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The following four lectures

@ Understand mathematics of quantum states

Most general way to describe quantum systems
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The following four lectures

@ Understand mathematics of quantum states

Most general way to describe quantum systems
° and their mathematics
° and their mathematics

@ Properties and concepts of classical and quantum information

theory

(e
B o H O
Describe As a carrier of

Information
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Quantum Systems beyond single qubit

e Single qubit in Hilbert space of dimension 2: |)) = <g>
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Quantum Systems beyond single qubit

e Single qubit in Hilbert space of dimension 2: |)) = <g>

@ Can have system of higher dimension, e.g. d-dimension is

called qudit
(87
o 3
qutrit [0) = | 5 |; 4-dim [¢) = | 7 |, etc
Ia% !
’ 5
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Quantum Systems beyond single qubit

e Single qubit in Hilbert space of dimension 2: |)) = <g>

@ Can have system of higher dimension, e.g. d-dimension is
called qudit

a
qutrit [¢0) = | B |; 4-dim [¢)) = , etc
7 5
@ Or multiple qubits: n-qubits have states of dimension d = 2"
Hilbert space
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Quantum Systems beyond single qubit

e Single qubit in Hilbert space of dimension 2: |)) = <g>

@ Can have system of higher dimension, e.g. d-dimension is
called qudit

(0%

) ) ‘ g
G| 4-dim |¢) = /A , etc
~ /

! J

qutrit [1))

@ Or multiple qubits: n-qubits have states of dimension d = 2"
Hilbert space

@ Let's see how to compose quantum systems (e.g. two qubits)
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Composite Systems

How to compose quantum systems? D
K&z o D) ey exe)
Ve
A y( 5

~— Hpe? - -

e Two Hilbert spaces H 4, H can form a new (composite)
Hilbert space Hap

dimHasg =dimHa X Hp

@ Basis vectors of composite are the “product” of the basis
vectors of the individual spaces

@ Tensor product Hag := Hp® Hp
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Tensor Product of Vector Spaces

Let V. and W be two vector spaces with dim m and n. The tensor product V & W of these vector spaces is a
vector space of dimension m X n to which is associated a bilinear map that maps a pair (v,w),v € V,w €
W to an element of V @ W denoted as v @ w.

@ Let |/) and |j) be orthonormal bases for VV and W respectively
Then |i) @ |j) is orthonormal basis for V @ W

o General state [¢), = > ¥y i)y @ [)w
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Tensor Product of Vector Spaces

Let V. and W be two vector spaces with dim m and n. The tensor product V & W of these vector spaces is a
vector space of dimension m X n to which is associated a bilinear map that maps a pair (v,w),v € V,w €
W to an element of V @ W denoted as v @ w.

@ Let |/) and |j) be orthonormal bases for VV and W respectively
Then |i) @ |j) is orthonormal basis for V @ W

o General state [¢) = >, i [1)y @ )y

@ Matrix rep. of operator tensor products:

Let Aj; matrix elements of A and By of B:
AR B =73 1ij,k 1A;jBuli) {jl @ |k) (/|

AuB ApB - AyB

AB AnB -+ AyB
AR B = . . ) .

AmB AmB -+ AmnB
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@ Dirac notation:

0 @[+). - el=) e+,

01) ® [—)
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@ Dirac notation:
0) @ |+), [-) ®|-) @ |+), [01) ® |-)
@ Matrix notation:

0)010) = j00) = () & (o) v (o) -

0

O O O =

0) ®0) =100) ; [+) @ 1)
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@ Dirac notation:
0) @ |+), [-) ®|-) @ |+), [01) ® |-)
@ Matrix notation:

0)010) = j00) = () & (o) v (o) -

0

O O O =

0) ®0) =100) ; [+) @ 1)

@ Operators:
1 2 2 2 1
0 4)°\3 i
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Properties of Tensor Products

@ Properties:
e c(Jv) ® |w)) = (c|v)) ® [w) = |v) & (c|w)) where cis a scalar.
* (lv) +[12) ® [w) = [v1) ® [w) + [v2) @ [w)
© V) ® (Iwy) + [w2)) = [v) ® |wy) + V) ® |wy)
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Properties of Tensor Products

@ Properties:
s (V) ® W) = (c|v) & [w) = |v) ® (c|w)) where cis a scalar.
© (v + [v2) @ W) = [v1) @ [w) + [v2) ® |w)
© ) ® (Iwy) + [w2)) =[v) ® |wy) + [v) ® |wy)

@ Tensor product isn't commutative |v) ® |w) # |w) ® |v)

(not the order of the spaces is conventional, could reorder
them if needed, but on all terms of one expression!)

e A vector tensored k-times with itself: [¢))®*
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Properties of Tensor Products

@ Properties:
s (V) ® W) = (c|v) & [w) = |v) ® (c|w)) where cis a scalar.
© (v + [v2) @ W) = [v1) @ [w) + [v2) ® |w)
© ) ® (Iwy) + [w2)) =[v) ® |wy) + [v) ® |wy)

@ Tensor product isn't commutative |v) ® |w) # |w) ® |v)

(not the order of the spaces is conventional, could reorder
them if needed, but on all terms of one expression!)
e A vector tensored k-times with itself: [¢))®*
o If A acts on V and B acts on W, then

(A® B)(Jv) ® |w)) = Alv) ® B|w)
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Examples: tensor product operators

o O1 Y1) = [¢1) and Oz [1h2) = |#2)
(01 @ O2)([¥h1) ® [12)) = O1 |¢1) @ Oz [th2) = |d1) ® |h2)
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Examples: tensor product operators

o O1[Y1) = [¢1) and Oz [1h2) = |¢2)

(01 ® O2)([¥1) ® [h2)) = O1[¢h1) ® Oz [h2) = [¢1) ® [¢2)
o X|j)=liel) , Zj)=(1Y)

(X® Z)[01) = X[0)® Z[1) = |1) ® (-1) |1) = —[11)
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Examples: tensor product operators

® O1[¢1) = [¢1) and Oz [¢2) = |¢2)
(01 ® O2)(|h1) ® [¢p2)) = O1 |4n)
o X|j)=liel) , Zj)=(1Y)
(X®Z)|01) =X[0) ® Z[1) = [1) ® (1) [1) = - [11)

L (11 (01
°H_ﬁ<1 1) %=1 o
0
1
0
1

® Oz [tha) = |¢1) ® |h2)

1 0 1
X X 0 1 0

Y _1
HoX 2<X —x> 201 0 -1
0 -1 0
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Ensembles of Quantum States

,,\\\ [(/i:
) \b oy
bol. 69/

e  ——

by
:ap?) -

@ Examples:
p=310) (0] + 3 +) (+]
p = p1|YR) (YRl + p2 [YG) (Y| where p1 = 0.4, py = 0.6
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Density Matrices (Recall)

Definition: A density matrix is a matrix (or operator) p that:
@ is Hermitian pf = p

@ positive semi-definite (i.e. has non-negative eigenvalues)
© has unit trace Tr(p) =1

@ Real eigenvalues, non-negative, normalised
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Density Matrices (Recall)

Definition: A density matrix is a matrix (or operator) p that:
@ is Hermitian pf = p

@ positive semi-definite (i.e. has non-negative eigenvalues)
© has unit trace Tr(p) =1
@ Real eigenvalues, non-negative, normalised

@ Pure state vector |¢)) goes to pure density matrix:

e Can incorporate probabilities over quantum states (ensembles)
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e |01) (01| (in matrix)
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e |01) (01| (in matrix)
° |+y) (+y

, wWhere |[+,) = %UO) +i|1)) (in Dirac notation)
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e |01) (01| (in matrix)
° |+y) (+y

, wWhere |[+,) = %UO) +i|1)) (in Dirac notation)

e 21(000) (000| + 3 |111) (111] (in matrix)
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e |01) (01| (in matrix)
° |+y) (+y

, wWhere |[+,) = %(|O> +i|1)) (in Dirac notation)

e 21(000) (000| + 3 |111) (111] (in matrix)

10\ (1 i
A= 0 o) PET2\i 1

Express the composite pa ® pg
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e |01) (01| (in matrix)
° |+y) (+y

, wWhere |[+,) = %(|O> +i|1)) (in Dirac notation)

e 21(000) (000| + 3 |111) (111] (in matrix)

10\ (1 i
A= 0 o) PET2\i 1

Express the composite pa ® pg

o lsp= ((1) (1)> a density matrix?
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e |01) (01| (in matrix)
° |+y) (+y

, wWhere |[+,) = %(|O> +i|1)) (in Dirac notation)
e 3000) (000| + 3 [111) (111| (in matrix)
em=(g o) ea=3(; 1)
Express the composite pa ® pg
o lsp= ((1) (1)> a density matrix?

@ Write the density matrix of the ensemble:
{p1 =05, 100) ; pp =025, [+1) ; p3=0.25, |11)}

p =01 pilvi) (Wil
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e |01) (01| (in matrix)
° |+y) (+y

, wWhere |[+,) = %(|O> +i|1)) (in Dirac notation)

e 21(000) (000| + 3 |111) (111] (in matrix)

10\ (1 i
A= 0 o) PET2\i 1

Express the composite pa ® pg

o lsp= ((1) (1)> a density matrix?

@ Write the density matrix of the ensemble:
{pp=05,100) ; pp =025, |[+1) ; p3=0.25, [11)}
p =Y pili) (il
@ All mixed states can be expressed as ensembles (diagonalise!)
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Entanglement

@ There are states that CANNOT be written as tensor product
of individual states

Product states: |¢ag) = |da) ® |¢B)
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Entanglement

@ There are states that CANNOT be written as tensor product
of individual states

Product states: |[1ag) = |pa) ® |d8)
o Bell states: [®T) := %(|00> +|11))

This state cannot be written as product
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Entanglement

@ There are states that CANNOT be written as tensor product
of individual states

Product states: |[1ag) = |pa) ® |d8)
o Bell states: [®T) := %(|00> +|11))
This state cannot be written as product

@ A (pure) state that cannot be written as product state, is
entangled

@ Mixed states that cannot be written as mixtures of product
states are entangled

Mixture of product states: p = Z,-j piipi @ pj
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Entanglement

@ There are states that CANNOT be written as tensor product
of individual states

Product states: |[1ag) = |pa) ® |d8)
o Bell states: [®T) := %(|00> +|11))
This state cannot be written as product

@ A (pure) state that cannot be written as product state, is
entangled

@ Mixed states that cannot be written as mixtures of product
states are entangled

Mixture of product states: p = Z,-j piipi @ pj

@ To describe a subsystem of a (pure or mixed) entangled state,
we need density matrices!
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Bell states are entangled

° [dF) = % (100) + |11)) Cannot be written as product state
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Bell states are entangled

° [dF) = \% (100) + |11)) Cannot be written as product state

Proof: Assume that there exists states |a) = ag |0) + a1 |1)
and |b) = by |0) + by |1) such that |®7) = |a) @ |b)
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Bell states are entangled

° [dF) = \% (100) + |11)) Cannot be written as product state

Proof: Assume that there exists states |a) = ag |0) + a1 |1)
and |b) = by |0) + by |1) such that |®7) = |a) @ |b)

It follows that
|a) ® |b) = apbg |00) + agb; |01) + a1bg [10) + a1 b1 |11)
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Bell states are entangled

° [dF) = \% (100) + |11)) Cannot be written as product state

Proof: Assume that there exists states |a) = ag |0) + a1 |1)
and |b) = by |0) + by |1) such that |®7) = |a) @ |b)

It follows that

\a) & ‘b> = apbg ‘00> + agby |Ol> + a1 bg ‘10> + a1b; ‘11>

Since there are no |01),[10) terms, we know that
a0b1 = albo =0
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Bell states are entangled

° [dF) = \% (100) + |11)) Cannot be written as product state

Proof: Assume that there exists states |a) = ag |0) + a1 |1)
and |b) = by |0) + by |1) such that |®7) = |a) @ |b)

It follows that
|a) ® |b) = apbg |00) + agb; |01) + a1bg [10) + a1 b1 |11)

Since there are no |01),[10) terms, we know that
a0b1 = albo =0

(i) if ag = O then the term that has [00) vanishes (which it
shouldn't)

(ii) if by = 0 the term with |11) vanishes O

13/19

Petros Wallden Lecture 4: Quantum Information Basics Il



Subsystems and partial trace

o Let pag = [YaB) (¥aB|
Then pa := Trg(pag) and pg := Tra(pas)
@ It easy to see that for product states pag = pa ® pg this is

the case
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Partial Trace

o Consider Mag = 3_; ; o Cijwt 1) Ula ® |k) (Ig

e Partial trace over B:
Ma :=Trg(Mag) = >_; j k1 Gkt 1) Ula x Tr([k) (/g)
(note the trace is number not a matrix)
= Zi’ﬁk,, Gijki |1) (jl 4 x ({/| k) 8) (using cyclic property)
= Zi,j,k,l Giikt |1) 4 x (/| k)B) (using orthogonality)

i 2k Cijke [1) Ul

15/19

Petros Wallden Lecture 4: Quantum Information Basics Il



Partial Trace

o Consider Mag = >, ; 4 Gt 1) (la ® |k) (I g
o Partial trace over B:
Ma :=Trg(Mag) = >_j j ks it |1} Ul a x Tr([k) (I g)
(note the trace is number not a matrix)
= 2 ijki ikt 1) Ula x (/| k) ) (using cyclic property)
=ik Gkt 1) Ula x (/] k) g) (using orthogonality)
i 2k Cijke [1) Ul
@ Reduced matrix (partial trace over B) is a matrix at space A

@ Partial trace over A is defined similarly
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@ Reduced state for product states pag = pa ® pB

As expected: pa and pg
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@ Reduced state for product states pag = pa ® pB
As expected: pa and pg

@ Reduced state for entangled (Bell) state:

pag = |®F) (o7

|[®*) = =5 (]00) +[11))

pa=Te(pag) = -~ = 3(0) (0] +[1) (1])a
pe = Tr(pag) = --- = 3(|0) (0] + 1) (1])s
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One density operator to rule them alll

/lﬁ\\

Pure state Mixed state Separable state Entangled state
X | YR AT CN P on;) Wi # 140014

P =T U xd)
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Measurements

@ We have seen simple one qubit measurements
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Measurements

@ We have seen simple one qubit measurements

@ It generalises for observable O

Born Rule:
The measured result for an observable O, on a quantum system [1) is given by its eigenvalues
The probability of getting a specific eigenvalue /; is equal to p(i) = |P;|

or more generally for a density matrix p is given by p(i) =T
Where P; is the projection onto the eigenspace of O corresponding to
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Measurements

@ We have seen simple one qubit measurements

@ It generalises for observable O

Born Rule:
The measured result for an observable O, on a quantum system [1) is given by its eigenvalues
The probability of getting a specific eigenvalue /; is equal to p(i) = |P;|

or more generally for a density matrix p is given by p(i) =T
Where P; is the projection onto the eigenspace of O corresponding to

@ Can define more general measurements (non-projective)

See next lecture!
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Some resources

@ Quantum Computation and Quantum Information by Nielsen
& Chuang: 2.1.7, 2.4

@ Introduction to Quantum Cryptography by Thomas Vidick and
Stephanie Wehner: chapter 2

@ Quantum Information Theory by Mark M. Wilde: chapter 3
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