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This Lecture

1 Encrypting Quantum Information

2 The Quantum One-Time-Pad

3 Authenticated Quantum Messages

4 A Trap-Based Quantum Authentication Scheme
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Encrypting Quantum Information

Can we encrypt a qubit or a general quantum state?

Anyone intercepting the quantum communication (without the
key k) should not learn anything about the message!

Bob should be able to extract the message

Motivation: Protocols that involve communicating private
quantum information.
E.g. as part of a secure quantum computation

Petros Wallden Lecture 13: Quantum Encryption and Authentication



3/16

Encrypting Quantum Information

Can we encrypt a qubit or a general quantum state?

Anyone intercepting the quantum communication (without the
key k) should not learn anything about the message!

Bob should be able to extract the message

Motivation: Protocols that involve communicating private
quantum information.
E.g. as part of a secure quantum computation

Petros Wallden Lecture 13: Quantum Encryption and Authentication



3/16

Encrypting Quantum Information

Can we encrypt a qubit or a general quantum state?

Anyone intercepting the quantum communication (without the
key k) should not learn anything about the message!

Bob should be able to extract the message

Motivation: Protocols that involve communicating private
quantum information.
E.g. as part of a secure quantum computation

Petros Wallden Lecture 13: Quantum Encryption and Authentication



4/16

Encrypting Quantum Information

Task: Encrypting Quantum Information

Send a quantum state |ψ⟩ (from Alice to Bob), through an
untrusted quantum channel EC (·) such that: (i) Any Eavesdropper
intercepting cannot extract any information, and (ii) Bob can
“decrypt” and (if no Eavesdropping) recover the correct
quantum state.

Quantum Plaintext: |ψ⟩
Secret (classical) key: k

Quantum Ciphertext: ρk(ψ)
Encryption Algorithm: Enck(|ψ⟩) = ρk(ψ)

Crossing Channel: EC (ρk(ψ)) = ρ

Decryption Algorithm: Deck(ρ)
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Encrypting Quantum Information

Task: Encrypting Quantum Information

Send a quantum state |ψ⟩ (from Alice to Bob), through an
untrusted quantum channel EC (·) such that: (i) Any Eavesdropper
intercepting cannot extract any information, and (ii) Bob can
“decrypt” and (if no Eavesdropping) recover the correct
quantum state.

1 Correctness: Deck (Enck (|ψ⟩)) = |ψ⟩; (cf EC = I)
Security ITS: Given any two distinct states |ψ1⟩ , |ψ2⟩ any
adversary A cannot distinguish between the two (averaged
over secret key) quantum ciphertexts

T (
∑
k

ρk(ψ1),
∑
k

ρk(ψ2)) = 0 ;
∑
k

ρk(ψ1) =
∑
k

ρk(ψ2)

where T (, ) is trace-distance and we have:
Information-Theoretic-Security
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Encrypting Quantum Information

Task: Encrypting Quantum Information

Send a quantum state |ψ⟩ (from Alice to Bob), through an
untrusted quantum channel EC (·) such that: (i) Any Eavesdropper
intercepting cannot extract any information, and (ii) Bob can
“decrypt” and (if no Eavesdropping) recover the correct
quantum state.

1 Correctness: Deck (Enck (|ψ⟩)) = |ψ⟩; (cf EC = I)
3 Security General: Given two states T (|ψ1⟩ , |ψ2⟩) = p, the

prob that any A can distinguish between the average
q-ciphertexts is bounded by ϵ(n) · p

Pr [A(
∑
k

ρk(ψ1)) = 1]− Pr [A(
∑
k

ρk(ψ2)) = 1] ≤ ϵ(n) · p

where ϵ(n) is the security level and the distinguisher is either
computational (poly-time) or ITS (trace-distance)
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The Quantum One-Time-Pad (QOTP)

Focus: Information Theoretic Security (ITS)

(Classical) Secret Key: two classical bits per qubit (k = (a, b))

“One-Time-Pad” means keys cannot be reused

We consider a single qubit message (generalise later)

We assume pure message state ρψ = |ψ⟩ ⟨ψ|

Encryption Algorithm: Enca,b(ρψ) = X aZbρψZ
bX a

Decryption Algorithm: Deca,b(ρ) = ZbX aρX aZb
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The QOTP

Correctness:
Deca,b (Enca,b(ρψ)) = ZbX a

(
X aZb(ρψ)Z

bX a
)
X aZb = ρψ

Any eavesdropper, without knowing a, b, intercepts the
“average” ciphertext: ρE (ψ) := 1

4
∑

a,b X
aZbρψZ

bX a

Security: We need to prove that ρE (ψ1) = ρE (ψ2) ∀ ψ1 ̸= ψ2

We will use the Pauli Decomposition
(form basis for Hermitian matrices)
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Pauli Decomposition: Single Qubit

Recall the Pauli matrices (including identity) are:

I =
(

1 0
0 1

)
:= P0 ; X =

(
0 1
1 0

)
:= P1

Y =

(
0 −i
i 0

)
:= P2 ; Z =

(
1 0
0 −1

)
:= P3

Any (single qubit) density matrix can be written as:

ρ =
1
2
I+ a1X + a2Y + a3Z =

1
2
I+

3∑
i=1

aiPi

for some complex numbers a1, a2, a3.
Coefficients can be evaluated:

ai =
1
2
Tr(Piρ)
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The QOTP: Security Proof
Commutation Relations: PiPj = −PjPi for i ̸= j and i , j ∈ {1, 2, 3}.

XZbX a = (−1)bZbX aX ; YZbX a = (−1)b+aZbX aY ; ZZbX a = (−1)aZbX aZ

Other property:
∑

a∈{0,1}(−1)a(Anything) = 0

We now prove that ρE (ψ) is independent of ψ:

ρE (ψ) =
1
4

∑
a,b

X aZbρψZ
bX a =

1
4

∑
a,b

X aZb

(
1
2
I+

3∑
i=1

aiPi

)
ZbX a

The first term: 1
4

∑
a,b

X aZb

(
1
2
I
)
ZbX a =

1
8

∑
a,b

I =
1
2
I

The second term: 1
4

∑
a,b

X aZb(a1X )ZbX a =
a1

4

∑
a,b

(−1)bX = 0

The third term: 1
4

∑
a,b

X aZb(a2Y )ZbX a =
a2

4

∑
a,b

(−1)b+aY = 0

The forth term: 1
4

∑
a,b

X aZb(a3Z )Z
bX a =

a3

4

∑
a,b

(−1)aZ = 0

Putting together: ρE (ψ) = 1
2I. Independent of ψ □
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Pauli Decomposition: Multiple (n)-Qubits

Any n-qubit state can be written as:

ρ =
∑

ai1,...,inPi1 ⊗ · · · ⊗ Pin

for some complex numbers ai1,...,in .

Coefficients can be evaluated:

ai1,...,in =
1
2n

Tr (Pi1 ⊗ · · · ⊗ Pin · ρ)

Note that, since Tr(ρ) = 1, the term with identity everywhere
is: 1

2n I⊗ · · · ⊗ I
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The QOTP: Multiple (n)-Qubits

Secret Key: 2n-bits (k⃗ =
(
a⃗, b⃗
)
= ((a1, b1), . . . , (an, bn)))

Encryption and Decryption qubit-by-qubit

Enc
k⃗
(ρψ) = X a1Zb1⊗· · ·⊗X anZbn (ρψ)Z

b1X a1⊗· · ·⊗ZbnX an

Dec
k⃗
(ρ) = Zb1X a1 ⊗ · · · ⊗ ZbnX an (ρ)X a1Zb1 ⊗ · · · ⊗ X anZbn

Correctness: Dec
k⃗

(
Enc

k⃗
(ρψ)

)
= ρψ

Security: ρE (ψ) = 1
4n
∑

a⃗,b⃗
Enc

a⃗,b⃗
(ρψ) =

1
2n I⊗ · · · ⊗ I

All terms in the Pauli decomposition of ρψ, except the
I⊗ · · · ⊗ I pick-up a (−1)ai or (−1)bi from the commutations,
which when averaged over key values, vanish.
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Authentication of Quantum Messages

Can we authenticate a qubit (or a general quantum state)?

Alice sends (quantum) message with a “tag”

Bob can check the tag and if he outputs accept, he received
(whp) the intended state |ψ⟩

Is called ϵ-QAS if the probability accept and wrong state, is
bounded by ϵ.

Petros Wallden Lecture 13: Quantum Encryption and Authentication



12/16

Authentication of Quantum Messages

Can we authenticate a qubit (or a general quantum state)?

Alice sends (quantum) message with a “tag”

Bob can check the tag and if he outputs accept, he received
(whp) the intended state |ψ⟩

Is called ϵ-QAS if the probability accept and wrong state, is
bounded by ϵ.

Petros Wallden Lecture 13: Quantum Encryption and Authentication



13/16

Authentication of Quantum Messages

Task: Authenticating Quantum Information

Send a quantum state |ψ⟩ (Alice to Bob), through an untrusted
quantum channel, such that Bob either (i) accepts and recovers
the correct state |ψ⟩ or (ii) rejects. The probability of accepting a
wrong state is bounded by ϵ.

Secrecy is not a-priori required (in classical authentication the
messages are public)
Can be proven that quantumly authentication implies
encryption!
(cf no-cloning/cannot “overhear” without disturbing)
Quantum Plaintext: |ψ⟩
Secret (classical) key: k

Authentication Algorithm: Authk(|ψ⟩ ⊗ |0⟩) = ρk(ψ)

Verif. Algorithm: Verk(·) = ρ⊗ accept or σ ⊗ reject
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Authentication of Quantum Messages

Task: Authenticating Quantum Information

Send a quantum state |ψ⟩ (Alice to Bob), through an untrusted
quantum channel, such that Bob either (i) accepts and recovers
the correct state |ψ⟩ or (ii) rejects. The probability of accepting a
wrong state is bounded by ϵ.

1 Correctness: Verk (Authk (|ψ⟩ ⊗ |0⟩)) = |ψ⟩ ⊗ accept

2 Security: Let
∑

k Verk (E (Authk (|ψ⟩ ⊗ |0⟩))) = ρ⊗ flag

We call the scheme ϵ-secure QAS if:

Tr ([(|ψ⟩ ⟨ψ| ⊗ accept) + (I⊗ reject)] (ρ⊗ flag)) ≥ 1 − ϵ

- This ϵ is the probability that the flag is accept but fails to
return the intended state
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quantum channel, such that Bob either (i) accepts and recovers
the correct state |ψ⟩ or (ii) rejects. The probability of accepting a
wrong state is bounded by ϵ.

1 Correctness: Verk (Authk (|ψ⟩ ⊗ |0⟩)) = |ψ⟩ ⊗ accept

2 Security: Let
∑

k Verk (E (Authk (|ψ⟩ ⊗ |0⟩))) = ρ⊗ flag

We call the scheme ϵ-secure QAS if:

Tr ([(|ψ⟩ ⟨ψ| ⊗ accept) + (I⊗ reject)] (ρ⊗ flag)) ≥ 1 − ϵ

- This ϵ is the probability that the flag is accept but fails to
return the intended state
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A Trap-Based Quantum Authentication Scheme (TQAS)

By Broadbent, Gutoski, Stebila (Crypto 2013)
Singe qubit, simplified version

Secret Key k = k1 ∥ k2: where k1 six random bits; k2 a
random 3-elements permutation (one-out-of six)
Let Enck1 be QOTP for 3-qubits, using six bits of secret key
Let Πk2(·) be a 3-element permutation
Message: ρψ = |ψ⟩ ⟨ψ|
Authentication Algorithm:
Authk (|ψ⟩ ⊗ |0⟩ ⊗ |+⟩) := Enck1 (Πk2 (|ψ⟩ ⊗ |0⟩ ⊗ |+⟩))
Ver. Algor.: Let Pacc := I⊗ |0⟩ ⟨0| ⊗ |+⟩ ⟨+| and
Prej := I− Pacc and let ρ̃ := Π−1

k2
(Deck1(ρ)).

Verk(ρ) := computes ρ̃; measures {Pacc ,Prej} and if Pacc

outputs the first register and accept. If Prej outputs reject.
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The TQAS

Correctness: Verk (Authk (|ψ⟩ ⊗ |0⟩ ⊗ |+⟩)) = |ψ⟩ ⊗ accept

Security: Proof is complicated, but essentially the adversary
cannot affect the state without some chance of affecting the
“trap” qubits because he is ignorant of the permutation.

Using Pauli decomposition can show that all attacks reduce to
“Pauli” attacks which can be detected with either the |0⟩ or
the |+⟩ trap.

Probability of corruption and not detection is non-zero (but
bounded below 1). There are techniques (using quantum
error-correction codes) to boost this security to exponentially
close to zero.
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