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@ Encrypting Quantum Information
@ The Quantum One-Time-Pad
© Authenticated Quantum Messages

@ A Trap-Based Quantum Authentication Scheme
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Encrypting Quantum Information

Can we encrypt a qubit or a general quantum state?

Alice Bob

k k
Message |¥)!
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Encrypting Quantum Information

Can we encrypt a qubit or a general quantum state?

Alice Bob

k k
Message |¥)!

@ Anyone intercepting the quantum communication (without the
key k) should not learn anything about the message!

@ Bob should be able to extract the message
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Encrypting Quantum Information

Can we encrypt a qubit or a general quantum state?

Alice Bob

k k
Message |¥)!

@ Anyone intercepting the quantum communication (without the
key k) should not learn anything about the message!

@ Bob should be able to extract the message

@ Motivation: Protocols that involve communicating private
quantum information.

E.g. as part of a secure quantum computation e
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Encrypting Quantum Information

Task: Encrypting Quantum Information

Send a quantum state |¢)) (from Alice to Bob), through an
untrusted quantum channel £¢(-) such that: (i) Any Eavesdropper
intercepting cannot extract any information, and (ii) Bob can

“decrypt” and (if no Eavesdropping) recover the correct
quantum state.
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Encrypting Quantum Information

Task: Encrypting Quantum Information

Send a quantum state |¢)) (from Alice to Bob), through an
untrusted quantum channel £¢(-) such that: (i) Any Eavesdropper
intercepting cannot extract any information, and (ii) Bob can
“decrypt” and (if no Eavesdropping) recover the correct
quantum state.

e Quantum Plaintext: |¢)

Secret (classical) key: k

Quantum Ciphertext: p. (1))

Encryption Algorithm: Enc,(|¢))) = p.(¥)
Crossing Channel: Ec(pi(v)) = p
Decryption Algorithm: Dec,(p)

4/16

Petros Wallden Lecture 13: Quantum Encryption and Authentication



Encrypting Quantum Information

Task: Encrypting Quantum Information

Send a quantum state [¢)) (from Alice to Bob), through an
untrusted quantum channel £¢(-) such that: (i) Any Eavesdropper
intercepting cannot extract any information, and (ii) Bob can

“decrypt” and (if no Eavesdropping) recover the correct
quantum state.

@ Correctness: Decy (Ency (|¢0))) = [¥); (cf Ec =1T)
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Encrypting Quantum Information

Task: Encrypting Quantum Information

Send a quantum state [¢)) (from Alice to Bob), through an
untrusted quantum channel £¢(-) such that: (i) Any Eavesdropper
intercepting cannot extract any information, and (ii) Bob can
“decrypt” and (if no Eavesdropping) recover the correct
quantum state.

@ Correctness: Dec, (Ency ([))) = [); (cf Ec =1)

@ Security ITS: Given any two distinct states 1), [¢2) any
adversary A cannot distinguish between the two (averaged
over secret key) quantum ciphertexts

T (W), D pe(2)) =05 > o) = Y pul2)

where T(,) is trace-distance and we have:
Perfect Information-Theoretic Security 516
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Encrypting Quantum Information

Task: Encrypting Quantum Information

Send a quantum state |¢)) (from Alice to Bob), through an
untrusted quantum channel £¢(-) such that: (i) Any Eavesdropper
intercepting cannot extract any information, and (ii) Bob can
“decrypt” and (if no Eavesdropping) recover the correct
quantum state.

@ Correctness: Decy (Ency (|¢0))) = [¥); (cf Ec =1T)

© Security General: Given two states T([11), [1)2)) = p, the
prob that any A can distinguish between the average
g-ciphertexts is bounded by €(n) - p

PrIAC  pr(v1)) = 11 = PrLAC  pilth2)) =11 < €(n) - p
k k

where €(n) is the security level and the distinguisher is either
computational (poly-time) or ITS (trace-distance) o
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The Quantum One-Time-Pad (QOTP)

Focus: Information Theoretic Security (ITS)

o (Classical) Secret Key: two classical bits per qubit (k = (2, b))
@ “One-Time-Pad” means keys cannot be reused
e We consider a single qubit message (generalise later)

@ We assume pure message state p,, = [1) (1]
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The Quantum One-Time-Pad (QOTP)

Focus: Information Theoretic Security (ITS)

(Classical) Secret Key: two classical bits per qubit (k = (a, b))

“One-Time-Pad" means keys cannot be reused

We consider a single qubit message (generalise later)

@ We assume pure message state p,, = [1) (1]

Encryption Algorithm: Enc., ,(py) = X?Z"py,Z"X?
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The Quantum One-Time-Pad (QOTP)

Focus: Information Theoretic Security (ITS)

(Classical) Secret Key: two classical bits per qubit (k = (a, b))

“One-Time-Pad" means keys cannot be reused

We consider a single qubit message (generalise later)

@ We assume pure message state p,, = [1) (1]

Encryption Algorithm: Enc., ,(py) = X?Z"py,Z"X?

Decryption Algorithm: Dec, ,(p) = Z"X?pX?Z"
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The QOTP

o Correctness:
Dec. » (Enc, »(py)) = Z°X° (xaz”(pw)sza) X?7" = p,,
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The QOTP

o Correctness:
Dec. » (Enc, »(py)) = Z°X° (xaz”(pw)sza) X?7" = p,,

@ Any eavesdropper, without knowing a, b, intercepts the
“average” ciphertext: pg() = %Za_bX"prwaXa
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The QOTP

o Correctness:
Dec. » (Enc, »(py)) = Z°X° (xaz”(pw)sza) X?7" = p,,

° Any eavesdropper without knowing a, b, intercepts the
“average’ ciphertext: pg(1) := 3>, X?Z p,Z"X?

@ Security: We need to prove that pe(v1) = pe(¥2) ¥ U1 # 2

@ We will use the Pauli Decomposition
(form basis for Hermitian matrices)
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Pauli Decomposition: Single Qubit

Recall the Pauli matrices (including identity) are:

10 01
O
0 —i 1 0\
) 2= 0) e
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Pauli Decomposition: Single Qubit

Recall the Pauli matrices (including identity) are:

10 01
O

0 —i 1 0
) 2= 0) e

@ Any (single qubit) density matrix can be written as:

3
1 1
p:2]I+a1X+a2Y+a3Z:2]I+;a,-P,-

for some complex numbers ay, a5, as.
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Pauli Decomposition: Single Qubit

Recall the Pauli matrices (including identity) are:

10 01
O

0 —i 1 0
) 2= 0) e

@ Any (single qubit) density matrix can be written as:

3
1 1
p=sl+aX+aY +aZ= 2]I+Z;a,-P,-
=
for some complex numbers a1, as, as.
o Coefficients can be evaluated:
1
aj = ETr(P,-p)
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The QOTP: Security Proof

Commutation Relations: P;P; = —P;P; for i # j and i,j € {1,2,3}.
XZPx? = (—1)bzPx2Xx ; YZPX? = (—1)PTezbXx?y ; zzPXx? = (—1)*ZPXx?Z
Other property: > .o 13(—1)?(Anything) = 0
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The QOTP: Security Proof

Commutation Relations: P;P; = —P;P; for i # j and i,j € {1,2,3}.
XZPx? = (—1)bzPx2Xx ; YZPX? = (—1)PTezbXx?y ; zzPXx? = (—1)*ZPXx?Z
Other property: > .o 13(—1)?(Anything) = 0

@ We now prove that pg(1)) is independent of :

3
s,_]' a—zb ba_]' ab]' bya
PE(U/)—ZZX VATV AP —ZZ;X V4 (2}14—;3;/3;)2 X

a,b
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The QOTP: Security Proof

Commutation Relations: P;P; = —P;P; for i # j and i,j € {1,2,3}.
XZPx? = (—1)bzPx2Xx ; YZPX? = (—1)PTezbXx?y ; zzPXx? = (—1)*ZPXx?Z
Other property: > .o 13(—1)?(Anything) = 0

@ We now prove that pg(1)) is independent of :

3
s,_]' a—zb ba_]' ab]' bya
PE(U/)—ZZX VATV AP —ZZ;X V4 (2}14—;3;/3;)2 X

a,b
The first term: EZX‘QZ” }}I ZbXa:EZH:E]I
"4 — 2 8 — 2

The second term: %Zxazb(am)sza = % Z(—l)bX =0

o
a,b a,b
- o1 b bya _ 92 btay _
® The third term: 2 Z;xaz (22Y)2°Xx* = ;(—1) Y=0
a, a,

o1 b bya _ 93 _
The forth term: 2 zb:xaz (as2)Z°X* = 2 2;(—1)32 =0
a, a,
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The QOTP: Security Proof

Commutation Relations: P;P; = —P;P; for i # j and i,j € {1,2,3}.
XZPx? = (—1)bzPx2Xx ; YZPX? = (—1)PTezbXx?y ; zzPXx? = (—1)*ZPXx?Z
Other property: > .o 13(—1)?(Anything) = 0

@ We now prove that pg(1)) is independent of :

3
;,_1 a—zb ba_]' abl bya
PE(%)—ZZX Z°pypZ"X —ZZ;X z <2H+Z;a,-P,-)Z X

a,b
The first term: EZX‘QZ” }H ZbXa:EZH:E]I
"4 ab 2 8 — 2

The second term: %Zxazb(am)sza = % Z(—l)bX =0

o
a,b a,b
- o1 b bya _ 92 btay _
® The third term: 2 Z;xaz (22Y)2°Xx* = ;(—1) Y=0
a, a,

. 1 a—-b bya _ 93 a7z _
e The forth term: ZZ;X Zb(a32)ZPx7 = Zzb:(—l) Z=0
e Putting together: pg(v)) = %H. Independent of ¢ O o
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Pauli Decomposition: Multiple (n)-Qubits

@ Any n-qubit state can be written as:

p= Z iy, Piy @ -+ @ P,

for some complex numbers a;, ;..
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Pauli Decomposition: Multiple (n)-Qubits

@ Any n-qubit state can be written as:

p= Z iy, Piy @ -+ @ P,

for some complex numbers a;, ;..

e Coefficients can be evaluated:
1
Aiy,in = ETT(PH ®--@P; - p)

@ Note that, since Tr(p) = 1, the term with identity everywhere
is: @ @I
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The QOTP: Multiple (n)-Qubits

o Secret Key: 2n-bits (k — (5. B) = ((a1, by), - - -, (am b))
@ Encryption and Decryption qubit-by-qubit
® Enci(py) =X Z"®- - @X"Z" (pyp) Z" X @ @ Z X

° Deck-([)) — Zblxal ®-® Zbﬂxan (/)) Xalztn R ® Xanzbn
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The QOTP: Multiple (n)-Qubits

o Secret Key: 2n-bits (k — (5. B) = ((a1, by), - - -, (am b))

@ Encryption and Decryption qubit-by-qubit

® Enci(py) =X Z"®- - @X"Z" (pyp) Z" X @ @ Z X
@ Dec (p) =Z" X" @ @ Z" X" (p)XT1Z" @ -+ @ X Z"

e Correctness: Dec (Enc (py)) = py
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The QOTP: Multiple (n)-Qubits

o Secret Key: 2n-bits (k — (5.5) = ((a1.b1). .. (a,. b))
@ Encryption and Decryption qubit-by-qubit
® Enci(py) =X Z"®- - @X"Z" (pyp) Z" X @ @ Z X
@ Dec (p) =Z" X" @ @ Z" X" (p)XT1Z" @ -+ @ X Z"
e Correctness: Dec (Enc (py)) = py
o Security: pe(¢)) = &> Enc_;(py) = %l® - @I

All terms in the Pauli decomposition of p,,, except the

I®--- @1 pick-up a (—1)% or (—1)? from the commutations,
which when averaged over key values, vanish.
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Authentication of Quantum Messages

Can we authenticate a qubit (or a general quantum state)?

Alice Bob

k k
Message |¥)!
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Authentication of Quantum Messages

Can we authenticate a qubit (or a general quantum state)?

Alice Bob
k k
Message |¥)!
@ Alice sends (quantum) message with a “tag’

@ Bob can check the tag and if he outputs accept, he received
(whp) the intended state |¢)

o Is called e-QAS if the probability accept and wrong state, is
bounded by e.
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Authentication of Quantum Messages

Task: Authenticating Quantum Information

Send a quantum state [¢)) (Alice to Bob), through an untrusted

quantum channel, such that Bob either (i) accepts and recovers
the correct state |¢)) or (ii) rejects. The probability of accepting a
wrong state is bounded by e.
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Authentication of Quantum Messages

Task: Authenticating Quantum Information

Send a quantum state [¢)) (Alice to Bob), through an untrusted

quantum channel, such that Bob either (i) accepts and recovers
the correct state |¢)) or (ii) rejects. The probability of accepting a
wrong state is bounded by e.

@ Secrecy is not a-priori required (in classical authentication the
messages are public)
@ Can be proven that quantumly authentication implies

encryption!
(cf no-cloning/cannot “overhear” without disturbing)
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Authentication of Quantum Messages

Task: Authenticating Quantum Information

Send a quantum state [¢)) (Alice to Bob), through an untrusted

quantum channel, such that Bob either (i) accepts and recovers
the correct state |¢)) or (ii) rejects. The probability of accepting a
wrong state is bounded by e.

@ Secrecy is not a-priori required (in classical authentication the
messages are public)

@ Can be proven that quantumly authentication implies
encryption!
(cf no-cloning/cannot “overhear” without disturbing)

@ Quantum Plaintext: |¢)
@ Secret (classical) key: k
e Authentication Algorithm: Auth,(|¢)) ® [0)) = pi(v)

e Verif. Algorithm: Ver,(-) = p ® accept or 0 ® reject
13/16
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Authentication of Quantum Messages

Task: Authenticating Quantum Information

Send a quantum state [¢)) (Alice to Bob), through an untrusted

quantum channel, such that Bob either (i) accepts and recovers
the correct state |¢) or (ii) rejects. The probability of accepting a
wrong state is bounded by e.

@ Correctness: Ver, (Auth, (/1) ®(0))) = |¢) ® accept
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Authentication of Quantum Messages

Task: Authenticating Quantum Information

Send a quantum state [¢)) (Alice to Bob), through an untrusted

quantum channel, such that Bob either (i) accepts and recovers
the correct state |¢) or (ii) rejects. The probability of accepting a
wrong state is bounded by e.

@ Correctness: Ver, (Auth, (/1) ®(0))) = |¢) ® accept

@ Security: Let ), Ver, (£ (Auth, (|¢) ®]0)))) = p ® flag
We call the scheme e-secure QAS if:
Tr ([(|v) (1] ® accept) + (I ® reject)] (p ® flag)) > 1—¢
- This € is the probability that the flag is accept but fails to
return the intended state
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A Trap-Based Quantum Authentication Scheme (TQAS)

e By Broadbent, Gutoski, Stebila (Crypto 2013)

@ Singe qubit, simplified version
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A Trap-Based Quantum Authentication Scheme (TQAS)

e By Broadbent, Gutoski, Stebila (Crypto 2013)

@ Singe qubit, simplified version

@ Secret Key k = ki || ko: where k; six random bits; k> a
random 3-elements permutation (one-out-of six)

@ Let Ency, be QOTP for 3-qubits, using six bits of secret key
o Let My, () be a 3-element permutation

o Message: py, = [¢) (¢
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A Trap-Based Quantum Authentication Scheme (TQAS)

e By Broadbent, Gutoski, Stebila (Crypto 2013)

@ Singe qubit, simplified version

Secret Key k = kq || ko: where ki six random bits; k> a
random 3-elements permutation (one-out-of six)

Let Ency, be QOTP for 3-qubits, using six bits of secret key

Let My, (-) be a 3-element permutation

Message: p, = 1) (V]

Authentication Algorithm:

Auth; (|¢) ® |0) ® [+)) := Ency, (M, (J¢) ®(0) ® [+)))
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A Trap-Based Quantum Authentication Scheme (TQAS)

By Broadbent, Gutoski, Stebila (Crypto 2013)

Singe qubit, simplified version

Secret Key k = kq || ko: where ki six random bits; k> a
random 3-elements permutation (one-out-of six)

Let Ency, be QOTP for 3-qubits, using six bits of secret key
Let My, (-) be a 3-element permutation

Message: py, = [1) (1]

Authentication Algorithm:

Authy ([¢) ©[0) @ |4)) := Ency, (M, (J¢) @[0) @ |+)))
Ver. Algor.: Let P :=1®0) (0] ® |[+) (+] and

Prej :=1— Pacc and let j:= M ! (Decy, (p)).

2
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A Trap-Based Quantum Authentication Scheme (TQAS)

e By Broadbent, Gutoski, Stebila (Crypto 2013)

@ Singe qubit, simplified version

Secret Key k = kq || ko: where ki six random bits; k> a
random 3-elements permutation (one-out-of six)

Let Ency, be QOTP for 3-qubits, using six bits of secret key

Let My, (-) be a 3-element permutation

Message: p, = 1) (V]

Authentication Algorithm:

Authy () @ |0) ® |+)) := Ency, (M, (|¢) ®(0) @ [4)))
e Ver. Algor.: Let P :==1®10) (0| ® |[+) (+] and

Prej := 1 — Pacc and let j:= I'I;Z1 (Decy, (p)).

Ver,(p) := computes j; measures {P,cc, Prej} and if Pacc
outputs the first register and accept. If P, outputs reject.
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The TQAS

e Correctness: Ver, (Auth; (1)) ® [0) ® |[+))) = |¢) ® accept

@ Security: Proof is complicated, but essentially the adversary
cannot affect the state without some chance of affecting the
“trap” qubits because he is ignorant of the permutation.

@ Using Pauli decomposition can show that all attacks reduce to
“Pauli” attacks which can be detected with either the |0) or
the |+) trap.

@ Probability of corruption and not detection is non-zero (but
bounded below 1). There are techniques (using quantum
error-correction codes) to boost this security to exponentially
close to zero.
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