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@ Generalised quantum measurements
o POVM (mathematics)

e Projective and general measurements with examples
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@ Generalised quantum measurements
o POVM (mathematics)

e Projective and general measurements with examples

@ Quantum operations
@ unitary operations

e single qubit and entangling operations (with examples)
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Measurements

@ We have seen simple one qubit measurements

o It generalises for observable O

Born Rule:

The measured result for an observable O, on a quantum system [1) is given by its eigenvalues
The probability of getting a specific eigenvalue /; is equal to p(i) = |P;|

or more generally for a density matrix p is given by ) =T P

Where P; is the projection onto the eigenspace of O corresponding to

@ P; is projection to the eigenspace corresp. to eigenvalue \;

@ Due to trace's cyclic property and P? = P (projection):
p(i) = Tr (Pip)
@ Can define more general measurements (non-projective)
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POVM (Positive Operator-Valued Measure)

It is the basis for general quantum measurements

Definition: POVM

A POVM is defined as a set of Hermitian (MJ-T = Mj), positive
semi-definite M; > 0 matrices {M;}; such that:

> Mi=1q
j

v

@ The probability p; of obtaining the outcome j when performing
the measurement {M;}; on state p is given by:

pj = Tr (Mjp)
@ Generalises Born's rule

@ Post-measurement state not determined by POVM (see next)
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Kraus Operators

Definition: Kraus Operators

Let {M;}; be a POVM. A Kraus operator representation of M is a
set of matrices K such that:

Vj, M= KK

Their existence is guaranteed since M, positive semi-definite
. T _

From POVMs we have: ), K/ Kj = 14

The probability of obtaining outcome J:

pi = Tr (KoK ) = Tr (K[ Kip) = Tr (Mjp)

The post measurement state after outcome J:
KipK]
pi=
Tr (ijKj )

o If Tr (KJpKJT) = 0 outcome j never occurs 52
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Projective Measurements

@ All measurements we have seen are subclass of POVMs called
projective

Definition: Projective Measurements

A measurement {M;}; where all measurement operators are
projections M; = P; = sz V/ j is called projective

o It follows that Ej P; =1 and that both M; = P; ; K; = P; V

@ Probability of outcome j on state p:
pj = Tr(Pjp) or for pure states: p; = (| P; [4)

e State after obtaining outcome J:

PipP;

P T (Pyp)
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Examples (projective)

e State p = > px |x) (x| (classical mixture)
- Measure in the computational basis, i.e. M, := |x) (x|

- Check: it is a measurement; it gives the intuitive answer p,
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Examples (projective)

State p = > px |x) (x| (classical mixture)

- Measure in the computational basis, i.e. M, := |x) (x|

- Check: it is a measurement; it gives the intuitive answer p,
e Two qubit (entangled) measurement

- State |®T) = %(yom + [11))

- Measure in basis: My = [®T) (dF| ; My = |d7) (& |

Ms = W) (W] My = W) (w- |

where |0F) = %(yom +[11)) ;|w*) = \%(\om + [10))

- Check: it is a measurement; it gives the intuitive answer
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Example (measuring parity)

@ 00,11 even parity; 01,10 odd parity

@ Define POVM (check condition; projects to even/odd
subspace)

Meyen = |00) (00| + |11) (11] ; Mygq = |01) (01| + |10) (10|

@ --- after calculation gets:
Peven = (00] 9|00} + (1] p |11} ; poas = 01/ p[01) + (10| p |10}

o Check on p = |[®T) (O]

(expected outcome prob 1 for even parity and state
unchanged!)
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Example (partial measurement)

(]

2-qubit state |®T) , 5, measure system B only in comp basis
Mo :==Ta®10) (0l ; Mi:=Ia®|1)(1]g

@ Check it is a measurement (POVM condition satisfied)

Compute po, p1 (each with prob 0.5)

Compute the corresponding post-measurement states
(ro =10) (0] ; pi* = 1) (1))
@ What is the state of A if we measure system B but “forget”

the outcome? (totally mixed state: property of maximally
entangled states)
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Non-projective POVM

@ We can measure a single qubit with more than two outcomes!

- Prob 0.5 measure in {|0),|1)} and prob 0.5 in {|+).|—)}

Mo =310) (0 : My =3[1) (1] iMa=5]+) (+] iMs=3]|-) (-]

Check it is measurement and probs on state p = |0) (0|
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Non-projective POVM

@ We can measure a single qubit with more than two outcomes!

- Prob 0.5 measure in {|0),|1)} and prob 0.5 in {|+).|—)}

Mo =510) (0] ; Mi=31) (1] ;Mo =3 |+) (+] i Mz = 3[-) (-]
Check it is measurement and probs on state p = |0) (0|

- Consider
Mo=al-)(—| s Mi=BI1) (1] iMy=T—al-)(~|—§

1) (1]
Is it a measurement? (for « = 8 =1/2: yes)

What are the probs on state p = [+) (+]?
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Non-projective POVM

@ We can measure a single qubit with more than two outcomes!

- Prob 0.5 measure in {|0),|1)} and prob 0.5 in {|+).|—)}

Mo =310) (0 : My =3[1) (1] iMa=5]+) (+] iMs=3]|-) (-]

Check it is measurement and probs on state p = |0) (0|

- Consider
Mo =a|=) (= ; Mi=p[1) (1] ;M2 =T—a|=){=|-B[1) (1]
Is it a measurement? (for « = 8 =1/2: yes)
What are the probs on state p = [+) (+]?
@ This can be used to distinguish “with no errors”, between
non-orthogonal states |0) , |[+), while allowing the "I don't
know" answer!
Known as Unambiguous State Discriminations
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Unitary operations

o Unitary operations: U'U = UU' =1
o Also U = e for H a Hermitian matrix
@ In quantum computing, gates are unitaries (see below)

@ However, there are more general operations (see next lecture)
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Single Qubit Gates

@ For a single classical bit there is only one non-trivial gate:
NOT: takes0 —1and1—0,ie. ma=ad1

@ For qubits all unitary operators are allowed gates

Even for single qubit, there exist infinite different gates
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Single Qubit Gates

@ For a single classical bit there is only one non-trivial gate:
NOT: takes0 —1and1—0,ie. ma=ad1

@ For qubits all unitary operators are allowed gates
Even for single qubit, there exist infinite different gates
@ The quantum NOT-gate is the Pauli X:

01
o
Acts as the NOT-gate to computational basis vectors:

10)—|1) and |1)—|0)
For a general qubit: o |0) + 7 |1) —a|1) + 0)

a|0) + B 1) a|l) + 310)
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Single Qubit Gates

e We give some gates. Using a suitable finite collection of gates
we can approximate all (see later).

o Pauli Y-gate:

On computational basis vectors: |0)—/|1) and |1)——i|0).
Acting on a general state: o |0) + 3 |1)—ia|l) —i3]0)

al0) +4(1) ia|1) — i3 |0)
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Single Qubit Gates

e We give some gates. Using a suitable finite collection of gates
we can approximate all (see later).

7=l 4

On computational basis vectors: |0)—|0) and |1)—— |1).

o Pauli Z-gate:

Acting on a general state: o |0) + J|1)—«|0) — 3 |1)

a|0) + B 1) a|0) — B 1)

Eg Z|+) =|-)
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Single Qubit Gates

e We give some gates. Using a suitable finite collection of gates
we can approximate all (see later).

e Hadamard H-gate:

171 1
-k )
On computational basis vectors: \O>—>%(|O) +11)) and

)= 5(10) = [1)).
Actmg on a general state:

1 ,
al0) + f|1)—=—= ((a+ B)[0) + (o — 5) 1))

al0)+ 51 —HF— L (a+5)0)+(a—p))

Eg H|0)=|+)

S-S
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Single Qubit Gates

@ We give some gates. Using a suitable finite collection of gates
we can approximate all (see later).

1 0
Ry = [O e"e}

On computational basis vectors: [0)—+|0) and |1)—e” |1).

o Phase gate Ry-gate:

Acting on a general state:

a|0) + B |1)—=a|0) + e 1)

Q

0) + A1) a|0) + e

1)
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Single Qubit Gates

Some examples of phase gates Ry:

QO R.=Z
Q Rp= Ll) ﬂ Some authors call this gate as the phase gate
1 0 . .
Q Riu= {O 1+,} This gate is also called the 7/8-gate
V2

Note: This is not a typo! Historically is called this way even
though it corresponds to 0 = /4 due to different conventions!
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Two Qubits Gates

Notation: “Control” gates are denoted as CU = AU
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Two Qubits Gates

Notation: “Control” gates are denoted as CU = AU
The first qubit acts as a control for the second qubit (target).

l.e. depending on the value of the first qubit we either do
nothing I to the second qubit, or we apply the (single qubit)
gate U to the second qubit
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Two Qubits Gates

Notation: “Control” gates are denoted as CU = AU
The first qubit acts as a control for the second qubit (target).

l.e. depending on the value of the first qubit we either do
nothing I to the second qubit, or we apply the (single qubit)
gate U to the second qubit

Solid dot, signifies control qubit
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Two Qubits Gates

@ The most important two-qubit gate is CNOT
(Controlled-NOT)

1000

- o100
AX=CNOT = | o o )
0010
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Two Qubits Gates

@ The most important two-qubit gate is CNOT
(Controlled-NOT)

AX = CNOT =

O O O
O O = O
= O O O
o= O O

@ A general state:
a|00) 4+ b|01) + ¢|10) + d |11)—a|00) + b |01) + ¢ |11) + d |10)

|A) A)
. aos
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Two Qubits Gates

@ The most important two-qubit gate is CNOT

(Controlled-NOT)

AX = CNOT =

1 000
0100
0 001
0 01O

o A general state (alternative diagrammatic notation):
a|00) 4+ b|01) + ¢|10) + d |11)—a|00) + b |01) + ¢ |11) + d |10)

A) —— A

B) —&—  |A@B)
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Example: entangling gate

e Consider AX(|+) @ (0))
o It gives: %(\00} + [11)) = [&T)
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Example: entangling gate

Consider AX(|+) ®|0))
It gives: %(\00} + [11)) = [&T)

@ From no entanglement, AX gives maximal entanglement

The circuit for preparing the Bell state:

|0) 4444444IIHII»———A————crAAAAAAA

0) S

>
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Two Qubits Gates

Uoo  Uoz

o Given U = [Ulo Usy

] the controlled U gate:

AU =CU =

O O O =
O O = O
S
o
S
=
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Two Qubits Gates

@ Given U = {UOO UOl] the controlled U gate:
Uo Ui

1 0 O 0

01 0 0

AU =CU = 0 0 Up Uo

0 0 Ui Un

@ A general state:
a]00) + b|01) + c|10) + d |11)—a|00) + b |01) +
+[1) U(cl0) +4d 1))

A) |A)
B) UA|B)
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Two Qubits Gates

o E.g. the controlled Z gate:

1 00 O
010 O
N =CZ = 001 0
0 0 0 -1

@ A general state:
a|00) 4+ b|01) + ¢|10) + d |11)—a|00) + b |01) + ¢ |10) — d |11)

A) A)
. .
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A Three Qubits Gate

@ The Toffoli gate: Has two control qubits that are left
unaffected, and a target qubit.

Notation: A A X.

Action: It acts as identity except when both controlled qubits
are |1) where we apply X to the target qubit:

A)[B) |C)—]A) |B) XAP |C) = |A) |B) |C & AB)
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A Three Qubits Gate

@ The Toffoli gate: Has two control qubits that are left
unaffected, and a target qubit.

Notation: A A X.

Action: It acts as identity except when both controlled qubits
are |1) where we apply X to the target qubit:

A)[B) |C)—]A) |B) XAP |C) = |A) |B) |C & AB)

|A) ———o——— |A)

B) ——e— |B)

) —xX}—  |CeAB)
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