Quantum Cyber Security Lecture 7: Intro to Quantum Information V: Entropies and Distances

Petros Wallden

University of Edinburgh

4th February 2025

- How close are two quantum states: Fidelity and Trace-Distance
- Elements of classical information theory: Shannon Entropy
- Elements of quantum information theory: Von Neumann Entropy

How Close are Two Quantum States?

- Quantify how close the output of a protocol is to ideal
- The ideal protocol has some security property
- Can use this in security proofs:

If the output state is close enough to the ideal, it is impossible for an adversary to extract more information from the real execution than the distance of the ideal/real states.

- Fidelity: Measures closeness of two states (unit means states are the same, zero means they are orthogonal)
- Trace-distance: Measures how distinct two states are (unit means that they are orthogonal, zero means they are the same)

Fidelity

Fidelity (intuitively): Given two quantum states ρ_1, ρ_2 , what is the probability that given the one we "confuse" it for the other.

- Pure States: It should depends on the angle between the two vectors: $F(|\psi_1\rangle \langle \psi_1|, |\psi_2\rangle \langle \psi_2|) = |\langle \psi_1| \psi_2 \rangle|^2$
- One Pure State: $F(|\psi_1\rangle \langle \psi_1|, \rho_2) = \langle \psi_1| \rho_2 |\psi_1\rangle$ We will use these expressions in general

Fidelity

Fidelity (intuitively): Given two quantum states ρ_1, ρ_2 , what is the probability that given the one we "confuse" it for the other.

- Pure States: It should depends on the angle between the two vectors: $F(|\psi_1\rangle \langle \psi_1|, |\psi_2\rangle \langle \psi_2|) = |\langle \psi_1| \psi_2 \rangle|^2$
- One Pure State: $F(|\psi_1\rangle \langle \psi_1|, \rho_2) = \langle \psi_1| \rho_2 |\psi_1\rangle$ We will use these expressions in general
- General Expression: $F(\rho_1, \rho_2) = (\text{Tr}\sqrt{\sqrt{\rho_1}\rho_2\sqrt{\rho_1}})^2$ It is also the maximum overlap between purifications

Fidelity

Fidelity (intuitively): Given two quantum states ρ_1, ρ_2 , what is the probability that given the one we "confuse" it for the other.

- Pure States: It should depends on the angle between the two vectors: $F(|\psi_1\rangle \langle \psi_1|, |\psi_2\rangle \langle \psi_2|) = |\langle \psi_1| \psi_2 \rangle|^2$
- One Pure State: $F(|\psi_1\rangle \langle \psi_1|, \rho_2) = \langle \psi_1| \rho_2 |\psi_1\rangle$ We will use these expressions in general
- General Expression: $F(\rho_1, \rho_2) = (\text{Tr}\sqrt{\sqrt{\rho_1}\rho_2\sqrt{\rho_1}})^2$ It is also the maximum overlap between purifications
- Crucially, Fidelity increases by applying a quantum channel (actions cannot increase the distinguishability of two states)

Caution: Some people (incl N&C book) use different definition (square root fidelity) $F' = \sqrt{F}$

Trace-Distance (intuitively): Given two states ρ_1 , ρ_2 , what is the maximum probability to distinguish them.

• $T(\rho_1, \rho_2) = \frac{1}{2} \text{Tr} \sqrt{(\rho_1 - \rho_2)^2} = \frac{1}{2} \sum_i |\lambda_i|$ where λ_i are the eigenvalues of the Hermitian (but not positive) matrix $(\rho_1 - \rho_2)$

Trace-Distance (intuitively): Given two states ρ_1, ρ_2 , what is the maximum probability to distinguish them.

- $T(\rho_1, \rho_2) = \frac{1}{2} \text{Tr} \sqrt{(\rho_1 \rho_2)^2} = \frac{1}{2} \sum_i |\lambda_i|$ where λ_i are the eigenvalues of the Hermitian (but not positive) matrix $(\rho_1 \rho_2)$
- Trace-Distance decreases by applying a quantum channel (actions make states less distinguishabile)
- More useful quantity than Fidelity (e.g. crypto), but harder to compute
- Commonly bounded using known relations with Fidelity

Relations and an example

- Operational meaning of Trace-Distance: Is related with the best guessing probability by: p_{guess} = ¹/₂(1 + T(ρ₁, ρ₂))
- Relation between Fidelity and Trace Distance

 $1 - \sqrt{F(\rho_1, \rho_2)} \le T(\rho_1, \rho_2) \le \sqrt{1 - F(\rho_1, \rho_2)}$

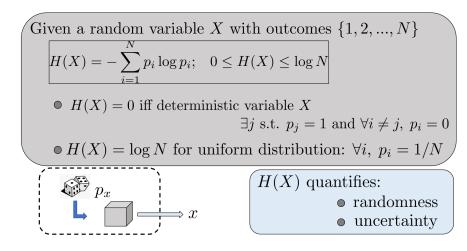
• Example: Bound Trace Distance between $|\psi_1\rangle = |0\rangle$ and $\rho_2 = 1/3 |0\rangle \langle 0| + 2/3 |+\rangle \langle +|$

 $F(|\psi_1\rangle, \rho_2) = \langle 0|\rho_2|0\rangle = 1/3 + 2/3|\langle 0|+\rangle|^2 = 1/3 + 1/3 = 2/3$ $0.18 \approx 1 - \sqrt{2/3} \le T(\psi_1, \rho_2) \le \sqrt{1/3} \approx 0.58$

Diamond Norm: Given two channels \mathcal{E}, \mathcal{F} , what is the max probability to distinguish them.

• $d_{\diamond}(\mathcal{E},\mathcal{F}) := \|\mathcal{E} - \mathcal{F}\|_{\diamond} = \max_{\rho} T(\mathcal{E} \otimes I(\rho), \mathcal{F} \otimes I(\rho))$

 Find the state ρ that maximises the distance between the output state of the two channels.



Given two random variables X and Y:

$$H(Y|X) = -\sum_{x,y} p(x,y) \log p(y|x); \text{ where } p(y|x) = p(x,y)/p(x)$$

$$\bullet H(Y|X) = 0 \text{ iff } y = f(x)$$

$$0 \ 0 \le H(Y|X) \le H(Y) \le \log N$$

$$\begin{aligned} H(Y|X) &= -\sum_{x,y} p(x,y) (\log p(x,y) - \log p(x)) \\ &= -\sum_{x,y} p(x,y) (\log p(x,y) - \sum_{x} p(x) \log p(x)) \\ &= H(X,Y) - H(X) \end{aligned}$$

H(Y|X) quantifies:

Uncertainty of X on Y

- Info X needs to $X \to Y$
- $\hfill igodol{M}$ InfoY can keep secret from X

Given two random variables X, Y, we define the mutual information :

$$H(X:Y) = -\sum_{x,y} p(x,y) \log \frac{p(x)p(y)}{p(x,y)}$$

 ${\bullet} \ 0 \leq H(X:Y) \leq \{H(Y),H(X)\} \leq \log N$

 \bullet H(X : Y) = 0 iff X and Y are independent.

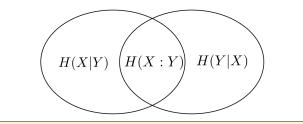
$$H(X:Y) = H(X) + H(Y) - H(X,Y)$$
$$= H(X) - H(X|Y)$$
$$= H(Y) - H(Y|X)$$

H(X:Y) quantifies:

 \bullet Correlations

• Randomness needed to decorrelate X and Y

Entropic Relations: Venn Diagram



$$\begin{split} H(X,Y) &= H(X) + H(Y|X) & H(X) = H(X|Y) + H(X:Y) \\ H(X,Y) &= H(Y) + H(X|Y) & H(Y) = H(Y|X) + H(X:Y) \end{split}$$

Classical Information Theory: Summary and Extras

- Shannon Entropy: Average information produced by a random variable: $H(X) = -\sum_{i} p_i \log p_i$
- Conditional Entropy: The amount of randomness of variable Y given the variable X: H(Y|X) = H(X, Y) H(X)
- Mutual Information: The amount of information obtain from one variable X by observing another one Y: H(X : Y) = H(X) + H(Y) − H(X, Y) = D_{KL}(P_(X,Y) ||P_X ⊗ P_Y)

Classical Information Theory: Summary and Extras

- Shannon Entropy: Average information produced by a random variable: $H(X) = -\sum_{i} p_i \log p_i$
- Conditional Entropy: The amount of randomness of variable Y given the variable X: H(Y|X) = H(X, Y) H(X)
- Mutual Information: The amount of information obtain from one variable X by observing another one Y: H(X : Y) = H(X) + H(Y) − H(X, Y) = D_{KL}(P_(X,Y) ||P_X ⊗ P_Y)
- Relative Entropy: Measure of how one prob distribution $P(x_i)$ differs from another $Q(x_i)$: $H(P||Q) = D_{KL}(P||Q) = \sum_{x_i} P(x_i) \log \left(\frac{P(x_i)}{Q(x_i)}\right)$
- Notation: Given a binary variable X: Binary entropy $H(X) := h(p) = -p \log p - (1-p) \log(1-p)$

Von Neumann Entropy: Shannon entropy of eigenvalues

Given a quantum state
$$\rho$$

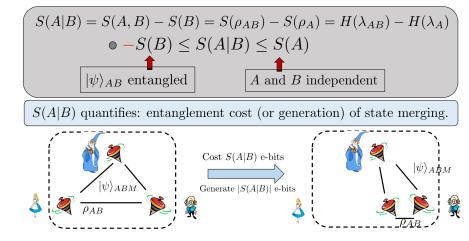
$$S(\rho) = -\sum_{i=1}^{N} \lambda_i \log \lambda_i = H(\bar{\lambda})$$
• $S(\rho) = 0$ iff $\rho = |\psi\rangle\langle\psi|$ (pure state)
• $S(\rho) = \log N$ for maximally mixed states: $\rho = I/N$

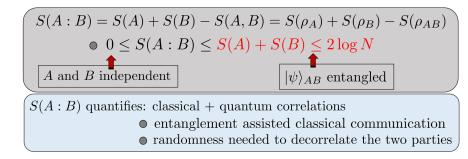
 $S(\rho)$ quantifies:

purity/mixedness

 ${\scriptstyle \bigodot}$ quantum information

Quantum Conditional Entropy





$$cc\text{-state: } \rho_{ab} = \sum_{a,b} p(a,b)|a\rangle\langle a| \otimes |b\rangle\langle b|$$

$$cQ\text{-state: } \rho_{aB} = \sum_{a} p(a)|a\rangle\langle a| \otimes \rho_{B|a}$$

$$cc\text{-state: } S(a:b) = H(a:b)$$

$$cQ\text{-state: } S(a:b) = H(a:b)$$

$$cQ\text{-state: } S(a:B) = S(a) + S(B|a) = H(a) + \sum_{a} p(a)\rho_{B|a}$$

$$idegrad{}$$

$$idegrad{$$

$$idegrad{}$$

$$idegr$$

Quantum Information Theory: Summary and Extras

- Von Neuman Entropy: Quantum version of Shannon Ent: $S(\rho) = -\text{Tr}(\rho \log \rho)$ (0 for pure, max for totally mixed) $S(\rho) = -\sum_{i} (\lambda_i \log \lambda_i)$ where λ_i the eigenvalues of ρ
- Recall: reduced density matrix $\rho^A := \operatorname{Tr}_B(\rho^{AB})$
- Quantum Conditional Entropy: $S(A|B) = S(A, B) - S(B) = \text{Tr}\rho_{AB}\log\rho_{AB} - \text{Tr}\rho_B\log\rho_B$ $= H(\lambda_{AB}) - H(\lambda_A)$
- Quantum Mutual Information: The relative entropy of a global state from the tensor product of the reduced density matrices: $S(A : B) = S(\rho^A) + S(\rho^B) - S(\rho^{AB}) = S(\rho^{AB} || \rho^A \otimes \rho^B)$ "extra info beyond the product of the reduced matrices"
- Quantum Relative Entropy: $S(\rho_1 \| \rho_2) = \text{Tr}\rho_1(\log \rho_1 \log \rho_2)$