Problem 1

Consider the four Bell states

\[|\Phi^+\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}, \quad |\Phi^-\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}, \]
\[|\Psi^+\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}, \quad |\Psi^-\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}. \]

Those maximally entangled states form an orthonormal basis of the two-qubit Hilbert space \(\mathcal{H} = \mathbb{C}^4 \).

(a) Verify that the Bell states form an orthonormal family of states, i.e., that they are pair-wise orthogonal, and each of them is normalised.

(b) Simplify the following:

i. \(X \otimes X |\Psi^\rangle \)

ii. \(X \otimes Z |\Psi^\rangle \)

iii. \(Z \otimes X |\Psi^\rangle \)

iv. \(Z \otimes Z |\Psi^\rangle \)

Problem 2

Consider the CHSH "game" described in the lecture. Assume that Alice and Bob share the quantum state

\[|\Phi^\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}. \]

Recall that

\[X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \]

If \(x = 0 \) Alice measures the observable \(A_0 = Z \), and if \(x = 1 \) Alice measures the observable \(A_1 = X \). If \(y = 0 \) Bob measures the observable \(B_0 = \frac{1}{\sqrt{2}}(X + Z) \), and if \(y = 1 \) Bob measures the observable \(B_1 = \frac{1}{\sqrt{2}}(X - Z) \).

(a) Compute the correlator \(E_{00} = \langle \Phi^+ | A_0 \otimes B_0 |\Phi^\rangle = \langle \Phi^+ | Z \otimes \frac{1}{\sqrt{2}}(X + Z) |\Phi^\rangle \).

(b) Compute the quantity \(\beta = E_{00} - E_{01} + E_{10} + E_{11} \) and show that it attains the maximum Bell inequality violation \(2\sqrt{2} \), as given in the lectures.

Problem 3

Consider the same setting of the game as in Problem 1, but with the difference that now Alice and Bob share the state

\[|\psi\rangle = \frac{1}{\sqrt{3}} |00\rangle + \sqrt{\frac{2}{3}} |11\rangle. \]

Compute the quantity \(\beta \) in this case.
Problem 4

Consider the same setting of the game as in Problem 1, but now Alice and Bob share a mixed state \(\rho \) that is given by the ensemble where with probability \(p_1 = 1/4 \) the state is

\[
|\psi_1\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}},
\]

with probability \(p_2 = 1/4 \) the state is

\[
|\psi_2\rangle = \frac{1}{\sqrt{3}} |00\rangle + \frac{\sqrt{2}}{3} |11\rangle,
\]

and with probability \(p_3 = 1/2 \) the state is

\[
|\psi_3\rangle = |0\rangle \otimes |+\rangle.
\]

(a) Compute the correlator \(E_{01}(\rho) = \text{tr}[\rho (Z \otimes X - Z \sqrt{2})] \).

(b) Determine the quantity \(\beta \) corresponding to this realisation of the CHSH game.

Problem 5

In this problem, we will derive the Schmidt decomposition for a two-qubit bipartite system. That is, for any two-qubit bipartite state \(|\psi\rangle_{AB} \), there exist orthonormal bases \(\{|e_1\rangle, |e_2\rangle\} \) and \(\{|f_1\rangle, |f_2\rangle\} \) for the single-qubit systems \(A \) and \(B \) respectively and positive constants \(c_1 \) and \(c_2 \) such that

\[
|\psi\rangle_{AB} = c_1 |e_1\rangle \otimes |f_1\rangle + c_2 |e_2\rangle \otimes |f_2\rangle.
\]

(a) Consider any two orthonormal bases for the systems \(A \) and \(B \), \(\{|a_1\rangle, |a_2\rangle\} \) and \(\{|b_1\rangle, |b_2\rangle\} \) respectively. Write \(|\psi\rangle_{AB} \) in the matrix representation \(M_\psi \) with respect to these bases.

(b) Consider the singular value decomposition \(M_\psi = U\Sigma V^\dagger \), where \(U \) and \(V \) are \(2 \times 2 \) unitaries and \(\Sigma \) is a diagonal matrix whose entries are the joint eigenvalues of the bipartite system. From this decomposition deduce \(\{|e_1\rangle, |e_2\rangle\} \) and \(\{|f_1\rangle, |f_2\rangle\} \). What are the constants \(c_1 \) and \(c_2 \)?

Problem 6

For a general quantum state \(|\psi\rangle \), the number of nonzero constants (Schmidt coefficients) \(c_i \) in its Schmidt decomposition is called the “Schmidt number” for the state \(|\psi\rangle \).

(a) Prove that a pure state \(|\psi\rangle_{AB} \) of a two-qubit bipartite system is entangled if and only if its Schmidt number is greater than 1.

(b) Suppose that \(|\psi_1\rangle \) and \(|\psi_2\rangle \) are two states of a two-qubit bipartite system (with components \(A \) and \(B \)) having identical Schmidt coefficients. Show that there are unitary transformations \(U \) on system \(A \) and \(V \) on system \(B \) such that \(|\psi_1\rangle = (U \otimes V) |\psi_2\rangle \).