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This Lecture: NTRU Public-Key Encryption

1 Ring over Finite Field: Intro with an example

2 NTRU Public-Key Encryption: The system and its security

3 NTRU an example

Notation colour code: parameters and functions: public
(blue), private (red), secret but not used later (brown)
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Ring Over Finite Field: An Example

Example: Ring R = Z[x ]/xn−1 (explanation below)

Polynomials, truncated at degree n, with integer coeff pi ∈ Z:
p(x) = p0 + p1x + . . .+ pn−1x

n−1

Coefficients could be restricted to be in Zq

The “free-parameters” characterising such polynomial are in Zn
q

as previously in the LWE

Parameters:
(n − 1) maximum degree of polynomials. Additions of
exponents of x are performed modn.
q prime number. Additions of coefficients (pi ’s) are
performed modq
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Ring Over Finite Field: An Example

An example of operations: Let n = 3 ; q = 5.

Consider the product of f (x) · g(x) in Z5[x ]/x
2 where:

f (x) = 1 + 3x + 2x2

g(x) = 2 + 4x + 3x2

f (x) · g(x) =
(
1 + 3x + 2x2) (2 + 4x + 3x2)

= 2 + 4x + 3x2 + 6x + 12x2 + 9x3 + 4x2 + 8x3 + 6x4

Exponents are taken mod3

f (x) · g(x) = 2 + 4x + 3x2 + 6x + 12x2 + 9x0 + 4x2 + 8x0 + 6x1

= 19 + 16x + 19x2

Coefficients are taken mod5

f (x) · g(x) = 4 + x + 4x2
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NTRU Cryptosystem

First developed in 1996 by Hoffstein, Pipher and Silverman

Name: N(th degree) T(runcated polynomial) R(ing) U(nits)

Both Encryption and Signatures algorithms (the former here)

Very efficient, believed to be secure against quantum attacks

Other versions (less efficient) have less “algebraic” structure
and the hardness belief is more formally established

No attack that uses that algebraic structure has been found
(so initial version is still a valid candidate)
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NTRU Encryption Scheme

Parameters: (n − 1) max degree of polynomials, q prime
number (large mod), p prime number (small mod), d coef.

Polynomials in Z[x ]/xn−1, operations in either Zq[x ]/x
n−1

or Zp[x ]/x
n−1.

Conditions on Parameters: correctness holds provided:
q > (6d + 1)p

1 KeyGen:
Choose two random polynomials f (x), g(x) with small
coefficients, that are both kept secret
Compute the inverses f −1

p , f −1
q of f w.r.t. modulo p, q:

f (x) · f −1
p (x) = 1 mod p ; f (x) · f −1

q (x) = 1 mod q

Compute h(x) = p
(
f −1
q (x) · g(x)

)
(modq)

Private Key: f (x), f −1
p (x)

Public Key: h(x)
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NTRU Encryption Scheme

2 Enc(h(x), µ):
Express message µ as a polynomial µ(x) with coefficients
modulo p (centred around zero).
Example: if p = 2 then a n-bit message is mapped to a (n − 1)
degree polynomial, with 0/1 coefficients.

Randomly choose another small polynomial r(x)
Output e(x) := r(x) · h(x) + µ(x) mod q

3 Dec(e(x), (f (x), f −1
p (x)):

Computes a(x) = f (x) · e(x) (modq)

a(x) is expressed using coefficients centred around zero, i.e.
[−q/2, q/2] instead of [0, q − 1].
Computes b(x) = a(x) (modp)

Recovers message µ′(x) = f −1
p (x)b(x) (modp)
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NTRU Encryption Scheme

Correctness: We consider Dec(Enc(h(x), µ), (f (x), f −1
p )).

a(x) = f (x) · e(x) mod q = f (x) · r(x) · h(x) + f (x) · µ(x) mod q

Recall h(x) = pf −1
q (x) · g(x) mod q and the first term

simplifies using f (x)f −1
q (x) = 1 mod q:

a(x) = pg(x) · r(x) + f (x) · µ(x) mod q

Now b(x) = a(x) mod p and the first term cancels (since it is
multiplied by p)

b(x) = (f (x) · µ(x) mod q) mod p
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NTRU Encryption Scheme

Provided that a(x) was centred in zero, f (x) has small
coefficients and µ(x) has coefficients in [0, p − 1] we have

µ′(x) = f −1
p (x) (f (x) · µ(x) mod q) mod p

=
(
f −1
p (x) · f (x) · µ(x)

)
mod p

= µ(x) mod p

where we used f −1
p (x) · f (x) = 1 mod p

Security: It is believed (but not proven) that the security
reduces to the Closest-Vector Problem that reduces to the
(approximate) SVP-problem

A variant (SS11) is proven to reduce to approximate SVPβ

Intuitively the h(x) · r(x) “masks” the message and only with
the secret key one can “cancel” this term.
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NTRUE: Example

Parameters: (n, p, q, d) = (7, 3, 41, 2)

Check: q > (6d + 1)p is satisfied 41 > (6 × 2 + 1)× 3 = 39

1 KeyGen:
f (x) = x6 − x4 + x3 + x2 − 1 ; g(x) = x6 + x4 − x2 − x

f −1
3 (x) = x6 + 2x5 + x3 + x2 + x + 1 (mod3)
f −1
41 (x) = 8x6 + 26x5 + 31x4 + 21x3 + 40x2 + 2x + 37 (mod41)

Check: f (x) · f −1
3 (x) = 1 mod 3 ; f (x) · f −1

41 (x) = 1 mod 41
Private Key: f (x) ; f −1

3 (x)

Public Key: h(x) = p
(
f −1
q (x) · g(x)

)
(modq)

h(x) = 20x6 + 40x5 + 2x4 + 38x3 + 8x2 + 26x + 30 (mod41)
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41 (x) = 8x6 + 26x5 + 31x4 + 21x3 + 40x2 + 2x + 37 (mod41)

Check: f (x) · f −1
3 (x) = 1 mod 3 ; f (x) · f −1

41 (x) = 1 mod 41
Private Key: f (x) ; f −1

3 (x)

Public Key: h(x) = p
(
f −1
q (x) · g(x)

)
(modq)

h(x) = 20x6 + 40x5 + 2x4 + 38x3 + 8x2 + 26x + 30 (mod41)
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NTRUE: Example

2 Enc(h(x), µ = 1012202):

Since p = 3 we need the message in ternary number. Express
it as polynomial with coefficients centred around zero so
0 → −1 , 1 → 0 , 2 → 1, i.e. 1012202 → 0,−1, 0, 1, 1,−1, 1
Note: if p was even, coef. not exactly centred around zero.
µ(x) = 0x6 − 1x5 + 0x4 + 1x3 + 1x2 − 1x + 1
Randomly choose: r(x) = x6 − x5 + x − 1
Ciphertext e(x) := r(x) · h(x) + µ(x) mod q

e(x) = 31x6 + 19x5 + 4x4 + 2x3 + 40x2 + 3x + 25 (mod41)
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NTRUE: Example

3 Dec(e(x), f (x), f −1
3 (x))

Compute a(x) = f (x) · e(x) (modq)

a(x) = x6 + 10x5 + 33x4 + 40x3 + 40x2 + x + 40 (mod41)
which written with coefficients from [−20, 20] becomes:
a(x) = x6 + 10x5 − 8x4 − x3 − x2 + x − 1 (mod41)

Compute b(x) = a(x) (modp)

b(x) = x6 + x5 − 2x4 − x3 − x2 + x − 1 (mod3)
Recovers message: µ(x) = f −1

p (x)b(x) (modp)

Recall f −1
3 (x) = x6 + 2x5 + x3 + x2 + x + 1

µ(x) = −x5 + x3 + x2 − x + 1 → µ = 1012202
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