\rangle\langle 11|+\frac{\sqrt{3}}{4}|11\rangle\langle 00|+\frac{3}{4}|11\rangle\langle 11| .
$$

Applying the definition of partial trace, we find the reduced state of each system

$$
\begin{aligned}
\rho_{2}^{A} & =\operatorname{tr}_{B} \rho_{2} \\
& =\frac{1}{4}|0\rangle\langle 0|\langle 0 \mid 0\rangle+\frac{\sqrt{3}}{4}|0\rangle\langle 1|\langle 1 \mid 0\rangle+\frac{\sqrt{3}}{4}|1\rangle\langle 0|\langle 0 \mid 1\rangle+\frac{3}{4}|1\rangle\langle 1|\langle 1 \mid 1\rangle \\
& =\frac{1}{4}|0\rangle\langle 0|+\frac{3}{4}|1\rangle\langle 1|, \\
\rho_{2}^{B} & =\operatorname{tr}_{A} \rho_{2} \\
& =\frac{1}{4}\langle 0 \mid 0\rangle|0\rangle\langle 0|+\frac{\sqrt{3}}{4}\langle 1 \mid 0\rangle|0\rangle\langle 1|+\frac{\sqrt{3}}{4}\langle 0 \mid 1\rangle|1\rangle\langle 0|+\frac{3}{4}\langle 1 \mid 1\rangle|1\rangle\langle 1| \\
& =\frac{1}{4}|0\rangle\langle 0|+\frac{3}{4}|1\rangle\langle 1| .
\end{aligned}
$$

Computing the von Neumann entropies for these states, we obtain

$$
\begin{aligned}
S(A)=S(B) & =-\left(\frac{1}{4} \log \frac{1}{4}+\frac{3}{4} \log \frac{3}{4}\right) \\
& =-\left(-\frac{1}{2}+\left[\frac{3}{4} \log 3-\frac{3}{2}\right]\right) \\
& =2-\frac{3}{4} \log 3 \approx 0.811
\end{aligned}
$$

Diagonalising ρ_{2}, we find it has a single nonzero eigenvalue, and this eigenvalue is equal to 1 . The von Neumann entropy of the whole state ρ_{2} is therefore

$$
S(A, B)=-1 \log 1=0
$$

Entropies of the other states are in accordance with the following table.

State	$S(A)$	$S(B)$	$S(A, B)$
ρ_{1}	1	1	0
ρ_{2}	$2-\frac{3}{4} \log 3 \approx 0.811$	$2-\frac{3}{4} \log 3 \approx 0.811$	0
ρ_{3}	1	1	1
ρ_{4}	1	1	2
ρ_{5}	0	0	0

(b) For each state, compute the conditional quantum entropy $S(A \mid B)=S(A, B)-S(B)$ and the quantum mutual information $S(A: B)=S(A)+S(B)-S(A, B)$.
Solution. Inserting the previously calculated entropies into the definitions given for $S(A \mid B)$ and $S(A: B)$ gives the following table.

State	$S(A)$	$S(B)$	$S(A, B)$	$S(A \mid B)$	$S(A: B)$
ρ_{1}	1	1	0	-1	2
ρ_{2}	$2-\frac{3}{4} \log 3$	$2-\frac{3}{4} \log 3$	0	$\frac{3}{4} \log 3-2$	$4-\frac{3}{2} \log 3$
ρ_{3}	1	1	1	0	1
ρ_{4}	1	1	2	1	0
ρ_{5}	0	0	0	0	0

(c) Use the definitions of the tensor product and what you know about projections and pure states in order to rewrite each of the bipartite states in a simplified form. Discuss how these relate to the results obtained in (a) and (b).
Solution. Each of the states can be simplified in Dirac notation to be written as

$$
\begin{aligned}
& \rho_{1}=\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|, \\
& \rho_{2}=\left(\frac{1}{2}|00\rangle+\frac{\sqrt{3}}{2}|11\rangle\right)\left(\frac{1}{2}\langle 00|+\frac{\sqrt{3}}{2}\langle 11|\right), \\
& \rho_{3}=\frac{1}{2}(|++\rangle\langle++|+|--\rangle\langle--|), \\
& \rho_{4}=\frac{1}{4}(\mathbb{1} \otimes \mathbb{1}), \\
& \rho_{5}=|+\rangle\langle+| \otimes|-\rangle\langle-| .
\end{aligned}
$$

The state ρ_{1} is actually one of the Bell states, which confirms that ρ_{1} is pure and $S(A, B)$ is zero. Notice that the conditional entropy of ρ_{1} is negative. As opposed to classical probability distribution, where the conditional entropy is always positive,
quantum states can have a negative conditional entropy, which is a clear signature of the non-classicality of the state. Observe also that the mutual information for ρ_{4} is equal to 2 . This is impossible classically, and is related to the fact that it is possible to communicate 2 bits of classical information by transmitting only a single qubit: so-called "superdense coding". Remark that the state ρ_{3} is equivalent to a perfectly correlated coin in the $| \pm\rangle$ basis, whereas ρ_{4} is equivalent to two uncorrelated unbiased coins in the computational basis. Finally, ρ_{5} corresponds to the tensor product of two uncorrelated local pure states.

Problem 2

(a) Compute the secret key rate R of a QKD protocol given the probability that the sent qubits are detected is $Q=1 / 3$, the error as a result of classical post-processing is $\xi=1 / 3$, the penalty for using Holevo quantities is $\Delta(n, \varepsilon)=1 / 10$, and given the following von Neumann entropies:

$$
S\left(\rho^{A}\right)=\frac{1}{3}, \quad S\left(\rho^{B}\right)=\frac{1}{4}, \quad S\left(\rho^{A B}\right)=\frac{1}{12}, \quad S\left(\rho^{E}\right)=\frac{1}{5}, \quad S\left(\rho^{A E}\right)=\frac{7}{15} .
$$

Solution. We compute the secret key rate using the general formula

$$
R=\frac{Q}{2}(\xi \cdot H(A: B)-S(A: E)-\Delta(n, \epsilon)) .
$$

We first compute the mutual information quantities

$$
\begin{aligned}
H(A: B) & =S\left(\rho^{A}\right)+S\left(\rho^{B}\right)-S\left(\rho^{A B}\right), \\
S(A: E) & =S\left(\rho^{A}\right)+S\left(\rho^{E}\right)-S\left(\rho^{A E}\right) .
\end{aligned}
$$

In our case we obtain

$$
\begin{aligned}
H(A: B) & =\frac{1}{3}+\frac{1}{4}-\frac{1}{12}=\frac{1}{2}, \\
S(A: E) & =\frac{1}{3}+\frac{1}{5}-\frac{7}{15}=\frac{1}{15} .
\end{aligned}
$$

Therefore, we obtain

$$
R=\frac{1}{2} \cdot \frac{1}{3}\left(\frac{1}{3} \cdot \frac{1}{2}-\frac{1}{15}-\frac{1}{10}\right)=0 .
$$

(b) What is the secret key rate if the QKD protocol in use is BB84 and we instead assume perfect detection, no finite-size effects, ideal classical post-processing, an average error in the $\{|0\rangle,|1\rangle\}$ basis of $e_{b}=1 / 16$, and an average error in the $\{|+\rangle,|-\rangle\}$ basis of $e_{p}=1 / 8$?
Solution. We compute the secret key rate using the simplified formula for the BB84 protocol:

$$
R_{B B 84}=\frac{1}{2}\left(1-h\left(e_{b}\right)-h\left(e_{p}\right)\right) .
$$

We first compute the binary entropy quantities

$$
\begin{aligned}
h\left(e_{b}\right) & =-e_{b} \log _{2}\left(e_{b}\right)-\left(1-e_{b}\right) \log _{2}\left(1-e_{b}\right) \\
& =-\frac{1}{16} \cdot(-4)-\frac{15}{16} \log _{2} \frac{15}{16} \approx 0.337, \\
h\left(e_{p}\right) & =-e_{p} \log _{2} e_{p}-\left(1-e_{p}\right) \log _{2}\left(1-e_{p}\right) \\
& =-\frac{1}{8} \cdot(-3)-\frac{7}{8} \log _{2} \frac{7}{8} \approx 0.544 .
\end{aligned}
$$

Therefore, we obtain

$$
R_{B B 84} \approx \frac{1}{2}(1-0.337-0.544)=0.060
$$

Problem 3

Alice sends to Bob one out of two possible states, depending on the outcome of tossing a fair coin. If the outcome is heads, then Alice sends $\rho_{H}=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1|$. If the outcome is tails, then Alice sends $|1\rangle$. Using the Holevo bound, determine an upper bound on the accessible information that Bob can obtain.
Solution. Alice prepares $\rho_{H}=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1|$ with probability $p_{H}=1 / 2$ and $\rho_{T}=|1\rangle\langle 1|$ with probability $p_{T}=1 / 2$. Bob's state is then

$$
\begin{aligned}
\rho & =p_{H} \rho_{H}+p_{T} \rho_{T} \\
& =\frac{1}{2}|1\rangle\langle 1|+\frac{1}{4}|0\rangle\langle 0|+\frac{1}{4}|1\rangle\langle 1| \\
& =\frac{1}{4}|0\rangle\langle 0|+\frac{3}{4}|1\rangle\langle 1| \\
& =\frac{1}{4}\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right) .
\end{aligned}
$$

The accessible information by Bob is bounded by the Holevo quantity

$$
I_{\mathrm{acc}}(X: Y) \leq S(\rho)-p_{H} S\left(\rho_{H}\right)-p_{T} S\left(\rho_{T}\right)
$$

We first determine $S(\rho)$. We compute the eigenvalues of ρ by solving

$$
0=\operatorname{det}(\rho-\lambda I)=\left|\begin{array}{cc}
\frac{1}{4}-\lambda & 0 \\
0 & \frac{3}{4}-\lambda
\end{array}\right|=\left(\frac{1}{4}-\lambda\right)\left(\frac{3}{4}-\lambda\right) .
$$

Thus $\lambda_{1}=1 / 4$ and $\lambda_{2}=3 / 4$. The von Neumann entropy of ρ is then

$$
S(\rho)=-\lambda_{1} \log _{2} \lambda_{1}-\lambda_{2} \log _{2} \lambda_{2}=-\frac{1}{4} \cdot(-2)-\frac{3}{4} \log _{2} \frac{3}{4} \approx 0.811
$$

For ρ_{H}, note that this is the maximally mixed qubit state, which gives the maximum value for the von Neumann entropy $S\left(\rho_{H}\right)=\log _{2} 2=1$ For ρ_{T}, since it is a pure state, we know that $S\left(\rho_{T}\right)=0$. Finally, the Holevo bound gives us

$$
I_{\mathrm{acc}}(X: Y) \leq-\frac{3}{4} \log _{2} \frac{3}{4} \approx 0.311
$$

Problem 4

(a) Consider a secret bit string (random variable) X with outcomes in $\{0,1\}^{15}$ and a 2universal family of hash functions $H=\left\{h_{i}\right\}_{i}$, where $h_{i}=h(i, \cdot)$ with $h: \mathcal{S} \times\{0,1\}^{15} \rightarrow$ $\{0,1\}^{3}$. Using the leftover hash lemma, determine the maximum number of allowed leaked bits t of X such that, after using privacy amplification with the family of functions H, we produce a bit string that is ε-close to uniformly distributed in statistical distance, where $\varepsilon=2^{-4}$. That is, such that $\delta\left[\left(h_{i}(x), i\right),(u, i)\right] \leq 2^{-4}$.
Solution. Using the leftover hash lemma, we know that if we satisfy the condition

$$
m \leq n-t-2 \log _{2} \frac{1}{\varepsilon}
$$

then we have

$$
\delta\left[\left(h_{i}(x), i\right),(u, i)\right] \leq \varepsilon .
$$

In our case, in which $m=3, n=15$, and $\varepsilon=2^{-4}$, the condition becomes

$$
t \leq n-m-2 \log _{2} \frac{1}{\varepsilon}=15-3-2 \cdot 4=4
$$

(b) Prove that the family of functions $H=\left\{h_{a, b}\right\}_{a, b}$ is 2-universal, where $h_{a, b}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ for p prime and $(a, b) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ is defined by

$$
h_{a, b}(x) \equiv a x+b \quad(\bmod p)
$$

Solution. Consider two distinct inputs $x_{1}, x_{2} \in \mathbb{Z}_{p}$. For any two possible outputs $t_{1}, t_{2} \in \mathbb{Z}_{p}$, we first want to compute the probability that both

$$
\begin{aligned}
& h_{a, b}\left(x_{1}\right) \equiv t_{1} \quad(\bmod p), \\
& h_{a, b}\left(x_{2}\right) \equiv t_{2} \quad(\bmod p) .
\end{aligned}
$$

Substituting the definition of $h_{a, b}$, these are equivalent to

$$
\begin{aligned}
& a x_{1}+b \equiv t_{1} \quad(\bmod p), \\
& a x_{2}+b \equiv t_{2} \quad(\bmod p) .
\end{aligned}
$$

Subtracting these relations, we get

$$
a\left(x_{2}-x_{1}\right) \equiv t_{2}-t_{1} \quad(\bmod p)
$$

Since $x_{2} \neq x_{1}$ (and so $x_{2}-x_{1} \neq 0$) and p is prime, we know $x_{2}-x_{1}$ has a modular multiplicative inverse denoted $\left(x_{2}-x_{1}\right)^{-1}$, and thus

$$
a \equiv\left(t_{2}-t_{1}\right)\left(x_{2}-x_{1}\right)^{-1} \quad(\bmod p)
$$

Using this a, we can find b by rearranging either of the initial relations. For example, using the first relation,

$$
b \equiv t_{1}-a x_{1} \quad(\bmod p)
$$

We have now constructed a unique key (a, b) such that $h_{a, b}\left(x_{1}\right) \equiv t_{1}$ and $h_{a, b}\left(x_{2}\right) \equiv t_{2}$. Thus, we have the probability

$$
\operatorname{Pr}_{(a, b) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}}\left[h_{a, b}\left(x_{1}\right) \equiv t_{1} \wedge h_{a, b}\left(x_{2}\right) \equiv t_{2}\right]=\frac{1}{p^{2}} .
$$

Regarding the uniformity property, we need to prove that for a fixed $x \in \mathbb{Z}_{p}$ and for (a, b) sampled at random from $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$,

$$
\operatorname{Pr}_{(a, b) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}}\left[h_{a, b}(x) \equiv t\right]=\frac{1}{p}
$$

for all outputs t. Substituting the definition of $h_{a, b}$, this is equivalent to

$$
\operatorname{Pr}_{(a, b) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}}[a x+b \equiv t]=\frac{1}{p} .
$$

We can see that for any possible value of $a \in \mathbb{Z}_{p}$, there exists a unique b such that $a x+b \equiv t$, namely $b \equiv t-a x$. Therefore,

$$
\operatorname{Pr}_{(a, b) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}}[a x+b \equiv t]=\frac{p}{p^{2}}=\frac{1}{p} .
$$

Finally, if we combine the uniformity property with the first property above, we obtain the pairwise independence condition

$$
\begin{aligned}
\operatorname{Pr}_{(a, b) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}}\left[h_{a, b}\left(x_{1}\right) \equiv t_{1} \wedge h_{a, b}\left(x_{2}\right) \equiv t_{2}\right] & =\frac{1}{p^{2}} \\
& =\frac{1}{p} \cdot \frac{1}{p} \\
& =\operatorname{Pr}_{(a, b) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}}\left[h_{a, b}\left(x_{1}\right) \equiv t_{1}\right] \cdot \operatorname{Pr}_{(a, b) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}}\left[h_{a, b}\left(x_{2}\right) \equiv t_{2}\right] .
\end{aligned}
$$

Problem 5

Compute the secret key rate R_{6} for the 6 -state protocol given that the quantum bit error rate (QBER) is $D_{a}^{\prime}=1 / 8$.
Solution. We use the secret key rate formula specific to the 6 -state protocol:

$$
R_{6}=\frac{1}{3}\left[1+3 \frac{D_{a}^{\prime}}{2} \log _{2} \frac{D_{a}^{\prime}}{2}+\left(1-\frac{3 D_{a}^{\prime}}{2}\right) \log _{2}\left(1-\frac{3 D_{a}^{\prime}}{2}\right)\right] .
$$

Therefore, we obtain

$$
R_{6}=\frac{1}{3}\left[1+3 \cdot \frac{1}{16} \cdot(-4)+\frac{13}{16} \log _{2} \frac{13}{16}\right] \approx 0.0022 .
$$

