Problem 1

Consider the four Bell states

$$
\begin{array}{ll}
\left|\Phi^{+}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}, & \left|\Phi^{-}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}}, \\
\left|\Psi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}, & \left|\Psi^{-}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}} .
\end{array}
$$

Those maximally entangled states form an orthonormal basis of the two-qubit Hilbert space $\mathcal{H}=\mathbb{C}^{4}$.
(a) Verify that the Bell states form an orthonormal family of states, i.e., that they are pair-wise orthogonal, and each of them is normalised.
(b) Simplify the following:
i. $X \otimes X\left|\Psi^{-}\right\rangle$
ii. $X \otimes Z\left|\Psi^{-}\right\rangle$
iii. $Z \otimes X\left|\Psi^{-}\right\rangle$
iv. $Z \otimes Z\left|\Psi^{-}\right\rangle$

Problem 2

Consider the CHSH "game" described in the lecture. Assume that Alice and Bob share the quantum state

$$
\left|\Phi^{+}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}} .
$$

Recall that

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

If $x=0$ Alice measures the observable $A_{0}=Z$, and if $x=1$ Alice measures the observable $A_{1}=X$. If $y=0$ Bob measures the observable $B_{0}=\frac{1}{\sqrt{2}}(X+Z)$, and if $y=1$ Bob measures the observable $B_{1}=\frac{1}{\sqrt{2}}(X-Z)$.
(a) Compute the correlator $E_{00}=\left\langle\Phi^{+}\right| A_{0} \otimes B_{0}\left|\Phi^{+}\right\rangle=\left\langle\Phi^{+}\right| Z \otimes \frac{1}{\sqrt{2}}(X+Z)\left|\Phi^{+}\right\rangle$.
(b) Compute the quantity $\beta=E_{00}-E_{01}+E_{10}+E_{11}$ and show that it attains the maximum Bell inequality violation $2 \sqrt{2}$, as given in the lectures.

Problem 3

Consider the same setting of the game as in Problem 1, but with the difference that now Alice and Bob share the state $|\psi\rangle=\frac{1}{\sqrt{3}}|00\rangle+\sqrt{\frac{2}{3}}|11\rangle$. Compute the quantity β in this case.

Problem 4

Consider the same setting of the game as in Problem 1, but now Alice and Bob share a mixed state ρ that is given by the ensemble where with probability $p_{1}=1 / 4$ the state is

$$
\left|\psi_{1}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

with probability $p_{2}=1 / 4$ the state is

$$
\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{3}}|00\rangle+\sqrt{\frac{2}{3}}|11\rangle
$$

and with probability $p_{3}=1 / 2$ the state is

$$
\left|\psi_{3}\right\rangle=|0\rangle \otimes|+\rangle
$$

(a) Compute the correlator $E_{01}(\rho)=\operatorname{tr}\left[\rho\left(Z \otimes \frac{X-Z}{\sqrt{2}}\right)\right]$.
(b) Determine the quantity β corresponding to this realisation of the CHSH game.

Problem 5

In this problem, we will derive the Schmidt decomposition for a two-qubit bipartite system. That is, for any two-qubit bipartite state $|\psi\rangle_{A B}$, there exist orthonormal bases $\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle\right\}$ and $\left\{\left|f_{1}\right\rangle,\left|f_{2}\right\rangle\right\}$ for the single-qubit systems A and B respectively and positive constants c_{1} and c_{2} such that $|\psi\rangle_{A B}=c_{1}\left|e_{1}\right\rangle \otimes\left|f_{1}\right\rangle+c_{2}\left|e_{2}\right\rangle \otimes\left|f_{2}\right\rangle$.
(a) Consider any two orthonormal bases for the systems A and $B,\left\{\left|a_{1}\right\rangle,\left|a_{2}\right\rangle\right\}$ and $\left\{\left|b_{1}\right\rangle,\left|b_{2}\right\rangle\right\}$ respectively. Write $|\psi\rangle_{A B}$ in the matrix representation M_{ψ} with respect to these bases.
(b) Consider the singular value decomposition $M_{\psi}=U \Sigma V^{\dagger}$, where U and V are 2×2 unitaries and Σ is a diagonal matrix whose entries are the joint eigenvalues of the bipartite system. From this decomposition deduce $\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle\right\}$ and $\left\{\left|f_{1}\right\rangle,\left|f_{2}\right\rangle\right\}$. What are the constants c_{1} and c_{2} ?

Problem 6

For a general quantum state $|\psi\rangle$, the number of nonzero constants (Schmidt coefficients) c_{i} in its Schmidt decomposition is called the "Schmidt number" for the state $|\psi\rangle$.
(a) Prove that a pure state $|\psi\rangle_{A B}$ of a two-qubit bipartite system is entangled if and only if its Schmidt number is greater than 1.
(b) Suppose that $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ are two states of a two-qubit bipartite system (with components A and B) having identical Schmidt coefficients. Show that there are unitary transformations U on system A and V on system B such that $\left|\psi_{1}\right\rangle=(U \otimes V)\left|\psi_{2}\right\rangle$.

