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The following four lectures

Understand mathematics of quantum states

Most general way to describe quantum systems

Quantum measurements and their mathematics

Quantum operations and their mathematics

Properties and concepts of classical and quantum information
theory
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Quantum Systems beyond single qubit

Single qubit in Hilbert space of dimension 2: |ψ⟩ =
(
α
β

)

Can have system of higher dimension, e.g. d-dimension is
called qudit

qutrit |ψ⟩ =

αβ
γ

; 4-dim |ψ⟩ =


α
β
γ
δ

, etc

Or multiple qubits: n-qubits have states of dimension d = 2n

Hilbert space

Let’s see how to compose quantum systems (e.g. two qubits)
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Composite Systems

Two Hilbert spaces HA,HB can form a new (composite)
Hilbert space HAB

dimHAB = dimHA ×HB

Basis vectors of composite are the “product” of the basis
vectors of the individual spaces

Tensor product HAB := HA ⊗HB
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Tensor Product of Vector Spaces

Let |i⟩ and |j⟩ be orthonormal bases for V and W respectively

Then |i⟩ ⊗ |j⟩ is orthonormal basis for V ⊗W

General state |ψ⟩VW =
∑

i ,j ψij |i⟩V ⊗ |j⟩W

Matrix rep. of operator tensor products:

Let Aij matrix elements of A and Bkl of B :
A⊗ B =

∑
i , j , k, lAijBkl |i⟩ ⟨j | ⊗ |k⟩ ⟨l |

A⊗ B =


A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

...
...

Am1B Am2B · · · AmnB
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Examples

Dirac notation:

|0⟩ ⊗ |+⟩, |−⟩ ⊗ |−⟩ ⊗ |+⟩, |01⟩ ⊗ |−⟩

Matrix notation:

|0⟩ ⊗ |0⟩ = |00⟩ =
(

1
0

)
⊗
(

1
0

)
=

1 ×
(

1
0

)
0 ×

(
1
0

)
 =


1
0
0
0


|0⟩ ⊗ |0⟩ = |00⟩ ; |+⟩ ⊗ |1⟩

Operators:(
1 2
0 4

)
⊗
(

2 1
3 i

)
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Properties of Tensor Products

Properties:

Tensor product isn’t commutative |v⟩ ⊗ |w⟩ ≠ |w⟩ ⊗ |v⟩

(not the order of the spaces is conventional, could reorder
them if needed, but on all terms of one expression!)

A vector tensored k-times with itself: |ψ⟩⊗k

If A acts on V and B acts on W, then

(A⊗ B)(|v⟩ ⊗ |w⟩) = A |v⟩ ⊗ B |w⟩
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Examples: tensor product operators

O1 |ψ1⟩ = |ϕ1⟩ and O2 |ψ2⟩ = |ϕ2⟩

(O1 ⊗ O2)(|ψ1⟩ ⊗ |ψ2⟩) = O1 |ψ1⟩ ⊗ O2 |ψ2⟩ = |ϕ1⟩ ⊗ |ϕ2⟩

X |j⟩ = |j ⊕ 1⟩ , Z |j⟩ = (−1)j |j⟩

(X ⊗ Z ) |01⟩ = X |0⟩ ⊗ Z |1⟩ = |1⟩ ⊗ (−1) |1⟩ = − |11⟩

H = 1√
2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)

H ⊗ X = 1√
2

(
X X
X −X

)
= 1√

2


0 1 0 1
1 0 1 0
0 1 0 −1
1 0 −1 0
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Ensembles of Quantum States

Examples:

ρ = 1
2 |0⟩ ⟨0|+

1
2 |+⟩ ⟨+|

ρ = p1 |ψR⟩ ⟨ψR |+ p2 |ψG ⟩ ⟨ψG | where p1 = 0.4 , p2 = 0.6
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Density Matrices (Recall)

Definition: A density matrix is a matrix (or operator) ρ that:
1 is Hermitian ρ† = ρ

2 positive semi-definite (i.e. has non-negative eigenvalues)

3 has unit trace Tr(ρ) = 1

Real eigenvalues, non-negative, normalised

Pure state vector |ψ⟩ goes to pure density matrix:
ρψ := |ψ⟩ ⟨ψ|

Can incorporate probabilities over quantum states (ensembles)
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Examples

|01⟩ ⟨01| (in matrix)

|+y ⟩ ⟨+y |, where |+y ⟩ = 1√
2
(|0⟩+ i |1⟩) (in Dirac notation)

1
2 |000⟩ ⟨000|+ 1

2 |111⟩ ⟨111| (in matrix)

ρA =

(
1 0
0 0

)
; ρB = 1

2

(
1 −i
i 1

)
Express the composite ρA ⊗ ρB

Is ρ =

(
1 0
0 1

)
a density matrix?

Write the density matrix of the ensemble:
{p1 = 0.5 , |00⟩ ; p2 = 0.25 , |+1⟩ ; p3 = 0.25 , |11⟩}

ρ =
∑3

i=1 pi |ψi ⟩ ⟨ψi |

All mixed states can be expressed as ensembles (diagonalise!)
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Entanglement

There are states that CANNOT be written as tensor product
of individual states

Product states: |ψAB⟩ = |ϕA⟩ ⊗ |ϕB⟩

Bell states: |Φ+⟩ := 1√
2
(|00⟩+ |11⟩)

This state cannot be written as product

A (pure) state that cannot be written as product state, is
entangled

Mixed states that cannot be written as mixtures of product
states are entangled

Mixture of product states: ρ =
∑

ij pijρi ⊗ ρj

To describe a subsystem of a (pure or mixed) entangled state,
we need density matrices!
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Bell states are entangled

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) Cannot be written as product state

Proof: Assume that there exists states |a⟩ = a0 |0⟩+ a1 |1⟩
and |b⟩ = b0 |0⟩+ b1 |1⟩ such that |Φ+⟩ = |a⟩ ⊗ |b⟩

It follows that
|a⟩ ⊗ |b⟩ = a0b0 |00⟩+ a0b1 |01⟩+ a1b0 |10⟩+ a1b1 |11⟩

Since there are no |01⟩ , |10⟩ terms, we know that
a0b1 = a1b0 = 0

(i) if a0 = 0 then the term that has |00⟩ vanishes (which it
shouldn’t)

(ii) if b1 = 0 the term with |11⟩ vanishes □
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and |b⟩ = b0 |0⟩+ b1 |1⟩ such that |Φ+⟩ = |a⟩ ⊗ |b⟩

It follows that
|a⟩ ⊗ |b⟩ = a0b0 |00⟩+ a0b1 |01⟩+ a1b0 |10⟩+ a1b1 |11⟩

Since there are no |01⟩ , |10⟩ terms, we know that
a0b1 = a1b0 = 0

(i) if a0 = 0 then the term that has |00⟩ vanishes (which it
shouldn’t)

(ii) if b1 = 0 the term with |11⟩ vanishes □

Petros Wallden Lecture 4: Quantum Information Basics II



13/19

Bell states are entangled

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) Cannot be written as product state

Proof: Assume that there exists states |a⟩ = a0 |0⟩+ a1 |1⟩
and |b⟩ = b0 |0⟩+ b1 |1⟩ such that |Φ+⟩ = |a⟩ ⊗ |b⟩

It follows that
|a⟩ ⊗ |b⟩ = a0b0 |00⟩+ a0b1 |01⟩+ a1b0 |10⟩+ a1b1 |11⟩

Since there are no |01⟩ , |10⟩ terms, we know that
a0b1 = a1b0 = 0

(i) if a0 = 0 then the term that has |00⟩ vanishes (which it
shouldn’t)

(ii) if b1 = 0 the term with |11⟩ vanishes □

Petros Wallden Lecture 4: Quantum Information Basics II



14/19

Subsystems and partial trace

Let ρAB = |ψAB⟩ ⟨ψAB |

Then ρA := TrB(ρAB) and ρB := TrA(ρAB)

It easy to see that for product states ρAB = ρA ⊗ ρB this is
the case
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Partial Trace

Consider MAB =
∑

i ,j ,k,l cijkl |i⟩ ⟨j |A ⊗ |k⟩ ⟨l |B
Partial trace over B:

MA := TrB(MAB) =
∑

i ,j ,k,l cijkl |i⟩ ⟨j |A × Tr(|k⟩ ⟨l |B)

(note the trace is number not a matrix)

=
∑

i ,j ,k,l cijkl |i⟩ ⟨j |A × (⟨l | k⟩B) (using cyclic property)

=
∑

i ,j ,k,l cijkl |i⟩ ⟨j |A × (⟨l | k⟩B) (using orthogonality)∑
i ,j

∑
k cijkk |i⟩ ⟨j |A

Reduced matrix (partial trace over B) is a matrix at space A

Partial trace over A is defined similarly
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Examples

Reduced state for product states ρAB = ρA ⊗ ρB

As expected: ρA and ρB

Reduced state for entangled (Bell) state:

ρAB = |Φ+⟩ ⟨Φ+|

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

ρA = Tr(ρAB) = · · · = 1
2(|0⟩ ⟨0|+ |1⟩ ⟨1|)A

ρB = Tr(ρAB) = · · · = 1
2(|0⟩ ⟨0|+ |1⟩ ⟨1|)B
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One density operator to rule them all!
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Measurements

We have seen simple one qubit measurements

It generalises for observable O

Can define more general measurements (non-projective)

See next lecture!

Petros Wallden Lecture 4: Quantum Information Basics II



18/19

Measurements

We have seen simple one qubit measurements

It generalises for observable O

Can define more general measurements (non-projective)

See next lecture!

Petros Wallden Lecture 4: Quantum Information Basics II



18/19

Measurements

We have seen simple one qubit measurements

It generalises for observable O

Can define more general measurements (non-projective)

See next lecture!

Petros Wallden Lecture 4: Quantum Information Basics II



19/19

Some resources

Quantum Computation and Quantum Information by Nielsen
& Chuang: 2.1.7, 2.4

Introduction to Quantum Cryptography by Thomas Vidick and
Stephanie Wehner: chapter 2

Quantum Information Theory by Mark M. Wilde: chapter 3
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