
Assignment
Quantum Cyber Security

Due: 12:00 Thursday 28 March, 2024

This assignment counts for 25% of the course and you must answer all three
questions. The weights of each question and sub-question are given (number of
marks), but note that this is not indicative of how difficult the corresponding

sub-question is. Note also that notation is set individually in each problem, and
the same letters may have different meanings in each problem.

Important message:

Please remember the good scholarly practice requirements of the University
regarding work for credit. You can find guidance at the School page

https://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct.
This page also has links to the relevant University pages.

1. In your submission please include the steps that lead to your answers.

(a) Evaluate the binary entropy h(p) for Bernoulli processes with p = 1/4 and p = 1/2.
[3 marks]

Solution: The binary entropy function is defined as

h(p) = −p log2 p− (1− p) log2(1− p).

Therefore, h(1/4) = 2− 3
4 log2 3 ≈ 0.811 and h(1/2) = 1.

(b) Alice sends Bob a quantum state ρj with probability pj , where j ∈ {1, . . . , n}, so
that Bob has the mixed state ρ =

∑n
j=1 pjρj . Use the Holevo bound to show that

the maximum amount of information transmitted by N qubits is N bits. How much
information can be transmitted if the states are instead composed of N qutrits, where
the state space of a qutrit is defined as a three-dimensional complex Hilbert space?

[3 marks]
Solution: The Holevo bound states that the maximum information accessible to Bob
is bounded by

Iacc ≤ S(ρ)−
n∑

j=1

pjS(ρj).

Since S(ρj) ≥ 0 for all j, we have in particular that Iacc ≤ S(ρ). The dimension of the
state space for the case of N qubits is by definition 2N , and thus S(ρ) ≤ log2(2

N ) = N .
Combining the inequalities, we finally obtain Iacc ≤ N bits of information.
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In the case of N qutrits, the state space has dimension 3N by definition, and thus we
have the bound

Iacc ≤ S(ρ) ≤ log2(3
N ) = N log2 3 ≈ 1.585N

bits of information. Equivalently, N qutrits can transmit at mostN trits of information.

(c) The phase-flip channel, which does nothing with probability p and flips the phase of
|1⟩ to − |1⟩ with probability 1− p, has Kraus operators

E0 =
√
pI, E1 =

√
1− pZ,

where Z is the Pauli operator defined by Z = |0⟩⟨0|− |1⟩⟨1|. Evaluate the action of the
phase-flip channel with p = 1/2 on the state ρ = |−⟩⟨−|, where |−⟩ = (|0⟩ − |1⟩)/

√
2.

[2 marks]

Solution: The action of a channel with Kraus operators {Ej} on a state ρ is

ρ 7→
∑
j

EjρE
†
j .

In our case, E†
0 = E0 and E†

1 = E1, p = 1/2, and ρ = |−⟩⟨−|. Thus, by noting
Z |−⟩ = |+⟩, applying the phase-flip channel gives

ρ 7→ pρ+ (1− p)ZρZ =
1

2
(|−⟩⟨−|+ Z |−⟩⟨−|Z)

=
1

2
(|−⟩⟨−|+ |+⟩⟨+|)

=
1

2
(|0⟩⟨0|+ |1⟩⟨1|) = 1

2
I.

That is, the channel takes |−⟩ to the maximally mixed state.

(d) Charlie is given one of two possible states

ρ = |0⟩⟨0| or σ =
1

2
(|0⟩⟨0|+ |1⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨1|).

Evaluate the fidelity F (ρ, σ) of the two states. Using the fidelity, what can we say
about the maximum probability with which Charlie can correctly identify the state?

[2 marks]
Solution: Let us first recognise that there are two alternative definitions of fidelity
which may be used to obtain the correct solution, provided the choice of definition is
consistent. The first of these (here denoted by F ′) is defined by

F ′(ρ, σ) =

(
tr

√
ρ

1
2σρ

1
2

)2

,

and the second is simply F (ρ, σ) =
√
F ′(ρ, σ). Here, we will choose to adopt the latter

definition, as is done in the lecture slides. Note: There was a typo contained in the
lectures which stated F (ψ,φ) = |⟨ψ|φ⟩|2, while in fact F (ψ,φ) = |⟨ψ|φ⟩| is the correct
simplified expression for pure states under this convention.
Since ρ is the density matrix for the pure state |0⟩, the fidelity can be expressed in the
simplified form

F (ρ, σ) =
√

⟨0|σ |0⟩ = 1√
2
.
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The maximum probability with which Charlie can identify the correct state is given by

pmax
guess =

1

2
(1 +D(ρ, σ)),

where D(ρ, σ) is the trace distance between ρ and σ. The trace distance is bounded
above in terms of the fidelity as

D(ρ, σ) ≤
√
1− F (ρ, σ)2 =

√
1− 1

2
=

1√
2
,

and so pmax
guess ≤ (2 +

√
2)/4 ≈ 0.854. In fact, since σ = |+⟩⟨+| is also a pure state, the

upper bound on the trace distance is in fact an equality, leading to pmax
guess = (2+

√
2)/4.

2. Quantum Coin Flipping:
Recall the quantum coin flipping protocol of Ambainis mentioned in the lecture notes where
the following four qutrit states have been used:

|ϕa,x⟩ =



1√
2
(|0⟩+ |1⟩), a = 0, x = 0

1√
2
(|0⟩ − |1⟩), a = 0, x = 1

1√
2
(|0⟩+ |2⟩), a = 1, x = 0

1√
2
(|0⟩ − |2⟩), a = 1, x = 1

where |0⟩ =

1
0
0

, |1⟩ =

0
1
0

 and |2⟩ =

0
0
1

.

(a) We want to first look at Bob’s cheating strategy. Compute the mixed states ρ0 and ρ1
corresponding to the mixture of states Bob receives from Alice for the choice of random
bit a being 0 and 1 respectively.

[3 marks]

Solution: If a = 0, Alice sends a mixed state that is equal to 1√
2
(|0⟩+ |1⟩) with proba-

bility 1/2 and 1√
2
(|0⟩+ |1⟩) with probability 1/2. So the density matrix associated with

this is: ρ0 = 1
2(|0⟩ ⟨0|+ |1⟩ ⟨1|) if you write everything in the qutrit basis ({|0⟩ , |1⟩ , |2⟩}

basis). If b = 1, she sends a mixed state that is equal to 1√
2
(|0⟩+ |2⟩) with probability

1/2 and 1√
2
(|0⟩− |2⟩) with probability 1/2, which will result in ρ1 = 1

2(|0⟩ ⟨0|+ |2⟩ ⟨2|).
The matrix forms of these two mixed states are:

ρ0 =

1
2 0 0
0 1

2 0
0 0 0

 ρ1 =

1
2 0 0
0 0 0
0 0 1

2


(b) Write down the matrix form of ρ0 − ρ1. Then calculate the trace norm of ∥ ρ0 − ρ1 ∥tr.

Note: The trace distance is related to the trace norm in this way:
T (ρ0, ρ1) =

1
2∥ρ0 − ρ1∥tr.

[2 marks]
Solution: Let’s first write down the matrix ρ0 − ρ1, based on the last section:

ρ0 − ρ1 =

0 0 0
0 1

2 0
0 0 −1

2


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As we have seen in the lecture, one way to calculate the trace norm is to find the
eigenvalues of the matrix ρ0 − ρ1 and then use the formula ∥ A ∥tr=

∑
i |λi| to get the

trace norm. Since the matrix ρ0 − ρ1 is diagonal, calculating the eigenvalues is easy
(λ0 = 0, λ1 = 1/2, λ2 = −1/2). So we have:

∥ ρ0 − ρ1 ∥tr= 0 + 1/2 + 1/2 = 1

(c) Now use the Holevo-Helstrom bound for the maximal probability of distinguishing two
mixed states, i.e. the following equation:

P dist
opt =

1

2
+

1

4
∥ ρ0 − ρ1 ∥tr,

to obtain the maximum cheating probability of Bob for this protocol and hence deter-
mine the minimum bias for a dishonest Bob.

[1 mark]
Solution: We just substitute the trace norm from the previous section in the Holevo-
Helstrom bound and get the maximal distinguishing probability to be P dist

opt = 3/4. So
the probability that bias on the protocol against dishonest Bob will be 0.25.

(d) In this part, we will look at a weak coin-flipping protocol. Let’s assume that outcome
0 means that Bob wins, and outcome 1 is a win for Alice. The protocol is as follows:

• Step 1: Alice prepares a pair of systems in an entangled state |ψAB⟩ ∈ HA ⊗HB,
being |ψAB⟩ =

√
3
2 |00⟩+ 1

2 |11⟩ and sends subsystem B to Bob.
• Step 2: Bob performs a 2-outcome POVM measurement {E0, E1} on the qubit he

received (System B), and sends a classical bit b that is the outcome bit to Alice.
Let E0 =

2
3 |0⟩ ⟨0|. (You can find what’s E1 using properties of POVMs.)

• Step 3: If b = 0 then Bob sends his system (B) back to Alice, if b = 1 then Alice
sends her system (A) to Bob. The party that receives the system then performs
the projective measurements {|ψb⟩ ⟨ψb| , I − |ψb⟩ ⟨ψb|}, where the |ψb⟩ is defined as
follows:

|ψb⟩ =
I ⊗

√
Eb |ψAB⟩√

⟨ψAB| I ⊗ Eb |ψAB⟩

I) Write down the reduced density matrix ρB = TrA[|ψAB⟩ ⟨ψAB|] that is being sent
from Alice to Bob. Also, write down the state |ψb⟩ for both cases where b = 0 and b = 1.

II) Following all the steps of the protocol, explain why this protocol is correct (achieves
weak coin flipping) if both Alice and Bob are honest and they follow the protocol.

III) You may have noticed that in the above protocol, there is an extra measurement
that allows Alice and Bob to catch each other cheating! Explain how they can detect
each other’s cheating by describing the four possible outcomes of the protocol. (You
can explain your answer by trying to give an attack where either Alice or Bob are trying
to cheat.)

[6 marks]
Note: Each of the above subquestions counts for 2 marks.
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Solution: I) Let’s begin with writing down ρAB:

ρAB = |ψ⟩AB ⟨ψ|AB =
3

4
|00⟩ ⟨00|+ 1

4
|11⟩ ⟨11|+

√
3

4
[|00⟩ ⟨11|+ |11⟩ ⟨00|]

Now we take the partial trace of the first subsystem (A), which will give us the following
mixed state:

ρB = TrA[|ψAB⟩ ⟨ψAB|] =
3

4
|0⟩ ⟨0|+ 1

4
|1⟩ ⟨1|

We can calculate the |ψb⟩ directly from the given formula in Step 3. Let’s first look at
the case b = 0. We have:

|ψ0⟩ =
I ⊗

√
E0 |ψAB⟩√

⟨ψAB| I ⊗ E0 |ψAB⟩

Given that E0 = 2/3 |0⟩ ⟨0|, then
√

(E0) =
√
(2/3) |0⟩ ⟨0|, and we have:

|ψ0⟩ =
I ⊗

√
2/3 |0⟩ ⟨0| (

√
3
2 |00⟩+ 1

2 |11⟩)√
(
√
3
2 ⟨00|+ 1

2 ⟨11|)I ⊗ 2/3 |0⟩ ⟨0| (
√
3
2 |00⟩+ 1

2 |11⟩)
=

1√
2
|00⟩
1√
2

= |00⟩

Note that we act the operator I ⊗
√

2/3 |0⟩ ⟨0| from the right on the 2-qubit state and
on the first qubit identity doesn’t do anything, on the second qubit we project into the
zero state.
Similarly, for |ψ1⟩ where the E1 = I −E0 =

1
3 |0⟩ ⟨0|+ |1⟩ ⟨1| is applied, in the enumer-

ator we get the non-normalised state 1
2(|00⟩+ |11⟩) and the denominator gives correct

normalisation factor. Hence we get the state:

|ψ1⟩ =
1√
2
(|00⟩+ |11⟩)

There is another way to obtain these states, and that’s by following the protocol and
applying the measurements, which we discuss in the next section.

II) Let’s see what will happen in this protocol when both Alice and Bob are honest. If
Alice is honest, she is actually sending the subsystem B of the states that they both
expect Alice to prepare, in our case the |ψAB⟩ specified in Step 1, In Step 2, Bob will
have the state ρB that we calculated in the first section of this question. Now if Bob is
honest, he will perform the specified POVM, without trying to reveal Alice’s side of the
state through any other POVMs (which would be his general cheating strategy if he was
dishonest). Let’s say Bob obtains measurement result 0, then by announcing the correct
measurement result and sending back his post-measurement state, Alice will have the 2-
qubit state |ψ0⟩ and will perform the projective measurements {|ψb⟩ ⟨ψb| , I−|ψb⟩ ⟨ψb|},
and get the outcome 0 deterministically. Thus they will agree on the random bit 0,
which is the outcome of Bob’s measurement outcome (The same will happen for out-
come 1). The point is that Alice will always get a deterministic outcome of the state she
receives is the one that is expected by the protocol. Also note that Tr[ρBE0] = 1/2,
which means the measurement outcome is a random equal probability coin. So the
protocol is correct.

III) This protocol has an interesting property and that’s cheat sensitivity, which means
that if one of the parties tries to cheat, they will be fought by the other party with
some probability. Let’s see all the four possible outcomes of the protocol:
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1. b = 0, Alice finds |ψ0⟩ ⟨ψ0|; Bob wins.

2. b = 0, Alice finds I − |ψ0⟩ ⟨ψ0|; Alice catches Bob cheating.

3. b = 1, Bob finds |ψ1⟩ ⟨ψ1|; Alice wins.

4. b = 1, Bob finds I − |ψ1⟩ ⟨ψ1|; Bob catches Alice cheating.

So the second measurement acts as a check to ensure that the party who has the 2-
qubit state at the end of the protocol, has the states as expected. And when the state
deviates from the |ψb⟩, the second measurement catches it, with some probability. Also,
note that while this protocol is sufficient for weak coin-flipping, it is not a good strong
coin-flipping protocol, because Bob can always choose to lose by simply announcing
b = 1, and hence bias the result to one side. Let’s say Bob wants to cheat when he
receives outcome 1 (which means he will lose) and wants to announce 0 (claiming he
won). But outcome 0 means that he has to send his state to Alice, which means Alice
will perform the projection |ψ0⟩ ⟨ψ0| (and the complementary measurement) and since
the state she will receive is not |ψ0⟩, she will detect the cheating with some probability.
Bob can of course deviate from the state that he has left with in order to pass Alice’s
check, but he cannot perfectly retrieve the correct state if he wants to bias the outcome.
You can give any example of such attacks or similar attacks by Alice when they cheat.
As long as you can show that the catching probability is non-zero, that will work!
Also as you can guess, there is a tradeoff between the maximum winning probability
and the maximum probability of not getting caught while cheating. Another interesting
point about this protocol is that it is not symmetric, meaning that Alice and Bob have
different maximum success probabilities. Alice’s maximum success probability in this
case is 3/8 and Bob’s is 3/4. Although it’s not super easy to prove these maximum
bounds, so you don’t need to do that in your solution.

3. Consider the following two functions:

A(x, i, j) = (−1)x⊕i(−1)x·j and B(y, i, j) = (−1)y⊕i(−1)y·j .

All inputs x, y, i, j are single (classical) bits. Assume that these deterministic functions,
correspond to the outcomes of Alice (the A(x, i, j)) and Bob (the B(y, i, j)) at some QKD
protocol. The i, j occur with same probability, and are unknown to Alice and Bob.

(a) Show that the expectation values and the correlations that they obtain are the same
as for the BBM92 QKD protocol. Recall that in that protocol, the expectation value
of each observable A,B was zero (equal probability for each outcome), the expectation
value of the correlator when measuring in the same basis was one (perfect correlation),
while the expectation value of the correlator when measuring in a different basis is zero
(completely uncorrelated).
Note: to compute the expectation value of an observable you need to sum over the
hidden variables i, j, while to compute the correlator you need to multiply the two
observables and then sum over the hidden variables i, j.

[2 marks]
Solution: Need to compute:∑

i,j

A(x, i, j) =
∑
i

(−1)i
∑
j

(−1)x(−1)x·j = 0×
∑
j

(−1)x(−1)x·j = 0

∑
i,j

B(x, i, j) =
∑
i

(−1)i
∑
j

(−1)y(−1)y·j = 0
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∑
i,j

A(x, i, j)B(y, i, j) =
∑
i,j

(−1)x⊕y(−1)(x⊕y)·j

If x⊕ y = 0 (same basis) ∑
i,j

1 = 4

and given that each of the four (i, j) occurs with same probability this is just one.
If x⊕ y = 1 (different basis)∑

i,j

(−1)(−1)j =
∑
j

(−1)j
∑
i

(−1) = 0

(b) Explain why the result of the previous question means that the BBM92 protocol is not
device independent.

[1 mark]
Solution: The above functions are deterministic. Eve could toss two coins to obtain
randomly a value for i, j and then send classical information to Alice and Bob. They
would recover the same expectation values as if they used the BBM92 protocol, but in
this case, Eve knows their exact outcomes and thus can cheat perfectly.
This of course does not make BB92 insecure, since in that protocol Alice and Bob know
exactly what measurements they perform (and are not the ones that Eve wants them).
This only demonstrates that the protocol would not be secure if Alice and Bob had
black-box access to their quantum system.
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