Quantum Cyber Security Lecture 5: Quantum Information Basics III

Petros Wallden

University of Edinburgh

28th January 2025

• Generalised quantum measurements

- POVM (mathematics)
- Projective and general measurements with examples

- Generalised quantum measurements
 - POVM (mathematics)
 - Projective and general measurements with examples
- Quantum operations
 - unitary operations
 - single qubit and entangling operations (with examples)

- We have seen simple one qubit measurements
- It generalises for observable O

Born Rule:

The measured result for an observable O, on a quantum system $|\psi\rangle$ is given by its eigenvalues λ The probability of getting a specific eigenvalue λ_i is equal to $\mathbf{p}(\mathbf{i}) = \langle \psi | P_i | \psi \rangle$ or more generally for a density matrix ρ is given by $p(\mathbf{i}) = Tr[P_i \rho P_i^{\dagger}]$ Where P_i is the projection onto the eigenspace of O corresponding to λ_i

- P_i is projection to the eigenspace corresp. to eigenvalue λ_i
- Due to trace's cyclic property and $P^2 = P$ (projection):

$$p(i) = \operatorname{Tr}(P_i \rho)$$

• Can define more general measurements (non-projective)

POVM (Positive Operator-Valued Measure)

It is the basis for general quantum measurements

Definition: POVM

A POVM is defined as a set of Hermitian $(M_j^{\dagger} = M_j)$, positive semi-definite $M_j \ge 0$ matrices $\{M_j\}_j$ such that:

$$\sum_{j} M_{j} = \mathbb{I}_{d}$$

 The probability *p_j* of obtaining the outcome *j* when performing the measurement {*M_j*}_{*j*} on state *ρ* is given by:

$$p_j = \operatorname{Tr}(M_j \rho)$$

- Generalises Born's rule
- Post-measurement state not determined by POVM (see next)

Kraus Operators

Definition: Kraus Operators

Let $\{M_j\}_j$ be a POVM. A Kraus operator representation of M is a set of matrices K_j such that:

$$\forall j , M_j = K_j^{\dagger} K_j$$

- Their existence is guaranteed since M_j positive semi-definite
- From POVMs we have: $\sum_{j} K_{j}^{\dagger} K_{j} = \mathbb{I}_{d}$
- The probability of obtaining outcome *j*:

$$p_j = \operatorname{Tr}\left(K_j \rho K_j^{\dagger}\right) = \operatorname{Tr}\left(K_j^{\dagger} K_j \rho\right) = \operatorname{Tr}\left(M_j \rho\right)$$

• The post measurement state after outcome *j*:

$$\rho_j := \frac{K_j \rho K_j^{\dagger}}{\operatorname{Tr}\left(K_j \rho K_j^{\dagger}\right)}$$

• If $\operatorname{Tr}\left(K_{j}\rho K_{j}^{\dagger}\right) = 0$ outcome j never occurs

Projective Measurements

• All measurements we have seen are subclass of POVMs called **projective**

Definition: Projective Measurements

A measurement $\{M_j\}_j$ where all measurement operators are projections $M_j = P_j = P_j^2 \quad \forall j$ is called **projective**

- It follows that $\sum_{i} P_{j} = \mathbb{I}$ and that both $M_{j} = P_{j}$; $K_{j} = P_{j} \forall j$
- Probability of outcome j on state ρ :

 $p_{j} = \operatorname{Tr}(P_{j}\rho)$ or for pure states: $p_{j} = \langle \psi | P_{j} | \psi \rangle$

• State after obtaining outcome *j*:

$$\rho_j = \frac{P_j \rho P_j}{\mathrm{Tr}\left(P_j \rho\right)}$$

Examples (projective)

- State $\rho = \sum_{x} p_{x} |x\rangle \langle x|$ (classical mixture)
- Measure in the computational basis, i.e. $M_x := \ket{x}ra{x}$
- Check: it is a measurement; it gives the intuitive answer p_{χ}

Examples (projective)

- State $\rho = \sum_{x} p_{x} |x\rangle \langle x|$ (classical mixture)
- Measure in the computational basis, i.e. $M_{\!\scriptscriptstyle X} := \ket{x}ig\langle x |$
- Check: it is a measurement; it gives the intuitive answer p_{\times}
- Two qubit (entangled) measurement
- State $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$
- Measure in basis: $M_1 = \ket{\Phi^+} ra{\Phi^+}$; $M_2 = \ket{\Phi^-} ra{\Phi^-}$

 $M_3 = \ket{\Psi^+} ra{\Psi^+}$; $M_4 = \ket{\Psi^-} ra{\Psi^-}$

where $|\Phi^{\pm}\rangle = \frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle)$; $|\Psi^{\pm}\rangle = \frac{1}{\sqrt{2}}(|01\rangle \pm |10\rangle)$

- Check: it is a measurement; it gives the intuitive answer

Example (measuring parity)

- 00, 11 even parity; 01, 10 odd parity
- Define POVM (check condition; projects to even/odd subspace)

 $M_{\mathrm{even}} = \ket{00}ra{00} + \ket{11}ra{11}$; $M_{\mathrm{odd}} = \ket{01}ra{01} + \ket{10}ra{10}$

- · · · after calculation gets: $p_{\text{even}} = \langle 00 | \rho | 00 \rangle + \langle 11 | \rho | 11 \rangle$; $p_{\text{odd}} = \langle 01 | \rho | 01 \rangle + \langle 10 | \rho | 10 \rangle$
- Check on $\rho = \left| \Phi^+ \right\rangle \left\langle \Phi^+ \right|$

(expected outcome prob 1 for even parity and state unchanged!)

Example (partial measurement)

- 2-qubit state $|\Phi^+\rangle_{AB}$, measure system *B* only in comp basis
- $M_0 := \mathbb{I}_A \otimes |0\rangle \langle 0|_B$; $M_1 := \mathbb{I}_A \otimes |1\rangle \langle 1|_B$
- Check it is a measurement (POVM condition satisfied)
- Compute p_0, p_1 (each with prob 0.5)
- Compute the corresponding post-measurement states $(\rho_0^A = |0\rangle \langle 0| \ ; \ \rho_1^A = |1\rangle \langle 1|)$
- What is the state of *A* if we measure system *B* but "forget" the outcome? (totally mixed state: property of maximally entangled states)

Non-projective POVM

- We can measure a single qubit with more than two outcomes!
- Prob 0.5 measure in $\{|0\rangle, |1\rangle\}$ and prob 0.5 in $\{|+\rangle, |-\rangle\}$

 $M_0 = \frac{1}{2} |0\rangle \langle 0|$; $M_1 = \frac{1}{2} |1\rangle \langle 1|$; $M_2 = \frac{1}{2} |+\rangle \langle +|$; $M_3 = \frac{1}{2} |-\rangle \langle -|$

Check it is measurement and probs on state $ho = \left| 0 \right\rangle \left\langle 0 \right|$

Non-projective POVM

- We can measure a single qubit with more than two outcomes!
- Prob 0.5 measure in $\{|0\rangle, |1\rangle\}$ and prob 0.5 in $\{|+\rangle, |-\rangle\}$

 $M_0 = \frac{1}{2} \ket{0} \langle 0 |$; $M_1 = \frac{1}{2} \ket{1} \langle 1 |$; $M_2 = \frac{1}{2} \ket{+} \langle + |$; $M_3 = \frac{1}{2} \ket{-} \langle - |$

Check it is measurement and probs on state $\rho = \left| \mathbf{0} \right\rangle \left\langle \mathbf{0} \right|$

- Consider

 $M_{0} = \alpha \left|ight
angle \left\langle-\right| \; ; \; M_{1} = \beta \left|1
ight
angle \left\langle1\right| \; ; M_{2} = \mathbb{I} - \alpha \left|ight
angle \left\langle-\right| - \beta \left|1
ight
angle \left\langle1\right|$

Is it a measurement? (for $\alpha = \beta = 1/2$: yes)

What are the probs on state $\rho = |+\rangle \langle +|$?

Non-projective POVM

- We can measure a single qubit with more than two outcomes!
- Prob 0.5 measure in $\{ \left| 0 \right\rangle, \left| 1 \right\rangle \}$ and prob 0.5 in $\{ \left| + \right\rangle, \left| \right\rangle \}$

 $M_0 = \frac{1}{2} \ket{0} \langle 0 |$; $M_1 = \frac{1}{2} \ket{1} \langle 1 |$; $M_2 = \frac{1}{2} \ket{+} \langle + |$; $M_3 = \frac{1}{2} \ket{-} \langle - |$

Check it is measurement and probs on state $\rho = \left| \mathbf{0} \right\rangle \left\langle \mathbf{0} \right|$

- Consider

 $\textit{M}_{0}=\alpha\left|-\right\rangle\left\langle-\right|\;;\;\textit{M}_{1}=\beta\left|1\right\rangle\left\langle1\right|\;;\textit{M}_{2}=\mathbb{I}-\alpha\left|-\right\rangle\left\langle-\right|-\beta\left|1\right\rangle\left\langle1\right|\;$

Is it a measurement? (for $\alpha = \beta = 1/2$: yes)

What are the probs on state $\rho = \ket{+} \langle + |$?

• This can be used to distinguish "with no errors", between non-orthogonal states $|0\rangle$, $|+\rangle$, while allowing the "I don't know" answer!

Known as Unambiguous State Discriminations

- Unitary operations: $U^{\dagger}U = UU^{\dagger} = \mathbb{I}$
- Also $U = e^{iH}$ for H a Hermitian matrix
- In quantum computing, gates are unitaries (see below)
- However, there are more general operations (see next lecture)

- For a single classical bit there is only one non-trivial gate:
 NOT: takes 0 → 1 and 1 → 0, i.e. ¬a = a ⊕ 1
- For qubits all unitary operators are allowed gates Even for single qubit, there exist **infinite** different gates

- For a single classical bit there is only one non-trivial gate:
 NOT: takes 0 → 1 and 1 → 0, i.e. ¬a = a ⊕ 1
- For qubits all unitary operators are allowed gates Even for single qubit, there exist infinite different gates
- The quantum NOT-gate is the Pauli X:

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Acts as the NOT-gate to computational basis vectors: $|0\rangle{\rightarrow}|1\rangle$ and $|1\rangle{\rightarrow}|0\rangle$

For a general qubit: $\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |1\rangle + \beta |0\rangle$

$$\alpha \left| \mathbf{0} \right\rangle + \beta \left| \mathbf{1} \right\rangle - \mathbf{X} - \alpha \left| \mathbf{1} \right\rangle + \beta \left| \mathbf{0} \right\rangle$$

- We give some gates. Using a suitable finite collection of gates we can approximate all (see later).
- Pauli Y-gate:

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

On computational basis vectors: $|0\rangle \rightarrow i |1\rangle$ and $|1\rangle \rightarrow -i |0\rangle$. Acting on a general state: $\alpha |0\rangle + \beta |1\rangle \rightarrow i\alpha |1\rangle - i\beta |0\rangle$

$$\alpha \left| \mathbf{0} \right\rangle + \beta \left| \mathbf{1} \right\rangle - \mathbf{Y} - \mathbf{i} \alpha \left| \mathbf{1} \right\rangle - \mathbf{i} \beta \left| \mathbf{0} \right\rangle$$

- We give some gates. Using a suitable finite collection of gates we can approximate all (see later).
- Pauli Z-gate:

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

On computational basis vectors: $|0\rangle \rightarrow |0\rangle$ and $|1\rangle \rightarrow -|1\rangle$. Acting on a general state: $\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |0\rangle - \beta |1\rangle$

$$\alpha |0\rangle + \beta |1\rangle - Z \qquad \alpha |0\rangle - \beta |1\rangle$$

E.g. $Z|+\rangle = |-\rangle$

- We give some gates. Using a suitable finite collection of gates we can approximate all (see later).
- Hadamard *H*-gate:

$$H=rac{1}{\sqrt{2}}egin{bmatrix} 1&1\ 1&-1 \end{bmatrix}$$

On computational basis vectors: $|0\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ and $|1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$.

Acting on a general state:

$$\alpha |0\rangle + \beta |1\rangle \rightarrow \frac{1}{\sqrt{2}} \left((\alpha + \beta) |0\rangle + (\alpha - \beta) |1\rangle \right)$$

$$\alpha |0\rangle + \beta |1\rangle - \frac{H}{\sqrt{2}} \left((\alpha + \beta) |0\rangle + (\alpha - \beta) |1\rangle \right)$$

E.g. $H|0\rangle = |+\rangle$

- We give some gates. Using a suitable finite collection of gates we can approximate all (see later).
- Phase gate R_{θ} -gate:

$${\it R}_{ heta} = egin{bmatrix} 1 & 0 \ 0 & e^{i heta} \end{bmatrix}$$

On computational basis vectors: $|0\rangle \rightarrow |0\rangle$ and $|1\rangle \rightarrow e^{i\theta} |1\rangle$. Acting on a general state:

$$\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |0\rangle + e^{i\theta} |1\rangle$$
$$\alpha |0\rangle + \beta |1\rangle - R_{\theta} - \alpha |0\rangle + e^{i\theta}\beta |1\rangle$$

Some examples of phase gates R_{θ} :

R_π = Z
 R_{π/2} =
 ¹ 0
 _i Some authors call this gate as the phase gate
 R_{π/4} =
 ¹ 0
 _{1+i}
 _{√2} This gate is also called the π/8-gate
 Note: This is not a typo! Historically is called this way even though it corresponds to θ = π/4 due to different conventions!

Notation: "Control" gates are denoted as $CU = \wedge U$

Notation: "Control" gates are denoted as $CU = \wedge U$ The first qubit acts as a control for the second qubit (target). I.e. depending on the value of the first qubit we either do nothing I to the second qubit, or we apply the (single qubit) gate U to the second qubit **Notation:** "Control" gates are denoted as $CU = \wedge U$ The first qubit acts as a control for the second qubit (target). I.e. depending on the value of the first qubit we either do nothing I to the second qubit, or we apply the (single qubit) gate U to the second qubit

Solid dot, signifies control qubit

• The most important two-qubit gate is CNOT (Controlled-NOT)

$$\wedge X = \text{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

• The most important two-qubit gate is CNOT (Controlled-NOT)

$$\wedge X = \text{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

A general state:

 $a\left|00
ight
angle+b\left|01
ight
angle+c\left|10
ight
angle+d\left|11
ight
angle{
ightarrow}a\left|00
ight
angle+b\left|01
ight
angle+c\left|11
ight
angle+d\left|10
ight
angle$

• The most important two-qubit gate is CNOT (Controlled-NOT)

$$\wedge X = \text{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

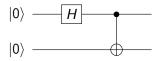
• A general state (alternative diagrammatic notation): $a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle \rightarrow a|00\rangle + b|01\rangle + c|11\rangle + d|10\rangle$

Example: entangling gate

- Consider $\land X(|+\rangle \otimes |0\rangle)$
- It gives: $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=|\Phi^+\rangle$

Example: entangling gate

- Consider $\land X(|+\rangle \otimes |0\rangle)$
- It gives: $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = |\Phi^+\rangle$
- From no entanglement, $\wedge X$ gives maximal entanglement
- The circuit for preparing the Bell state:



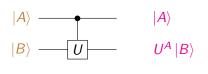
• Given $U = \begin{bmatrix} U_{00} & U_{01} \\ U_{10} & U_{11} \end{bmatrix}$ the controlled U gate: $\wedge U = CU = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & U_{00} & U_{01} \\ 0 & 0 & U_{10} & U_{11} \end{bmatrix}$

• Given
$$U = \begin{bmatrix} U_{00} & U_{01} \\ U_{10} & U_{11} \end{bmatrix}$$
 the controlled U gate:

$$\wedge U = CU = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & U_{00} & U_{01} \\ 0 & 0 & U_{10} & U_{11} \end{bmatrix}$$

• A general state:

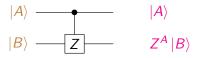
$$a |00\rangle + b |01\rangle + c |10\rangle + d |11\rangle \rightarrow a |00\rangle + b |01\rangle + |1\rangle U (c |0\rangle + d |1\rangle)$$



• E.g. the controlled Z gate:

$$\wedge Z = \mathbf{C}Z = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

• A general state: $a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle \rightarrow a|00\rangle + b|01\rangle + c|10\rangle - d|11\rangle$



A Three Qubits Gate

• The Toffoli gate: Has two control qubits that are left unaffected, and a target qubit.

Notation: $\land \land X$.

Action: It acts as identity except when both controlled qubits are $|1\rangle$ where we apply X to the target qubit:

 $|A\rangle |B\rangle |C\rangle \rightarrow |A\rangle |B\rangle X^{AB} |C\rangle = |A\rangle |B\rangle |C \oplus AB\rangle$

A Three Qubits Gate

• The Toffoli gate: Has two control qubits that are left unaffected, and a target qubit.

Notation: $\land \land X$.

Action: It acts as identity except when both controlled qubits are $|1\rangle$ where we apply X to the target qubit:

 $|A\rangle |B\rangle |C\rangle \rightarrow |A\rangle |B\rangle X^{AB} |C\rangle = |A\rangle |B\rangle |C \oplus AB\rangle$

