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This Lecture: Quantum Coin-flipping
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Motivation

Coin Flipping
Two distant people, need to decide e.g. who will pick the music!

Cryptographic task (people have incentive to cheat)

Introduced formally by Blum 1983
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Definition

(Strong) Coin Flipping

The task of coin flipping consists of two mutually distrustful players,
Alice and Bob, and the goal is for both players to output the same
random bit c ∈ {0, 1} such that the following properties hold

1 Correctness: if both Alice and Bob are honest then c is
uniformly distributed: p(c = 0) = p(c = 1) = 1/2.

2 ϵ-secure: neither player can force p(c = 0) ≥ 1/2 + ϵ or
p(c = 1) ≥ 1/2 + ϵ, where p(c) is the probability that the
honest player outputs a value c .

The smallest ϵ a protocol is ϵ-secure is called the bias.
Q: Is Information Theoretic Secure coin flipping possible?
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An (insecure) classical coin flipping protocol

Alice picks a random bit a← {0, 1}

Alice send a to Bob

Bob picks a random bit b ← {0, 1}

Bob sends b to Alice

Both return c := a⊕ b

The protocol is correct, bit is NOT secure (at all)

- Why is this protocol insecure?

- Bob can select his bit after seeing Alice’s and can bias the coin
as he desires!
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Impossibility of classical coin flipping

Impossibility of classical info theoretic secure coin flipping [Blum83]

No classical coin flipping protocol is secure, i.e. no value of ϵ < 1/2
can be achieved for security!

If Alice can’t bias then Bob can completely bias the coin

Assume a protocol of n-rounds of interaction

Let k be the last round that the value of c is not fixed

The party that runs round k can fully bias the outcome
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Classical Coin Flipping under Assumptions

Coin Flipping is possible with computational assumptions

An example is assuming the existence of secure one-way
functions (OWF), [Blum 83]

OWF: A function f that can be computed efficiently but
cannot be inverted efficiently

(efficiently is understood as “in poly-time”)

Alice chooses bit a and string r randomly

Alice sends to Bob f (a, r) = d (commits a)

Bob chooses bit b and sends it to Alice

Alice announces a, r to Bob

Bob checks that f (a, r) = d and if yes they proceed

They both return c = a⊕ b
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General Idea

Alice ‘commits’ to a bit a sending commit(a) = d to Bob

Bob sends his bit b to Alice

Alice reveals her commitment reveal(d) = a

Bob (if reveal is compatible with the commitment) accepts to
proceed (otherwise aborts)

Both output c = a⊕ b

- Commitment is impossible (classically or quantumly) with ITS,
but quantumly can achieve protocol with non-trivial bias ϵ
using this idea
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Quantum Coin Flipping

Quantum transcript of a round contains information that may
not be “extractible”

Can (partly) evade the problem that there is a round that after
that round (and not earlier) the output bit is determined

Alice attempts to (partially) commit to message by encoding
to a quantum state

Cannot achieve zero bias, but can achieve ϵ < 1/2

Recall, bias ϵ < 1/2 is defined as the largest probability that
any of the two players can bias the coin towards one outcome.
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Qubit QCF protocol (Aharanov 2000)

- Family of protocols, one for each choice ϕ

- Define the states |ϕx ,a⟩ (note x is the basis bit, a the
‘outcome’ bit, check orthogonality!):

|ϕ0,0⟩ = cosϕ |0⟩+ sinϕ |1⟩ ; |ϕ0,1⟩ = sinϕ |0⟩ − cosϕ |1⟩

|ϕ1,0⟩ = cosϕ |0⟩ − sinϕ |1⟩ ; |ϕ1,1⟩ = sinϕ |0⟩+ cosϕ |1⟩

Alice chooses two bit a, x ← {0, 1}

Alice prepares the state |ϕx ,a⟩

Bob sends his bit b

Alice reveals x , a, Bob meas. in x-basis, checks if he gets a

They return c = a⊕ b
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Cheating probabilities and ϵ-bias

ϵ-bias: ϵ+ 1/2 = max{Pr(Alice win),Pr(Bob win)}

Alice to cheat: Preparing the wrong states (different,
non-uniform random); giving wrong information about (x , a)

Bob to cheat: Try to determine (x , a) from Alice’s states,
and reveal some info on Alice’s choice before he gives his bit b

Aharanov’s Protocol Security
The protocol is ϵ-secure with bias at most 0.42

For different ϕ’s the two probabilities scale inversely

For ϕ = π
8 , we have the best bias that leads to

Pr(Alice win) ≤ 0.914 and Pr(Bob win) ≤ 0.86
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Bob’s optimal cheating probabilities

Bob want to distinguish two cases: a = 0 and a = 1, without
any information on x .

ρa=0 = 1
2(|ϕ0,0⟩ ⟨ϕ0,0|+ |ϕ1,0⟩ ⟨ϕ1,0|)

ρa=1 = 1
2(|ϕ0,1⟩ ⟨ϕ0,1|+ |ϕ1,1⟩ ⟨ϕ1,1|)

Maximum distinguishing probability:

poptdist =
1
2 + 1

2T (ρa=0, ρa=1) =
1
2 + 1

4∥ρa=0 − ρa=1∥

ρ0 = cos2 ϕ |0⟩ ⟨0|+sin2 ϕ |1⟩ ⟨1| ; ρ1 = sin2 ϕ |0⟩ ⟨0|+cos2 ϕ |1⟩ ⟨1|

∥ρ0 − ρ1∥ = 2 cos 2ϕ

Prob(Bob win) ≤ 1
2 + cos 2ϕ

2

Choosing ϕ = π/8 (optimal to minimise Alice’s probability):
Prob(Bob win) ≈ 0.853
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Qutrit QCF protocol (Ambainis 2004)

- We consider qutrits (dim 3): {|0⟩ , |1⟩ , |2⟩}

- Consider the four states (two pairs of orthogonal) |ϕx ,a⟩:

|ϕ0,0⟩ =
1√
2
(|0⟩+ |1⟩) ; |ϕ0,1⟩ =

1√
2
(|0⟩ − |1⟩)

|ϕ1,0⟩ =
1√
2
(|0⟩+ |2⟩) ; |ϕ1,1⟩ =

1√
2
(|0⟩ − |2⟩)

Alice chooses two bit a, x ← {0, 1}

Alice prepares the state |ϕx ,a⟩

Bob sends his bit b

Alice reveals x , a, Bob meas. in x-basis, checks if he gets a
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Optimal biases for QCF

Ambainis protocol is secure with ϵ = 0.25

(Both Alice and Bob can cheat with at most prob 0.75)

Aharanov protocol had bias ϵ = 0.42

Impossibility of Strong Quantum Coin Flipping

Perfect (ϵ ≈ 0) strong coin flipping is impossible for quantum
protocols

Kitaev proved that QCF need to have at least
ϵ =

√
2−1
2 ≈ 0.207 bias
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Weak (quantum) coin flipping

Definition: Weak Coin Flipping
Same as strong CF, except the security where: Alice cannot force
p(c = 0) ≥ 1/2 + ϵ, and Bob cannot force p(c = 1) ≥ 1/2 + ϵ.

In other words, Alice/Bob cannot bias the coin in their favour
(but could bias it in the other person’s favour)

Weak Coin Flipping with arbitrarily small (non-zero) bias ϵ is:
- Impossible Classically
- Possible Quantumly

Rounds of interaction required scale as N ∼ 1/ϵ at best

Practical protocol with ϵ = 1/10 exists, but open question to
design protocol for arbitrarily small bias
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Experimental Implementations
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