Quantum Cyber Security Lecture 9: Quantum Key Distribution III

Petros Wallden

University of Edinburgh

25th February 2025

- The Six-State BB84
- ennett '92 (B92)
- BBM92 (entanglement-based version of BB84)
- Quantum Money (Wiesner)

The Six-State Protocol

- Proposed by: Bechmann-Pasquinucci and Gisin (1999)
- Difference to BB84: Uses states from three orthogonal bases $\{X, Y, Z\}$ (thus six-states) rather than two bases (four-states).

Alice

- Sends string of qubits from: $\{|h\rangle, |v\rangle, |+\rangle, |-\rangle, |+_y\rangle, |-_y\rangle\}$ Note: $|\pm_y\rangle := \frac{1}{\sqrt{2}} (\pm |h\rangle + i |v\rangle)$
- For each (i) chooses randomly a pair $(a^{(i)}, x^{(i)})$
- $x^{(i)} \in \{0, 1, 2\}$ selects the basis (brown, blue or red)
- a⁽ⁱ⁾ selects state (first or second in corresponding basis)
- Stores string of pairs: $(a^{(1)}, x^{(1)}), (a^{(2)}, x^{(2)}), \cdots, (a^{(n)}, x^{(n)})$

Alice

- Sends string of qubits from: $\{|h\rangle, |v\rangle, |+\rangle, |-\rangle, |+_y\rangle, |-_y\rangle\}$ Note: $|\pm_y\rangle := \frac{1}{\sqrt{2}} (\pm |h\rangle + i |v\rangle)$
- For each (i) chooses randomly a pair $(a^{(i)}, x^{(i)})$
- $x^{(i)} \in \{0, 1, 2\}$ selects the basis (brown, blue or red)
- *a*^(*i*) selects state (first or second in corresponding basis)
- Stores string of pairs: $(a^{(1)}, x^{(1)}), (a^{(2)}, x^{(2)}), \cdots, (a^{(n)}, x^{(n)})$ Bob
- For each (i) chooses rand basis $y^{(i)} \in \{0,1,2\}$ and measures
- Obtains result $b^{(i)}$: $(b^{(1)}, y^{(1)}), (b^{(2)}, y^{(2)}), \cdots, (b^{(n)}, y^{(n)})$

Subsequent Public Communication

 Alice/Bob announce the bases x⁽ⁱ⁾, y⁽ⁱ⁾ ONLY They keep the positions where x⁽ⁱ⁾ = y⁽ⁱ⁾ raw key

The Six-State Protocol

- Alice/Bob announce the bases x⁽ⁱ⁾, y⁽ⁱ⁾ ONLY They keep the positions where x⁽ⁱ⁾ = y⁽ⁱ⁾ raw key
- If there is no eavesdropping $a^{(i)} = b^{(i)} \forall i$ of the raw key

- Alice/Bob announce the bases x⁽ⁱ⁾, y⁽ⁱ⁾ ONLY They keep the positions where x⁽ⁱ⁾ = y⁽ⁱ⁾ raw key
- If there is no eavesdropping $a^{(i)} = b^{(i)} \forall i$ of the raw key
- Parameter Estimation Phase: They choose small fraction of the raw key randomly and announce a⁽ⁱ⁾, b⁽ⁱ⁾ to estimate the QBER – Quantum-Bit Error Rate

- Alice/Bob announce the bases x⁽ⁱ⁾, y⁽ⁱ⁾ ONLY They keep the positions where x⁽ⁱ⁾ = y⁽ⁱ⁾ raw key
- If there is no eavesdropping $a^{(i)} = b^{(i)} \forall i$ of the raw key
- Parameter Estimation Phase: They choose small fraction of the raw key randomly and announce a⁽ⁱ⁾, b⁽ⁱ⁾ to estimate the QBER – Quantum-Bit Error Rate
- Information Reconciliation (IR) and Privacy Amplification (PA) exactly as in BB84

The Six-State Protocol

- Intuition for security: Same as BB84
- Key Rate: Let *D* be the (symmetric) quantum-bit error then

$$R_{\rm SSP} = \frac{1}{3} \left(1 + \frac{3D}{2} \log_2 \frac{D}{2} + \left(1 - \frac{3D}{2} \right) \log_2 \left(1 - \frac{3D}{2} \right) \right)$$

- Intuition for security: Same as BB84
- Key Rate: Let D be the (symmetric) quantum-bit error then

$$R_{\rm SSP} = \frac{1}{3} \left(1 + \frac{3D}{2} \log_2 \frac{D}{2} + \left(1 - \frac{3D}{2} \right) \log_2 \left(1 - \frac{3D}{2} \right) \right)$$

- Comparison with BB84:
 - **Positive:** Adversary less likely to guess correctly the basis (higher loss tolerance)
 - **Negative:** Fewer qubits in the raw key (only 1/3 cases $x^{(i)} = y^{(i)}$ an overall factor $\frac{1}{3}$ at the key rate)
 - Negative: Slightly harder to prepare one-of-six states

- Proposed by: Bennett (1992)
- Difference to BB84: Uses two non-orthogonal states only (instead of four).

Alice

- Sends string of qubits from: $\{|h\rangle, |-\rangle\}$
- For each (i) chooses randomly a bit $a^{(i)}$, where $a^{(i)} = 0 \rightarrow |h\rangle_i$ and $a^{(i)} = 1 \rightarrow |-\rangle_i$, and stores it

Alice

- Sends string of qubits from: $\{|h\rangle, |-\rangle\}$
- For each (i) chooses randomly a bit $a^{(i)}$, where $a^{(i)} = 0 \rightarrow |h\rangle_i$ and $a^{(i)} = 1 \rightarrow |-\rangle_i$, and stores it

Bob

• For each (*i*) chooses rand basis:

 $y^{(i)}=0 \ \rightarrow \{ \ket{h}, \ket{v} \}$; $y^{(i)}=1 \ \rightarrow \{ \ket{+}, \ket{-} \}$ and measures

- Obtains result $b^{(i)}$: $(b^{(1)}, y^{(1)}), (b^{(2)}, y^{(2)}), \cdots, (b^{(n)}, y^{(n)})$
- "Keeps" positions he obtained results $|v\rangle_i$, $|+\rangle_i$. Note that $b_i = 1$ for $|v\rangle_i$ and $b_i = 0$ for $|+\rangle_i$
- Example of Unambiguous State Discrimination (USD)

• Ideal case (no-noise, no eavesdropping) Bob obtains $|v\rangle_i$ only if Alice sent $|-\rangle_i$, so can unambiguously conclude that Alice chose $a^{(i)} = 1$ (and similarly for $a^{(i)} = 0$ happens when Bob obtained $|+\rangle_i$)

• Ideal case (no-noise, no eavesdropping) Bob obtains $|v\rangle_i$ only if Alice sent $|-\rangle_i$, so can unambiguously conclude that Alice chose $a^{(i)} = 1$ (and similarly for $a^{(i)} = 0$ happens when Bob obtained $|+\rangle_i$)

Subsequent Public Communication

• Bob announces the (*i*)'s he got $|v\rangle_i$, $|+\rangle_i$ (NOT the result) They keep only these positions for the **raw key**

• Ideal case (no-noise, no eavesdropping) Bob obtains $|v\rangle_i$ only if Alice sent $|-\rangle_i$, so can unambiguously conclude that Alice chose $a^{(i)} = 1$ (and similarly for $a^{(i)} = 0$ happens when Bob obtained $|+\rangle_i$)

- Bob announces the (*i*)'s he got $|v\rangle_i$, $|+\rangle_i$ (NOT the result) They keep only these positions for the **raw key**
- If there is no eavesdropping $a^{(i)} = b^{(i)} \forall i$ of the raw key

• Ideal case (no-noise, no eavesdropping) Bob obtains $|v\rangle_i$ only if Alice sent $|-\rangle_i$, so can unambiguously conclude that Alice chose $a^{(i)} = 1$ (and similarly for $a^{(i)} = 0$ happens when Bob obtained $|+\rangle_i$)

- Bob announces the (*i*)'s he got $|v\rangle_i$, $|+\rangle_i$ (NOT the result) They keep only these positions for the **raw key**
- If there is no eavesdropping $a^{(i)} = b^{(i)} \forall i$ of the raw key
- Parameter Estimation Phase: They choose small fraction of the raw key randomly and announce a⁽ⁱ⁾, b⁽ⁱ⁾ to estimate the QBER – Quantum-Bit Error Rate

• Ideal case (no-noise, no eavesdropping) Bob obtains $|v\rangle_i$ only if Alice sent $|-\rangle_i$, so can unambiguously conclude that Alice chose $a^{(i)} = 1$ (and similarly for $a^{(i)} = 0$ happens when Bob obtained $|+\rangle_i$)

- Bob announces the (*i*)'s he got $|v\rangle_i$, $|+\rangle_i$ (NOT the result) They keep only these positions for the **raw key**
- If there is no eavesdropping $a^{(i)} = b^{(i)} \forall i$ of the raw key
- Parameter Estimation Phase: They choose small fraction of the raw key randomly and announce a⁽ⁱ⁾, b⁽ⁱ⁾ to estimate the QBER – Quantum-Bit Error Rate
- Information Reconciliation (IR) and Privacy Amplification (PA) exactly as in BB84

 Intuition for security: Eve could mimic Bob (perform USD), but the positions she gets unambiguous outcome would differ from Bob's

Post-selecting on positions that Bob got unambiguous outcome gives **advantage to Bob**.

Estimate the errors in each basis, and complicated proof to bound the from these the error rate exists

 Intuition for security: Eve could mimic Bob (perform USD), but the positions she gets unambiguous outcome would differ from Bob's

Post-selecting on positions that Bob got unambiguous outcome gives **advantage to Bob**.

Estimate the errors in each basis, and complicated proof to bound the from these the error rate exists

• Key Rate: The expression is complicated, but much lower than BB84 (e.g. for depolarising channels it gives $\sim 3.34\%$ compared to $\sim 16.5\%$)

- Intuition for security: Eve could mimic Bob (perform USD), but the positions she gets unambiguous outcome would differ from Bob's
 - **Post-selecting** on positions that Bob got unambiguous outcome gives **advantage to Bob**.
 - **Estimate the errors in each basis**, and complicated proof to bound the from these the error rate exists
- Key Rate: The expression is complicated, but much lower than BB84 (e.g. for depolarising channels it gives $\sim 3.34\%$ compared to $\sim 16.5\%$)
- Comparison with BB84:
 - Negative: Lower noise tolerance and rate
 - **Positive:** Simpler implementations (improved versions with better tolerance and also entanglement-based protocols, exits)

- Proposed by: Bennett, Brassard, Mermin (1992)
- Difference to BB84: Uses entanglement. Alice/Bob share (max) entangled pairs, and perform measurements (also known as entanglement-based BB84)

Any trusted or untrusted party (even Eve)

• Distributes to Alice and Bob *n* copies of the state:

$$|\Phi^+
angle^{(i)}=rac{1}{\sqrt{2}}(|hh
angle+|vv
angle)=rac{1}{\sqrt{2}}(|++
angle+|--
angle)$$

Any trusted or untrusted party (even Eve)

• Distributes to Alice and Bob *n* copies of the state:

$$|\Phi^{+}\rangle^{(i)} = \frac{1}{\sqrt{2}}(|hh\rangle + |vv\rangle) = \frac{1}{\sqrt{2}}(|++\rangle + |--\rangle)$$

Alice

- Measures in random basis $x^{(i)} = 0 \rightarrow \{|h\rangle, |v\rangle\}; x^{(i)} = 1 \rightarrow \{|+\rangle, |-\rangle\}$
- Obtains result $a^{(i)} = 0 \rightarrow \{|h\rangle \text{ or } |+\rangle\}$; $a^{(i)} = 1 \rightarrow \{|v\rangle \text{ or } |-\rangle\}$
- Stores string of pairs: $(a^{(1)}, x^{(1)}), (a^{(2)}, x^{(2)}), \cdots, (a^{(n)}, x^{(n)})$

Any trusted or untrusted party (even Eve)

• Distributes to Alice and Bob *n* copies of the state:

$$|\Phi^{+}\rangle^{(i)} = \frac{1}{\sqrt{2}}(|hh\rangle + |vv\rangle) = \frac{1}{\sqrt{2}}(|++\rangle + |--\rangle)$$

Alice

- Measures in random basis $x^{(i)} = 0 \rightarrow \{ |h\rangle, |v\rangle \}; x^{(i)} = 1 \rightarrow \{ |+\rangle, |-\rangle \}$
- Obtains result $a^{(i)} = 0 \rightarrow \{|h\rangle \text{ or } |+\rangle\}$; $a^{(i)} = 1 \rightarrow \{|v\rangle \text{ or } |-\rangle\}$
- Stores string of pairs: $(a^{(1)}, x^{(1)}), (a^{(2)}, x^{(2)}), \cdots, (a^{(n)}, x^{(n)})$

Bob

- Measures in random basis $y^{(i)} = 0 \rightarrow \{ |h\rangle, |v\rangle \}; y^{(i)} = 1 \rightarrow \{ |+\rangle, |-\rangle \}$
- Obtains result $b^{(i)} = 0 \rightarrow \{|h\rangle \text{ or } |+\rangle\}$; $b^{(i)} = 1 \rightarrow \{|v\rangle \text{ or } |-\rangle\}$
- Stores string of pairs: $(b^{(1)}, y^{(1)}), (b^{(2)}, y^{(2)}), \dots, (b^{(n)}, y^{(n)})$

- Alice/Bob announce the bases $x^{(i)}, y^{(i)}$ and they keep positions where $x^{(i)} = y^{(i)}$ (raw key)
- If there was no eavesdropping (state shared was indeed the $|\Phi^+\rangle$) then $a^{(i)} = b^{(i)} \forall i$ of the raw key

- Alice/Bob announce the bases $x^{(i)}, y^{(i)}$ and they keep positions where $x^{(i)} = y^{(i)}$ (raw key)
- If there was no eavesdropping (state shared was indeed the $|\Phi^+\rangle$) then $a^{(i)} = b^{(i)} \forall i$ of the raw key

Parameter Estimation

• They choose fraction of the raw key, announce $a^{(i)}, b^{(i)}$ and estimate the QBER

- Alice/Bob announce the bases $x^{(i)}, y^{(i)}$ and they keep positions where $x^{(i)} = y^{(i)}$ (raw key)
- If there was no eavesdropping (state shared was indeed the $|\Phi^+\rangle$) then $a^{(i)} = b^{(i)} \forall i$ of the raw key

Parameter Estimation

- They choose fraction of the raw key, announce $a^{(i)}, b^{(i)}$ and estimate the QBER
- Aborts if QBER higher than a threshold

- Alice/Bob announce the bases $x^{(i)}, y^{(i)}$ and they keep positions where $x^{(i)} = y^{(i)}$ (raw key)
- If there was no eavesdropping (state shared was indeed the $|\Phi^+\rangle$) then $a^{(i)} = b^{(i)} \forall i$ of the raw key

Parameter Estimation

- They choose fraction of the raw key, announce $a^{(i)}, b^{(i)}$ and estimate the QBER
- Aborts if QBER higher than a threshold
- Classical post-processing of Information Reconciliation (IR) and Privacy Amplification (PA) follow as in regular BB84

 Intuition for security: From QBER can bound the distance of the real initial state to the ideal |Φ⁺⟩, which quantifies the information eavesdropper can get.

From adversary's view is indistinguishable from BB84! (This version is used to provide modern security proofs of BB84)

 Intuition for security: From QBER can bound the distance of the real initial state to the ideal |Φ⁺⟩, which quantifies the information eavesdropper can get.

From adversary's view is indistinguishable from BB84! (This version is used to provide modern security proofs of BB84)

- Key Rate: Identical with the BB84
- Comparison with BB84:
 - **Negative:** It is harder to prepare the entangled states and share them, than prepare-and-send single qubits.
 - Positive: It makes security proof clearer.
 - **Positive:** It allows for a third (untrusted) party to prepare the states, and both parties can do with only measuring devices.

Quantum Money: Idea

Money

- Each note has serial number
- Notes can be verified for authenticity
- Only the Bank can issue new notes
- Cannot "copy" convincingly notes

Hard to guarantee!

Quantum Money: Idea

Money

- Each note has serial number
- Notes can be verified for authenticity
- Only the Bank can issue new notes
- Cannot "copy" convincingly notes

Hard to guarantee!

Quantum Money

- Unknown quantum states cannot be copied even in principle
- Use quantum unclonability!
- Idea: notes that have quantum states on them

Quantum Money: Wiesner's protocol

First q-crypto paper (1969, publ. 1983) by Stephen Wiesner

- ullet Notes have serial number \$ and a quantum state $|\Psi_\$
 angle$
- The quantum state consists of strings of BB84 states:

$$\begin{split} |\Psi_{\$}\rangle &= \otimes_{i=1}^{n} |\psi_{x_{i},a_{i}}\rangle \\ |\psi_{00}\rangle &= |h\rangle ; \ |\psi_{01}\rangle = |v\rangle ; \ |\psi_{10}\rangle = |+\rangle ; \ |\psi_{11}\rangle = |-\rangle \end{split}$$

The Bank stores in a database \$ and corresponding strings (x1, a1, x2, a2, ··· xn, an)\$

Quantum Money: Wiesner's protocol

First q-crypto paper (1969, publ. 1983) by Stephen Wiesner

- ullet Notes have serial number \$ and a quantum state $|\Psi_{\$}
 angle$
- The quantum state consists of strings of BB84 states:

$$\begin{split} |\Psi_{\$}\rangle &= \otimes_{i=1}^{n} |\psi_{x_{i},a_{i}}\rangle \\ |\psi_{00}\rangle &= |h\rangle ; \ |\psi_{01}\rangle = |v\rangle ; \ |\psi_{10}\rangle = |+\rangle ; \ |\psi_{11}\rangle = |-\rangle \end{split}$$

The Bank stores in a database \$ and corresponding strings (x1, a1, x2, a2, ··· xn, an)\$

To verify

- Bank checks \$, measures each qubit in (x_1, x_2, \cdots, x_n) bases
- Original note gives (a_1, \cdots, a_n) and remains unperturbed
- Tampered or fraudulent fails test (gives other outcomes)
- Adversaries cannot copy perfectly (will be detected)

Quantum Money: Security and Limitations

Security

- To randomly guess *n* states without using the note: $\left(\frac{1}{4}\right)^n$
- Measure-and-prepare: Measure in $\{|0\rangle\,,|1\rangle\}$ basis. Prepare state and set comp. basis sting

Probability to pass test (check!) $\left(\frac{3}{4}\right)^n$

Quantum Money: Security and Limitations

Security

- To randomly guess *n* states without using the note: $\left(\frac{1}{4}\right)^n$
- Measure-and-prepare: Measure in $\{ |0\rangle\,, |1\rangle \}$ basis. Prepare state and set comp. basis sting

Probability to pass test (check!) $\left(\frac{3}{4}\right)^n$

Limitations

- Hard to store, likely to have errors even in honest runs (robust versions explored)
- Only Bank can verify note

(research for publicly-verifiable quantum money)