
Assignment
Quantum Cyber Security

Due: 12:00 Friday 21 March, 2025

This assignment counts for 25% of the course and you must answer all three
questions. The weights of each question and sub-question are given (number of
marks), but note that this is not indicative of how difficult the corresponding

sub-question is. Note also that notation is set individually in each problem, and
the same letters may have different meanings in each problem.

Important message:

Please remember the good scholarly practice requirements of the University
regarding work for credit. You can find guidance at the School page

https://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct.
This page also has links to the relevant University pages.

Note: Question 1 and Question 2 are worth 10 marks each, while Question 3 is worth 5 marks
(see each subquestion for the exact breakdown).

1. Consider the six state QKD protocol given in the lectures, where Alice selects states from
the set {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |+y⟩ , |−y⟩} uniformly at random and sends them to Bob.
Here, |±⟩ = 1√

2
(|0⟩ ± |1⟩) and |±y⟩ = 1√

2
(|0⟩ ± i |1⟩).

Suppose that, before Bob receives each state, a malicious party Eve applies an S operator
with probability q. The corresponding quantum channel Φq that Eve applies acts on a
density matrix ρ as

Φq(ρ) = (1− q)ρ+ qSρS†,

where S is the linear transformation defined by S = |0⟩⟨0|+ i |1⟩⟨1| (and make sure you take
the complex conjugate of the operator when needed in applying the channel).

(a) Show that the density matrices of the states Bob receives for each of the six possible
states sent by Alice are given by:

|0⟩ 7→ |0⟩⟨0| ,
|1⟩ 7→ |1⟩⟨1| ,
|+⟩ 7→ (1− q) |+⟩⟨+|+ q |+y⟩⟨+y| ,
|−⟩ 7→ (1− q) |−⟩⟨−|+ q |−y⟩⟨−y| ,
|+y⟩ 7→ (1− q) |+y⟩⟨+y|+ q |−⟩⟨−| ,
|−y⟩ 7→ (1− q) |−y⟩⟨−y|+ q |+⟩⟨+| ,
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where |±y⟩ = 1√
2
(|0⟩ ± i |1⟩) are the eigenvectors of the Pauli-Y operator. [3 marks]

Solution: Bob receives each state after Eve has applied the bit flip channel with prob-
ability q. Therefore,

|0⟩ 7→ Φq(|0⟩⟨0|) = (1− q) |0⟩⟨0|+ q |0⟩⟨0| = |0⟩⟨0| ,
|1⟩ 7→ Φq(|1⟩⟨1|) = (1− q) |1⟩⟨1|+ q(|0⟩⟨0|+ i |1⟩⟨1|) |1⟩⟨1| (|0⟩⟨0| − i |1⟩⟨1|) = |1⟩⟨1| ,
.

For the remainder, let’s perform a few preliminary calculations:
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The results immediately follow these calculations.

(b) The raw key consists of rounds where Bob measures in the same basis Alice prepared
her state in. Calculate the average error rates eb, ep, and ey for the bases {|0⟩ , |1⟩},
{|+⟩ , |−⟩}, and {|+y⟩ , |−y⟩}, respectively. [4 marks]
Solution: The projectors for a measurement in the computational basis are P0 = |0⟩⟨0|
and P1 = |1⟩⟨1|. The probability that Bob measures the state to be |1⟩ but Alice sent
|0⟩ is

tr[Φq(|0⟩⟨0|) |1⟩⟨1|] = ⟨1|Φq(|0⟩⟨0|) |1⟩
= ⟨1| |0⟩⟨0| |1⟩
= 0

Similarly, the probability that Bob measures the state to be |0⟩ but Alice sent |1⟩ is

tr[Φq(|1⟩⟨1|) |0⟩⟨0|] = ⟨0|Φq(|1⟩⟨1|) |0⟩
= ⟨0| |1⟩⟨1| |0⟩
= 0
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Therefore, eb = 0.
The projectors for a measurement in the basis {|+⟩ , |−⟩} are P+ = |+⟩⟨+| and P− =
|−⟩⟨−|. The probability that Bob measures the state to be |−⟩ but Alice sent |+⟩ is

tr[Φq(|+⟩⟨+|) |−⟩⟨−|] = ⟨−|Φq(|+⟩⟨+|) |−⟩
= ⟨−| [(1− q) |+⟩⟨+|+ q |+y⟩⟨+y|] |−⟩
= q ⟨−| |+y⟩⟨+y| |−⟩

=
q

2

Similarly, the probability that Bob measures the state to be |+⟩ but Alice sent |−⟩ is

tr[Φq(|−⟩⟨−|) |+⟩⟨+|] = ⟨+|Φq(|−⟩⟨−|) |+⟩
= ⟨+| [(1− q) |−⟩⟨−|+ q |−y⟩⟨−y|] |+⟩
= ⟨+| |−y⟩⟨−y| |+⟩

=
q

2

Therefore, ep =
q/2+q/2

2 = q
2 .

The projectors for a measurement in the basis {|+y⟩ , |−y⟩} are P+y = |+y⟩⟨+y| and
P− = |−y⟩⟨−y|. The probability that Bob measures the state to be |−y⟩ but Alice sent
|+y⟩ is

tr[Φq(|+y⟩⟨+y|) |−y⟩⟨−y|] = ⟨−y|Φq(|+y⟩⟨+y|) |−y⟩
= ⟨−y| [(1− q) |+y⟩⟨+y|+ q |−⟩⟨−|] |−y⟩
= q ⟨−y| |−⟩⟨−| |−y⟩

=
q

2

Similarly, the probability that Bob measures the state to be |+y⟩ but Alice sent |−y⟩ is

tr[Φq(|−y⟩⟨−y|) |+y⟩⟨+y|] = ⟨+y|Φq(|−y⟩⟨−y|) |+y⟩
= ⟨+y| [(1− q) |−y⟩⟨−y|+ q |+⟩⟨+|] |+y⟩
= ⟨+y| |+⟩⟨+| |+y⟩

=
q

2

Therefore, ey = q/2+q/2
2 = q

2 .

(c) Consider now a different scenario where we have a symmetric channel where all errors
(eb, ep, ey) are the same and equal to the average of your answers to question 1(b),
D = 1

3(eb + ep + ey) = e′b = e′p = e′y.
Determine the secret key rate Rsix-state for this symmetric channel, in the asymp-
totic limit (i.e. no finite-size effects), with perfect detection and ideal classical post-
processing. For which values of q is it possible to distil a secret key? [3 marks]
Solution:
If the errors in different bases are equal and equal to the QBER: (eb = ep = ey = D),
we have:

RSSP =
1

3

(
1 +

3D

2
log2

D

2
+

(
1− 3D

2

)
log2

(
1− 3D

2

))
.
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Since D = q/3, we get:

RSSP =
1

3

(
1 +

q

2
log2

(q
6

)
+
(
1− q

2

)
log2

(
1− q

2

))
. (1)

To get the values of q for which it is possible to distil the secret key, we solve for the
roots of this expression:

1 +
q

2
log2

(q
6

)
+
(
1− q

2

)
log2

(
1− q

2

)
= 0,

which has approximate solution q ≈ 0.379. Since this function goes to 1 as q → 0+,
this is positive for values smaller than this, so it is possible to distil it q < 0.379.

2. (a) Evaluate the binary entropy h(p) for Bernoulli processes with p = 1/8 and p = 1/16. [2 marks]
Solution:
The binary entropy is given by

h(p) = −p log2 p− (1− p) log2(1− p).

For p = 1/8, we have

h(1/8) = −1

8
log2

1

8
− 7

8
log2

7

8
≈ 0.5436.

For p = 1/16, we have

h(1/16) = − 1

16
log2

1

16
− 15

16
log2

15

16
≈ 0.3373.

(b) Consider the mixed state ρ for an ensemble in which, with probability 1/2 each, the
state |0⟩ or the state |+⟩ = 1√

2
(|0⟩+ |1⟩) occurs. Calculate the von Neumann entropy.

[2 marks]
Solution: The von Neumann entropy of the mixed state ρ is given by

S(ρ) = − tr(ρ log2 ρ).

The density matrix for the mixed state is

ρ =
1

2

(
1 0
0 0

)
+

1

4

(
1 1
1 1

)
=

(
3/4 1/4
1/4 1/4

)
The eigenvalues are 1/2 ±

√
2/4, and the larger of the two is ≈ 0.8535. We onbtain

our result by noting that the von Neumann entropy is equal the binary entropy of the
eigenvalue(s) of the density matrix S(ρ) = h(λ) and that the binary entropy h(0.8535)
is approximately 0.6.
The von Neumann entropy is

S(ρ) = − tr

(
1

2

(
1 1
1 1

)
log2

1

2

(
1 1
1 1

))
= − log2

1

2
= 1.

(c) Consider a quantum channel that does nothing with probability p and applies a gate
B (defined below) with probability 1 − p. This quantum channel is described by the
Kraus operators

E0 =
√
pI, E1 =

√
1− pB,
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where B is defined by the matrix

B =

(√
3
2 −1

2
1
2

√
3
2

)
. (2)

Evaluate the action of the quantum channel with p = 1/8 on the state ρ = |−⟩⟨−|,
where |−⟩ = (|0⟩ − |1⟩)/

√
2. [3 marks]

Solution: We have

E(ρ) = E0ρE
†
0 + E1ρE

†
1

= pρ+ (1− p)BρB†

=
1

8
|−⟩⟨−|+ 7

8
B |−⟩⟨−|B†

=
1

8
|−⟩⟨−|+ 7

16

(√
3
2 −1

2
1
2

√
3
2

)(
1 −1
−1 1

)(√
3
2

1
2

−1
2

√
3
2

)

=
1

16

(
1 −1
−1 1

)
+

7

32

(
2 +

√
3 −1

−1 2−
√
3

)
=

1

32

(
16 + 7

√
3 −9

−9 16− 7
√
3

)

(d) Charlie is given one of two possible states

ρ = |1⟩⟨1| or σ = |+y⟩⟨+y| .

Evaluate the fidelity F (ρ, σ) of the two states. Using the fidelity, what can we say
about the maximum probability with which Charlie can correctly identify the state? [3 marks]
Solution: The fidelity between the two pure states |1⟩ and |+y⟩ is given by

F (ρ, σ) = |⟨1|+y⟩|2

= |⟨1| 1√
2
(|0⟩+ i |1⟩)⟩|2

=

∣∣∣∣ 1√
2
(⟨1|0⟩+ i⟨1|1⟩)

∣∣∣∣2
=

∣∣∣∣ 1√
2
(0 + i · 1)

∣∣∣∣2
=

∣∣∣∣ i√
2

∣∣∣∣2
=

1

2
.

The maximum probability with which Charlie can identify the correct state is given by

pmax
guess =

1

2
(1 +D(ρ, σ)),

where D(ρ, σ) is the trace distance between ρ and σ. The trace distance is bounded
above in terms of the fidelity as

D(ρ, σ) ≤
√

1− F (ρ, σ) =

√
1− 1

2
=

1√
2
,
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and so pmax
guess ≤ (2 +

√
2)/4 ≈ 0.854. In fact, since σ = |+⟩⟨+| is also a pure state, the

upper bound on the trace distance is in fact an equality, leading to pmax
guess = (2+

√
2)/4.

3. In the following question, the sum operation will be done modulo 2, i.e. 0⊕ 1 = 1⊕ 0 = 1
and 1⊕ 1 = 0⊕ 0 = 0.

Alice and Bob play a non-local game, where they are not allowed to communicate during
each round of the game (but are allowed to agree on a strategy before the game).

Alice and Bob are to independently fill in a 2× 2 grid with zeroes and ones. In each round,
Alice is assigned a row, and Bob is assigned a column. Suppose Alice is assigned row i, and
Bob is assigned row j. They must follow the following rules:

• Rule 1. Each cell must be assigned a value from the set {0, 1}.
• Rule 2. The sum of Alice’s entries must be αi ∈ {0, 1} (modulo 2).

• Rule 3. The sum of Bob’s entries must be βj ∈ {0, 1} (modulo 2).

They win if they both enter the same value into the cell shared by their row and column,
and they lose otherwise (see Figure 1 below). Neither player has knowledge of which row or
column the other player has been assigned.

1

111

1

10 0

Figure 1: An example of the game, with β2 = 1, α1 = α2 = β1 = 0. In this round, Alice is assigned the second
row, and Bob is assigned the first column. The values in red indicate the answer Alice puts down, and the values
in black indicate the answer Bob puts down. In the left scenario, Alice and Bob win because they have put the
same value on their shared cell, and in the right, they lose because they have put different values on their shared
cell. You can also check that Rule 2 and Rule 3 are also satisfied.

(a) Show that if α1 ⊕ α2 ⊕ β1 ⊕ β2 = 0, there exists a classical strategy that allows Alice
and Bob to win the game with probability 1. [1 mark]

Solution: The first observation is that one can fill a (unique) grid of entries, that
is compatible with the conditions 2 and 3 (i.e. the requirements of both Alice and
Bob). We will do this by construction, but first we can see that the sum of all entries
is α1 + α2 which is the sum of the two rows, but it should also be equal to β1 + β2
which is the sum of the two columns, and thus these two are equal. The condition that
α1 ⊕ α2 ⊕ β1 ⊕ β2 = 0 is compatible with this.
Let aij denote the entry in row i and column j of the grid. The rules Alice and Bob
must satisfy are given by:

a11 ⊕ a12 = α1 (3)
a21 ⊕ a22 = α2 (4)
a11 ⊕ a21 = β1 (5)
a12 ⊕ a22 = β2 (6)

Assume α1⊕α2⊕β1⊕β2 = 0. We show that the system of linear equations is consistent,
meaning it is possible to fill the four by four grid with zeroes and ones in a way that
satisfies the eqs. (3) to (6).
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Let a11 = t ∈ {0, 1}. Then the choices

a12 = α1 ⊕ t, (7)
a21 = β1 ⊕ t, (8)
a22 = α2 ⊕ β1 ⊕ t, (9)

satisfy eqs. (3) to (6). Indeed:

t⊕ (α1 ⊕ t) = α1,

and

a21 ⊕ a22

= (β1 ⊕ t)⊕ (α2 ⊕ β1 ⊕ t),

= α2 ⊕ (2t)⊕ (2β1),

= α2.

For eq. (5), we have

a11 ⊕ a21

= t⊕ β1 ⊕ t

= β1.

Finally,

a12 ⊕ a22

= (α1 ⊕ t)⊕ (α2 ⊕ β1 ⊕ t),

= α1 ⊕ α2 ⊕ β1,

= β1 ⊕ β2 ⊕ β1,

= β2.

Where we used that α1 ⊕ α2 = β1 ⊕ β2, which follows from the first observation we
made (that the sum of the columns should be equal to the sum of the rows if Alice and
Bob use the same matrix/grid).

(b) Suppose that α1 ⊕α2 ⊕ β1 ⊕ β2 = 1. Find the best classical strategy for Alice and Bob
and the probability they win in that case. [2 marks]
Solution:
This question has two parts. First we need to show that there is no classical strategy
that wins with certainty. Then one needs to give a classical deterministic strategy
that can win with the maximum probability of 3/4 and explain that this is optimal
classically.
Any classical deterministic strategy relies on a pre-agreed set of questions/answers.
This corresponds to a 2 × 2 matrix for each player. To win always, they need to use
the same grid/matrix (so that the common square always gets the same answer). We
note that the sum of the elements of the agreed matrix is equal to the sum of the two
rows:

∑
i,j aij = α1 ⊕ α2. But we also note that the sum of the elements of the agreed
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matrix is equal to the sum of the two columns:
∑

i,j aij = β1 ⊕ β2. However, by the
assumption of this sub-question α1⊕α2 ̸= β1⊕β2, thus a perfect deterministic strategy
does not exist.
The next best that they can have is that Alice and Bob have a strategy that agrees in
3 of the 4 inputs, i.e. they use the same matrix for 3 squares of the grid, while they
disagree in the fourth one. If such strategy exists (which we show below), this wins
with probability of success 3/4. Note, that the same bound applies for non-deterministic
strategies (that may not have fixed set of answers per player), but is harder to prove
and required in this question.
Now we show a way to saturate this bound:
For example, let a11 = 0, then a12 = α1, and a21 = β1. Then, the last square cannot
be filled consistently. Alice needs to have sum of row 2 being α2, thus she needs
a22 = α2 ⊕ β1. Bob needs to have sum of column 2 being β2 thus needs b22 = β2 ⊕ α1.
But a22 ̸= b22, since a22 ⊕ b22 = α2 ⊕ β1 ⊕ β2 ⊕ α1 = 1 (according to the constraint of
this subquestion).
In other words following the below strategy (where Alice replies the first matrix and Bob
replies the second matrix) wins with probability 3/4 (i.e. wins unless the challenger asks
Alice’s second row and Bob’s second column, in which case they lose) and is optimal.(

0 α1

β1 α2 ⊕ β1

)
;

(
0 α1

β1 β2 ⊕ α1

)
(c) Suppose now that β2 = 1 and α1 = α1 = β1 = 0. Suppose Alice and Bob share the

entangled state: ∣∣Φ+
〉
AB

=
1√
2
(|00⟩AB + |11⟩AB), (10)

where the first qubit is in Alice’s lab and the second in Bob’s..

Let A0 = Z,A1 = X,B0 =
1√
2
(X+Z), and B1 =

1√
2
(X−Z). Alice and Bob measure

these observables according to the following figure:

A0 A0

A1 A1

B0 −B1

B0 B1

Figure 2: The quantum strategy for Alice and Bob. Alice measures the operators depicted on the left grid; Bob
measures the operators depicted on the right grid.

Alice and Bob write down 0 if the measurement outcome is +1 and they write down 1
if the measurement outcome is −1.
For example, if Alice is given row 2, and Bob is given column 1, Alice measures {A1, A1},
and Bob measures {B0, B0}. If upon measuring A0, Alice obtains the outcome −1, and
if Bob obtains the outcome −1 upon measuring B0, then we are in the scenario depicted
by the left-hand figure in Figure 1.
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• Explain why the constraints concerning the modulo-2 sums of the rows and columns
are always satisfied.

• Find the probability of them winning using this quantum strategy.
Hint : You can use the fact that the win probability for this scenario is equal to
1/2 + S/8 where S is the CHSH quantity given in the lectures (called β in the
lecture).

[2 marks]
Solution:
After measuring Ai, for i ∈ {0, 1}, Alice will obtain outcome ±1. Let a = 0 if she
obtains +1 and a = 1 if she obtains −1. Similarly, after measuring Bj , for j ∈ {0, 1},
Bob will obtain outcome ±1. Let b = 0 if he obtains +1, and b = 1 if he obtains −1.
There are two cases. Suppose Alice is assigned row i and Bob is assigned column j,
and (i, j) ̸= (2, 1). Then, the sum of the entries in Alice’s row is a ⊕ a = 0, and the
sum of the entries in Bob’s column is b⊕ b = 0.
Suppose Alice is assigned row 2 and Bob is assigned column 1. Then, the sum of the
entries in Alice’s row is a ⊕ a = 0, and the sum of the entries in Bob’s column is
b⊕ (1− b) = 1. These satisfy the constraints.
Now, let’s consider the winning condition: Alice and Bob win if their shared cell has
the same value. Let x ≡ i − 1, y ≡ j mod 2. If (x, y) ̸= (1, 1), then Alice and Bob
win if and only a ≡ b mod 2. If (x, y) = (1, 1), then Alice and Bob win if and only if
a ≡ b+ 1 mod 2. This is precisely the winning condition of the CHSH game. and the

maximum winning probability is given by
2 +

√
2

4
≊ 0.85.

Note that since the probability of winning given this strategy is larger than the optimal
classical strategy, quantumly we can achieve higher probabilities of winning.
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