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@ How close are two quantum states: Fidelity and Trace-Distance
@ Elements of classical information theory: Shannon Entropy

o Elements of quantum information theory: Von Neumann
Entropy
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How Close are Two Quantum States?

- Quantify how close the output of a protocol is to ideal
- The ideal protocol has some security property
- Can use this in security proofs:

If the output state is close enough to the ideal, it is impossible
for an adversary to extract more information from the real
execution than the distance of the ideal/real states.

@ Fidelity: Measures closeness of two states (unit means states
are the same, zero means they are orthogonal)

@ Trace-distance: Measures how distinct two states are (unit
means that they are orthogonal, zero means they are the same)
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Fidelity (intuitively): Given two quantum states p1, p2, what is the
probability that given the one we “confuse” it for the other.
@ Pure States: It should depends on the angle between the two
vectors: F(’l)1> <I)1| s L)2> <’L§L’2 ) = ‘<I/)1| 1/)2>‘2

@ One Pure State: F(|¢1) (1], p2) = (1] p2 |11)
We will use these expressions in general
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@ General Expression: F(p1,p2) = (Tr ,/plpz\/[Tl)2
It is also the maximum overlap between purifications
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Fidelity (intuitively): Given two quantum states p1, p2, what is the
probability that given the one we “confuse” it for the other.
@ Pure States: It should depends on the angle between the two
vectors: F(’l)1> <I)1| s L)2> <’L§L’2 ) = ‘<I/)1| 1/)2>‘2

@ One Pure State: F(|¢1) (1], p2) = (1] p2 |11)
We will use these expressions in general

@ General Expression: F(p1,p2) = (Tr ,/plpz\/[Tl)2
It is also the maximum overlap between purifications

o Crucially, Fidelity increases by applying a quantum channel
(actions cannot increase the distinguishability of two states)

Caution: Some people (incl N&C book) use different definition
(square root fidelity) F’ = /F
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Trace Distance

Trace-Distance (intuitively): Given two states pi, p2, what is the
maximum probability to distinguish them.
o T(p1.p2) = 3Tr\/(p1 — p2)? = 5 57| Ai| where A; are the
eigenvalues of the Hermitian (but not positive) matrix
(p1—p2)
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Trace Distance

Trace-Distance (intuitively): Given two states pi, p2, what is the

maximum probability to distinguish them.
1

o T(p1.p2) = 3Tr\/(p1 — p2)? = 5 57| Ai| where A; are the
eigenvalues of the Hermitian (but not positive) matrix
(p1—p2)

@ Trace-Distance decreases by applying a quantum channel
(actions make states less distinguishabile)

@ More useful quantity than Fidelity (e.g. crypto), but harder to
compute

@ Commonly bounded using known relations with Fidelity
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Relations and an example

@ Operational meaning of Trace-Distance: Is related with
the best guessing probability by: pess = %(1 + T(p1,p2))

@ Relation between Fidelity and Trace Distance

1— v F(p1,p2) < T(p1,p2) </1—F(p1,p2)

e Example: Bound Trace Distance between |¢/1) = |0) and
p2 =1/3(0) (0] +2/3 |+) (+]

F(lv1),p2) = (01 p210) = 1/3+2/3| (0] +)|* = 1/3+1/3=2/3
0.18 ~1—+/2/3 < T(31,p2) < \/1/3 ~ 0.58
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Distance of quantum channels

Diamond Norm: Given two channels £, 7, what is the max
probability to distinguish them.

(. F) i= € = Fllo = max T(€ © 1), F & 1(5))

@ Find the state p that maximises the distance between the
output state of the two channels.
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Shannon Entropy

@ven a random variable X with outcomes {1,2,..., N} \

N
H(X)=-> pilogp; 0<H(X)<logN

i=1

© H(X) = 0 iff deterministic variable X
djst. pj=1land Vi # j, p; =0

K @ H(X) =log N for uniform distribution: Vi, p; =1 /N/

_______________

e D ! H(X) quantifies:
! L y E e randomness
3 @ k T e uncertainty

_______________
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Shannon Conditional Entropy

Given two random variables X and Y : N
H(Y|X) == p(z,y)logp(ylz); where p(y|z) = p(z,y)/p(z)
z,y
O HY|X)=0iff y = f(x)
© 0< H(Y|X) < H(Y) <logN Y,
H(YIX) = — 3 p(z,4) (og p(a,y)  logp(a)) H(Y[X) quantifies: h
z,y .
R ZP Jlog (s Uncertainty of X on Y
=y @ Info X needsto X — Y
= IR 10) = E0Y @ Info Y can keep secret from X

_/
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Shannon Mutual Information

/Given two random variables X,Y, we define the mutual information}

V) = . p(x)p(y)
H(X:Y)= ;;p( ,y) log o(e.1)

@ 0< H(X:Y) g {H(Y),H(X)} <logN

\_ O@H(X:Y)=0iff X and Y are independent. J
H(X:Y)=H(X)+H(Y)-H(X,Y) | [ H(X :Y) quantifies: h
= H(X) - H(X[Y) @ Correlations
= H(Y) - H(Y|X)

@ Randomness needed
to decorrelate X and Y J
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Entropic Relations: Venn Diagram

H(X,Y) = H(X) + H(Y|X) H(X)=H(X|Y)+H(X :Y)

H(X,Y)=H(Y)+ HX|Y) H(Y)=HY|X)+H(X:Y)
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Classical Information Theory: Summary and Extras

@ Shannon Entropy: Average information produced by a random
variable: H(X) = —>", pilog p;

o Conditional Entropy: The amount of randomness of variable Y

given the variable X: H(Y|X) = H(X,Y) — H(X)

@ Mutual Information: The amount of information obtain from
one variable X by observing another one Y

H(X = Y) = H(X) + H(Y) = H(X, Y) = Die(Pix.v)IPx © Py)
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Classical Information Theory: Summary and Extras

@ Shannon Entropy: Average information produced by a random
variable: H(X) = —>", pilog p;

o Conditional Entropy: The amount of randomness of variable Y
given the variable X: H(Y|X) = H(X,Y) — H(X)

@ Mutual Information: The amount of information obtain from
one variable X by observing another one Y

@ Relative Entropy: Measure of how one prob distribution P(x;)

differs from another Q(x;):
H(PIIQ) = Dia(PIIQ) = 32, P(x) log ( 564 )
e Notation: Given a binary variable X: Binary entropy

H(X) := h(p) = —plogp — (1 — p) log(1 — p)
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Von Neumann Entropy: Shannon entropy of eigenvalues

/ Given a quantum state p \
N

S(p) = _Z)\ilog)\i = H()
i=1

S(p) = 0iff p = |[)(¢| (pure state)
S(p) = log N for maximally mixed states: p = I /Nj

[ s o S(p) quantifies:

| ") Q | @ purity/mixedness

1 <= 1

\ P @ quantum information
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Quantum Conditional Entropy

S(A|B) = S(A,B) — S(B) = S(pag) — S(pa) = H(Aap) — H(Aa)
o —S(B) < S(A|B) < S(A)
1 1

|t) ap entangled ‘A and B independent ‘

-

[ S(A|B) quantifies: entanglement cost (or generation) of state merging.

1 N v \
| ﬁ@ g
' 2 \\\lw>A¢AJ
1
Generate |S(A|B)| e-bits ! \ :
) : y : 9@@‘
é l‘ L;% §i~,—>| &K

Cost S(A|B) e-bits
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Quantum Mutual Information

("S(A: B) = S(A) + S(B) — S(4, B) = S(pa) + S(p5) — S(pas) )
e 0<S(A:B)<S(A) +S(B)t§ 2log N

1
\‘ A and B independent ‘ |t)) ap entangled

e . . q
S(A : B) quantifies: classical + quantum correlations

@ entanglement assisted classical communication
@ randomness needed to decorrelate the two parties

%

(&
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When one register is classical

/ f‘/ I’ = \| AN
ce-state: pgp = Zp(a, b)|a)(al @ |b)(b]| S8 cQ B R
cQ-state: pop = Zp a){al ® PBla % :I D m\: &

L a 3% cc @i

cc-state: S(a:b) = H(a:b)
cQ-state: S(a: B) = S(a) + S(Bla) = H(a) + Zp(a)pB‘a

— Collective decoding
needed to saturate S(a:B)

(Holevo information)

&
4

~.,>

_________________
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Quantum Information Theory: Summary and Extras

@ Von Neuman Entropy: Quantum version of Shannon Ent:
S(p) = —Tr(plogp) (0 for pure, max for totally mixed)
S(p) = —>_; (Nilog Ai) where \; the eigenvalues of p

o Recall: reduced density matrix p* := Trg(p”?)

@ Quantum Conditional Entropy:
S(A|B) = S(A, B) — S(B) = Trpag log pag — Trpg log ps
= H(Aag) — H(\a)

@ Quantum Mutual Information: The relative entropy of a global
state from the tensor product of the reduced density matrices:

S(A: B) = S(p") + S(p®) = S(p*7) = S(p"F|p" @ p°)
“extra info beyond the product of the reduced matrices”

e Quantum Relative Entropy: S(p1|p2) = Trpi(log p1 — log p2)
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