Problem 1 Entropies of quantum states

Consider the four bipartite states (of systems A and B), whose representations in the computational basis are given by the following density matrices:

$$
\begin{gathered}
\rho_{1}=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right), \quad \rho_{2}=\frac{1}{4}\left(\begin{array}{cccc}
1 & 0 & 0 & \sqrt{3} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\sqrt{3} & 0 & 0 & 3
\end{array}\right), \quad \rho_{3}=\frac{1}{4}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right), \\
\rho_{4}=\frac{1}{4}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \rho_{5}=\frac{1}{4}\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1
\end{array}\right) .
\end{gathered}
$$

(a) For each state, compute the von Neumann entropies $S(A)$ and $S(B)$ of the reduced states, as well as the von Neumann entropy $S(A, B)$ of the whole state.
(b) For each state, compute the conditional quantum entropy $S(A \mid B)=S(A, B)-S(B)$ and the quantum mutual information $S(A: B)=S(A)+S(B)-S(A, B)$.
(c) Use the definitions of the tensor product and what you know about projections and pure states in order to rewrite each of the bipartite states in a simplified form. Discuss how these relate to the results obtained in (a) and (b).

Problem 2

(a) Compute the secret key rate R of a QKD protocol given the probability that the sent qubits are detected is $Q=1 / 3$, the error as a result of classical post-processing is $\xi=1 / 3$, the penalty for using Holevo quantities is $\Delta(n, \varepsilon)=1 / 10$, and given the following von Neumann entropies:

$$
S\left(\rho^{A}\right)=\frac{1}{3}, \quad S\left(\rho^{B}\right)=\frac{1}{4}, \quad S\left(\rho^{A B}\right)=\frac{1}{12}, \quad S\left(\rho^{E}\right)=\frac{1}{5}, \quad S\left(\rho^{A E}\right)=\frac{7}{15} .
$$

(b) What is the secret key rate if the QKD protocol in use is BB84 and we instead assume perfect detection, no finite-size effects, ideal classical post-processing, an average error in the $\{|0\rangle,|1\rangle\}$ basis of $e_{b}=1 / 16$, and an average error in the $\{|+\rangle,|-\rangle\}$ basis of $e_{p}=1 / 8$?

Problem 3

Alice sends to Bob one out of two possible states, depending on the outcome of tossing a fair coin. If the outcome is heads, then Alice sends $\rho_{H}=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1|$. If the outcome is tails, then Alice sends $|1\rangle$. Using the Holevo bound, determine an upper bound on the accessible information that Bob can obtain.

Problem 4

(a) Consider a secret bit string (random variable) X with outcomes in $\{0,1\}^{15}$ and a 2 universal family of hash functions $H=\left\{h_{i}\right\}_{i}$, where $h_{i}=h(i, \cdot)$ with $h: \mathcal{S} \times\{0,1\}^{15} \rightarrow$ $\{0,1\}^{3}$. Using the leftover hash lemma, determine the maximum number of allowed leaked bits t of X such that, after using privacy amplification with the family of functions H, we produce a bit string that is ε-close to uniformly distributed in statistical distance, where $\varepsilon=2^{-4}$. That is, such that $\delta\left[\left(h_{i}(x), i\right),(u, i)\right] \leq 2^{-4}$.
(b) Prove that the family of functions $H=\left\{h_{a, b}\right\}_{a, b}$ is 2-universal, where $h_{a, b}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ for p prime and $(a, b) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ is defined by

$$
h_{a, b}(x) \equiv a x+b \quad(\bmod p) .
$$

Problem 5

Compute the secret key rate R_{6} for the 6 -state protocol given that the quantum bit error rate (QBER) is $D_{a}^{\prime}=1 / 8$.

