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Problem 1: Quantum states

(a) Consider the quantum states |v1⟩ = 1
2

(
1 + i
1− i

)
, |v2⟩ = 1

2

(
1− i
1 + i

)
, and |v3⟩ = 1√

2

(
1
1

)
.

i. Write ⟨v1| and ⟨v2| in vector notation.

Solution. For any state vector represented by a column vector, the corresponding
element of the dual space is represented by its conjugate transpose. In this case,

⟨v1| =
1

2

(
1− i 1 + i

)
, ⟨v2| =

1

2

(
1 + i 1− i

)
.

ii. Show that both |v1⟩ and |v2⟩ are normalised, i.e.
√
⟨v1|v1⟩ =

√
⟨v2|v2⟩ = 1.

Solution. For |v1⟩,

⟨v1|v1⟩ =
1

4

(
1− i 1 + i

)(1 + i
1− i

)
=

1

4
[(1− i)(1 + i) + (1 + i)(1− i)]

=
1

4
(2 + 2) = 1.

Similarly, for |v2⟩,

⟨v2|v2⟩ =
1

4

(
1 + i 1− i

)(1− i
1 + i

)
=

1

4
[(1 + i)(1− i) + (1− i)(1 + i)]

=
1

4
(2 + 2) = 1.

iii. Calculate the inner products ⟨v1|v2⟩ and ⟨v3|v1⟩. Are |v1⟩ and |v2⟩ orthogonal?
Solution. For the first inner product,

⟨v1|v2⟩ =
1

4

(
1− i 1 + i

)(1− i
1 + i

)
=

1

4
[(1− i)(1− i) + (1 + i)(1 + i)]

=
1

4
[(1− 2i− 1) + (1 + 2i− 1)] = 0.

For the second inner product,

⟨v3|v1⟩ =
1

2
√
2

(
1 1

)(1 + i
1− i

)
=

1

2
√
2
(1 + i+ 1− i) =

1√
2
.

iv. Show that the set {|v1⟩ , |v2⟩} satisfies all the conditions of an orthonormal basis
of H = C2.
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Solution. The properties which must be satisfied are the following.

• The vectors must be orthogonal, which was already shown.

• The vectors must be normalised to unit length, which was already shown.

• The number of vectors must be the same as the dimension of the Hilbert
space, which is true since there are 2 vectors and the Hilbert space is C2.

v. Write |v3⟩ as a linear combination of |v1⟩ and |v2⟩.
Solution. We want to find constants a, b ∈ C such that |v3⟩ = a |v1⟩ + b |v2⟩.
Writing this in vector notation gives

1√
2

(
1
1

)
=

1

2

(
a+ b+ (a− b)i
a+ b− (a− b)i

)
,

and so we must have a = b = 1√
2
.

(b) A general state can be represented by the superposition

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ ,

where θ ∈ [0, π], φ ∈ [0, 2π), and {|0⟩ , |1⟩} is the computational basis.

i. Prove that |ψ⟩ is normalised.

Solution. We must show that ∥|ψ⟩∥ = 1, and since ∥|ψ⟩∥ =
√
⟨ψ|ψ⟩, this is

equivalent to showing ⟨ψ|ψ⟩ = 1. Using the trigonometric identity cos2 x +
sin2 x = 1 for all x, this is

⟨ψ|ψ⟩ =
(
cos θ

2
e−iφ sin θ

2

)( cos θ
2

eiφ sin θ
2

)
= cos2

θ

2
+ sin2 θ

2
= 1.

ii. Find the values of θ and φ such that

A. |ψ⟩ = |v3⟩,
Solution. First notice that by equating the coefficients of |0⟩, we must have
1/
√
2 = cos(θ/2), and thus θ = π/2 since θ ∈ [0, π] is required. To find φ,

equating the coefficients of |1⟩ we find

1√
2
= eiφ sin

θ

2
=
eiφ√
2

and therefore φ = 0, since we require φ ∈ [0, 2π).

B. |ψ⟩ = e−iπ/4 |v1⟩.
Solution. First we can evaluate

e−iπ/4 |v1⟩ =
1

2
e−iπ/4

(
1 + i
1− i

)
=

1

2
e−iπ/4

(
1 + i
1− i

)
=

√
2

2
e−iπ/4

(
eiπ/4

e−iπ/4

)
=

1√
2

(
1
−i

)
.
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Thus, by equating 1/
√
2 = cos(θ/2), we see that θ = π/2. Now by equating

the other coefficients, we must have

−i√
2
= eiφ sin

θ

2
=
eiφ√
2

and therefore φ = 3π/2. Note that since normalised state vectors are
considered to be equivalent up to arbitrary multiplication by a unit complex
number (also called a “phase factor”), the state |ψ⟩ found with θ = π/2
and φ = 3π/2 in fact also represents the state |v1⟩.

Problem 2: Quantum operations

Some important linear operators in quantum computing are the three Pauli operators

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

(a) Prove the following properties of the Pauli operators.

i. They are self-adjoint, i.e. X = X†, Y = Y †, and Z = Z†.

Solution. In matrix notation, the adjoint of an operator O acts as the conjugate
transpose O† = (O∗)T. Thus, we see

X† =

(
0∗ 1∗

1∗ 0∗

)
=

(
0 1
1 0

)
= X,

Y † =

(
0∗ i∗

(−i)∗ 0∗

)
=

(
0 −i
i 0

)
= Y,

Z† =

(
1∗ 0∗

0∗ (−1)∗

)
=

(
1 0
0 −1

)
= Z.

ii. They are self-inverse, i.e. X2 = I, Y 2 = I, and Z2 = I, where I is the identity
operator.

Solution. By direct calculation,

X2 =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
= I,

Y 2 =

(
0 −i
i 0

)(
0 −i
i 0

)
=

(
1 0
0 1

)
= I,

Z2 =

(
1 0
0 −1

)(
1 0
0 −1

)
=

(
1 0
0 1

)
= I.

iii. The operators Y and Z anticommute, i.e. Y Z = −ZY .

3



Petros Wallden
Sean Thrasher
Laura Lewis Tutorial 1: Solutions

QCS 2024–25
January 31, 2025

Solution. We evaluate the anticommutator denoted using the notation {A,B} ≡
AB + BA. That Y Z = −ZY is clearly equivalent to {Y, Z} = 0. By direct
calculation,

Y Z + ZY =

(
0 −i
i 0

)(
1 0
0 −1

)
+

(
1 0
0 −1

)(
0 −i
i 0

)
=

(
0 i
i 0

)
+

(
0 −i
−i 0

)
=

(
0 0
0 0

)
= 0.

(b) Consider a linear operator defined by

U ≡ Y + Z√
2

.

Using properties from the previous part, show that U is unitary, i.e. U †U = UU † = I.

Solution. Since we already showed Y = Y † and Z = Z†, we have

U † =
Y † + Z†

√
2

=
Y + Z√

2
= U.

Therefore, U †U = UU † = U2 and so showing that U is unitary (that U †U = UU † = I)
is equivalent to showing U2 = I. Finally, we can now use the properties Y 2 = I,
Z2 = I, and Y Z = −ZY showed previously to see

U2 =

(
Y + Z√

2

)2

=
Y 2 + Y Z + ZY + Z2

2
=
I − ZY + ZY + I

2
= I.

(c) Calculate the action of the operator U on the vectors

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
, |+i⟩ = 1√

2

(
1
i

)
, |−i⟩ = −1√

2

(
i
1

)
.

Solution. Writing U in matrix notation,

U =
Y + Z√

2
=

1√
2

(
1 −i
i −1

)
.

Applying this to each of the given column vectors,

U |0⟩ = 1√
2

(
1 −i
i −1

)(
1
0

)
=

1√
2

(
1
i

)
= |+i⟩ ,

U |1⟩ = 1√
2

(
1 −i
i −1

)(
0
1

)
=

−1√
2

(
i
1

)
= |−i⟩ ,

U |+i⟩ = 1

2

(
1 −i
i −1

)(
1
i

)
=

1

2

(
2
0

)
=

(
1
0

)
= |0⟩ ,

U |−i⟩ = −1

2

(
1 −i
i −1

)(
i
1

)
= −1

2

(
0
−2

)
=

(
0
1

)
= |1⟩ .
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Problem 3: Tensor product

(a) Consider the quantum state

|ψ⟩ =
√
5

5
|0⟩+ 2

√
5

5
|1⟩ .

i. Express |ψ⟩⊗2 in Dirac notation, where |ψ⟩⊗2 ≡ |ψ⟩ ⊗ |ψ⟩.
Solution. Using the bilinear property of tensor products, we can substitute the
given state to yield

|ψ⟩⊗2 = |ψ⟩ ⊗

(√
5

5
|0⟩+ 2

√
5

5
|1⟩

)

=

√
5

5
|ψ⟩ ⊗ |0⟩+ 2

√
5

5
|ψ⟩ ⊗ |1⟩

=

(
1

5
|0⟩+ 2

5
|1⟩
)
⊗ |0⟩+

(
2

5
|0⟩+ 4

5
|1⟩
)
⊗ |1⟩

=
1

5
|0⟩ ⊗ |0⟩+ 2

5
|1⟩ ⊗ |0⟩+ 2

5
|0⟩ ⊗ |1⟩+ 4

5
|1⟩ ⊗ |1⟩

=
1

5
|00⟩+ 2

5
|10⟩+ 2

5
|01⟩+ 4

5
|11⟩ ,

where the final equality is simply the use of a compact notation for tensor
products.

ii. Express |+⟩ |+⟩ |−⟩ in Dirac notation, where |±⟩ = (|0⟩ ± |1⟩)/
√
2.

Solution. Noticing the shorthand notation |+⟩ |+⟩ |−⟩ ≡ |+⟩ ⊗ |+⟩ ⊗ |−⟩, we
can again use the bilinear property of tensor products to write

|+⟩ |+⟩ |−⟩ =
√
2

4
(|0⟩+ |1⟩)⊗ (|0⟩+ |1⟩)⊗ (|0⟩ − |1⟩)

=

√
2

4
(|0⟩ |0⟩+ |1⟩ |0⟩+ |0⟩ |1⟩+ |1⟩ |1⟩)⊗ (|0⟩ − |1⟩)

=

√
2

4
(|000⟩+ |100⟩+ |010⟩+ |110⟩ − |001⟩ − |101⟩ − |011⟩ − |111⟩).

(b) Consider the matrices

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

i. Express the tensor products X ⊗ I and I ⊗X as two 4× 4 matrices.

Solution. The tensor product of operators written in matrix notation is called
the “Kronecker product” operation. Evaluating the first tensor product,

X ⊗ I =

(
0I 1I
1I 0I

)
=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .
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Now, evaluating the second tensor product,

I ⊗X =

(
1X 0X
0X 1X

)
=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

ii. Express the tensor products X ⊗ Z and Z ⊗ Y as matrices, then calculate the
matrix multiplication (X ⊗ Z)(Z ⊗ Y ).

Solution. Evaluating the first tensor product,

X ⊗ Z =

(
0Z 1Z
1Z 0Z

)
=


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 .

Evaluating the second tensor product,

Z ⊗ Y =

(
1Y 0Y
0Y −1Y

)
=


0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

 .

Finally, evaluating the matrix multiplication,

(X ⊗ Z)(Z ⊗ Y ) =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0



0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

 =


0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

 .

iii. Calculate the matrices XZ and ZY , and hence verify the special case

(X ⊗ Z)(Z ⊗ Y ) = (XZ)⊗ (ZY )

of the more general identity (A⊗B)(C ⊗D) = (AC)⊗ (BD).

Solution. Evaluating the first matrix,

XZ =

(
0 1
1 0

)(
1 0
0 −1

)
=

(
0 −1
1 0

)
.

Evaluating the second matrix,

ZY =

(
1 0
0 −1

)(
0 −i
i 0

)
=

(
0 −i
−i 0

)
.

Now, evaluating the tensor product (XZ)⊗ (ZY ) gives

(XZ)⊗ (ZY ) =

(
0ZY −1ZY
1ZY 0ZY

)
=


0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

 = (X ⊗ Z)(Z ⊗ Y )

as we had to verify.
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(c) Prove that if A and B are projection operators then A⊗B is a projection operator.

Solution. An operator O is called a projection operator if and only if O2 = O. Thus
we have to prove that (A⊗ B)2 = (A⊗ B). Using the general property of operator
tensor products that (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD), and then that A2 = A and
B2 = B since A and B are projection operators,

(A⊗B)2 = (A⊗B)(A⊗B) = (AA)⊗ (BB) = A2 ⊗B2 = A⊗B.

(d) Prove that if A and B are unitary operators then A⊗B is a unitary operator. You
may use the property that (A⊗B)† = A† ⊗B†.

Solution. To show that A⊗B is a unitary operator, we must show that

(A⊗B)†(A⊗B) = (A⊗B)(A⊗B)† = I.

Since A and B are unitary, we have that A†A = AA† = I and B†B = BB† = I.
Using also the property given in the question, we see the first equality required that

(A⊗B)†(A⊗B) = (A† ⊗B†)(A⊗B) = (A†A)⊗ (B†B) = I ⊗ I = I.

The other equality required follows similarly:

(A⊗B)(A⊗B)† = (A⊗B)(A† ⊗B†) = (AA†)⊗ (BB†) = I ⊗ I = I.

Problem 4: Quantum measurements

(a) For each the following states, calculate the probabilities p0 and p1 of obtaining out-
comes 0 and 1 from a measurement in the computational basis {|0⟩ , |1⟩}, and the
probabilities p+ and p− of obtaining outcomes + and − from a measurement in the
basis {|+⟩ , |−⟩}.
Solution. Recall that when measuring a state |ψ⟩ in an orthonormal basis {|vi⟩}i,
the probability of obtaining outcome i is given by pi = ∥Pi |ψ⟩∥2 = |⟨vi|ψ⟩|2, where
Pi = |vi⟩ ⟨vi| is the projector onto the vector |vi⟩.
For a measurement in the computational basis {|0⟩ , |1⟩}, the projector onto |0⟩ is
given by P0 = |0⟩ ⟨0| and the projector onto |1⟩ is given by P1 = |1⟩ ⟨1|. Similarly,
for a measurement in the basis {|+⟩ , |−⟩}, the projector onto |+⟩ is given by P+ =
|+⟩ ⟨+| and the projector onto |−⟩ is given by P− = |−⟩ ⟨−|.

i. |ψ1⟩ = |1⟩.
Solution. We evaluate the desired probabilities as follows.

p0 = ∥P0 |ψ1⟩∥2 = |⟨0|ψ1⟩|2 = |⟨0|1⟩|2 = 0,

p1 = ∥P1 |ψ1⟩∥2 = |⟨1|ψ1⟩|2 = |⟨1|1⟩|2 = 1,

p+ = ∥P+ |ψ1⟩∥2 = |⟨+|ψ1⟩|2 = |⟨+|1⟩|2 = 1

2
,

p− = ∥P− |ψ1⟩∥2 = |⟨−|ψ1⟩|2 = |⟨−|1⟩|2 = 1

2
.
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ii. |ψ2⟩ = 1√
2
(|0⟩+ |1⟩).

Solution. We evaluate the desired probabilities as follows.

p0 = ∥P0 |ψ2⟩∥2 = |⟨0|ψ2⟩|2 =
1

2
|⟨0|0⟩+ ⟨0|1⟩|2 = 1

2
,

p1 = ∥P1 |ψ2⟩∥2 = |⟨1|ψ2⟩|2 =
1

2
|⟨1|0⟩+ ⟨1|1⟩|2 = 1

2
,

p+ = ∥P+ |ψ2⟩∥2 = |⟨+|ψ2⟩|2 =
1

2
|⟨+|0⟩+ ⟨+|1⟩|2

=
1

4
|⟨0|0⟩+ ⟨1|0⟩+ ⟨0|1⟩+ ⟨1|1⟩|2 = 1

4
|1 + 0 + 0 + 1|2 = 1,

p− = ∥P− |ψ2⟩∥2 = |⟨−|ψ2⟩|2 =
1

2
|⟨−|0⟩+ ⟨−|1⟩|2

=
1

4
|⟨0|0⟩ − ⟨1|0⟩+ ⟨0|1⟩ − ⟨1|1⟩|2 = 1

4
|1− 0 + 0− 1|2 = 0.

iii. |ψ3⟩ = α |0⟩+ β |1⟩, where α ̸= 0.

Solution. We evaluate the desired probabilities as follows.

p0 = ∥P0 |ψ3⟩∥2 = |⟨0|ψ3⟩|2 = |α ⟨0|0⟩+ β ⟨0|1⟩|2 = |α|2,
p1 = ∥P1 |ψ3⟩∥2 = |⟨1|ψ3⟩|2 = |α ⟨1|0⟩+ β ⟨1|1⟩|2 = |β|2,
p+ = ∥P+ |ψ3⟩∥2 = |⟨+|ψ3⟩|2 = |α ⟨+|0⟩+ β ⟨+|1⟩|2

=
1

2
|α ⟨0|0⟩+ α ⟨1|0⟩+ β ⟨0|1⟩+ β ⟨1|1⟩|2 = 1

2
|α + β|2,

p− = ∥P− |ψ3⟩∥2 = |⟨−|ψ3⟩|2 = |α ⟨−|0⟩+ β ⟨−|1⟩|2

=
1

2
|α ⟨0|0⟩ − α ⟨1|0⟩+ β ⟨0|1⟩ − β ⟨1|1⟩|2 = 1

2
|α− β|2.

(b) If the outcome of a measurement in the computational basis was 0, which of |ψ1⟩,
|ψ2⟩, and |ψ3⟩ were possible states of the system immediately before the measurement
took place?

Solution. An outcome of 0 is possible if and only if the probability of it occurring is
nonzero. Thus, we look for states that satisfy p0 ̸= 0. Of the three states considered,
we can rule out |ψ1⟩, since we calculated that outcome 0 occurs with zero probability.
The other two states, |ψ2⟩ and |ψ3⟩, are possible states, since for both we previously
calculated p0 > 0. For the state |ψ3⟩, this follows since it is given that α ̸= 0.

Problem 5: Mixed states

(a) Consider the pure state formed by equal superposition of |0⟩ and |1⟩,

|ψ⟩ = |0⟩+ |1⟩√
2

,

and the maximally mixed state whose density matrix is given by

σ =
|0⟩⟨0|+ |1⟩⟨1|

2
.
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i. Show that the density matrix ρ = |ψ⟩ ⟨ψ| of the pure state |ψ⟩ is given by

ρ =
1

2
(|0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0|+ |1⟩⟨1|).

Solution. We expand the outer product

ρ = |ψ⟩ ⟨ψ| =
(
|0⟩+ |1⟩√

2

)(
⟨0|+ ⟨1|√

2

)
=

1

2
(|0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0|+ |1⟩⟨1|).

ii. For the two mixed states ρ and σ, calculate the probabilities of obtaining out-
comes 0 and 1 from a measurement in the computational basis {|0⟩ , |1⟩}.
Solution. Recall that when measuring a mixed state ρ using the set of projectors
{Pj}mj=1, the probability of obtaining outcome k is given by pρk = tr(ρPk). If
{|vj⟩}nj=1 is an orthonormal basis, and the projector Pk = |vk⟩⟨vk|, then this
expression simplifies as

pρk = tr(ρPk) = tr(ρ |vk⟩⟨vk|)

=
n∑

j=1

⟨vj|(ρ |vk⟩⟨vk|)|vj⟩

=
n∑

j=1

δjk ⟨vj|ρ|vk⟩ = ⟨vk|ρ|vk⟩ ,

where δjk is the Kronecker delta of j and k.

The projectors for outcomes 0 and 1 are given by P0 = |0⟩⟨0| and P1 = |1⟩⟨1|
respectively. For the the state ρ, the probabilities of obtaining each outcome
are given by

pρ0 = ⟨0|ρ|0⟩ = 1

2
(⟨0|0⟩ ⟨0|0⟩+ ⟨0|0⟩ ⟨1|0⟩+ ⟨0|1⟩ ⟨0|0⟩+ ⟨0|1⟩ ⟨1|0⟩)

=
1

2
(1 + 0 + 0 + 0) =

1

2
,

pρ1 = ⟨1|ρ|1⟩ = 1

2
(⟨1|0⟩ ⟨0|1⟩+ ⟨1|0⟩ ⟨1|1⟩+ ⟨1|1⟩ ⟨0|1⟩+ ⟨1|1⟩ ⟨1|1⟩)

=
1

2
(0 + 0 + 0 + 1) =

1

2
.

For the the state σ, the probabilities of obtaining each outcome are given by

pσ0 = ⟨0|σ|0⟩ = 1

2
(⟨0|0⟩ ⟨0|0⟩+ ⟨0|1⟩ ⟨1|0⟩) = 1

2
(1 + 0) =

1

2
,

pσ1 = ⟨1|σ|1⟩ = 1

2
(⟨1|0⟩ ⟨0|1⟩+ ⟨1|1⟩ ⟨1|1⟩) = 1

2
(0 + 1) =

1

2
.

To summarise, pρ0 = pρ1 = pσ0 = pσ1 = 1/2.

iii. For the two mixed states ρ and σ, calculate the probabilities of obtaining out-
comes + and − from a measurement in the basis {|+⟩ , |−⟩}.

9



Petros Wallden
Sean Thrasher
Laura Lewis Tutorial 1: Solutions

QCS 2024–25
January 31, 2025

Solution. The projectors for outcomes + and − are given by P+ = |+⟩⟨+| and
P− = |−⟩⟨−| respectively. For the the state ρ, the probabilities of obtaining
each outcome are given by

pρ+ = ⟨+|ρ|+⟩ = 1

2
(⟨+|0⟩ ⟨0|+⟩+ ⟨+|0⟩ ⟨1|+⟩+ ⟨+|1⟩ ⟨0|+⟩+ ⟨+|1⟩ ⟨1|+⟩)

=
1

2

(
1

2
+

1

2
+

1

2
+

1

2

)
= 1,

pρ− = ⟨−|ρ|−⟩ = 1

2
(⟨−|0⟩ ⟨0|−⟩+ ⟨−|0⟩ ⟨1|−⟩+ ⟨−|1⟩ ⟨0|−⟩+ ⟨−|1⟩ ⟨1|−⟩)

=
1

2

(
1

2
− 1

2
− 1

2
+

1

2

)
= 0.

For the the state σ, the probabilities of obtaining each outcome are given by

pσ+ = ⟨+|σ|+⟩ = 1

2
(⟨+|0⟩ ⟨0|+⟩+ ⟨+|1⟩ ⟨1|+⟩) = 1

2

(
1

2
+

1

2

)
=

1

2
,

pσ− = ⟨−|σ|−⟩ = 1

2
(⟨−|0⟩ ⟨0|−⟩+ ⟨−|1⟩ ⟨1|−⟩) = 1

2

(
1

2
+

1

2

)
=

1

2
.

To summarise, pρ+ = 1, pρ− = 0, and pσ+ = pσ− = 1/2.

iv. Comment on the distinguishability of the two states |ψ⟩ and σ with respect to
the two measurement bases {|0⟩ , |1⟩} and {|+⟩ , |−⟩}.
Solution. When measured in the basis {|0⟩ , |1⟩}, the equal superposition state
|ψ⟩ cannot be distinguished from the maximally mixed state σ. This is because
the probabilities of all outcomes are the same whether the system is in state
|ψ⟩ or state σ; in both cases the probabilities of each outcome is 1/2. When
measured in the basis {|+⟩ , |−⟩}, however, we can distinguish the two states.
The state |ψ⟩ would result in outcomes distributed with probabilities pρ+ = 1 and
pρ1 = 0, while the state σ would result in outcomes with a different probability
distribution pσ+ = pσ− = 1/2.

(b) Recall that the density matrix ρ for a statistical ensemble {(p1, |ψ1⟩), . . . , (pn, |ψn⟩)}
in which each pure state |ψj⟩ occurs with probability pj is defined by

ρ =
n∑

j=1

pj |ψj⟩⟨ψj| .

i. Calculate the density matrix for the ensemble
{(

2
3
, |0⟩

)
,
(
1
3
, |1⟩

)}
.

Solution. Let us denote by ρ1 the density matrix of this ensemble. Then

ρ1 =
2

3
|0⟩⟨0|+ 1

3
|1⟩⟨1| .

We can also write this in matrix form as

ρ1 =

(
2
3

0
0 1

3

)
.
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ii. Calculate the density matrix for the ensemble
{(

1
3
, |0⟩

)
,
(
1
3
, |+⟩

)
,
(
1
3
, |−⟩

)}
.

Solution. Let us denote by ρ2 the density matrix of this ensemble. Then

ρ2 =
1

3
|0⟩⟨0|+ 1

3
|+⟩⟨+|+ 1

3
|−⟩⟨−|

=
1

3
|0⟩⟨0|+ 1

3
|0⟩⟨0|+ 1

3
|1⟩⟨1|

=
2

3
|0⟩⟨0|+ 1

3
|1⟩⟨1| .

We can also write this in matrix form as

ρ2 =

(
1
3

0
0 0

)
+

(
1
3

0
0 1

3

)
=

(
2
3

0
0 1

3

)
.

iii. Does there exist a measurement allowing an experimenter to distinguish between
these two ensembles? Justify your answer.

Solution. There exists no measurement which can distinguish between the two
ensembles. This follows from the fact that the density matrices for both en-
sembles are identical; ρ1 = ρ2. That is, the two ensembles give rise to the
same (mixed) state. Since in both cases the system is in the same state, the
probability distribution of outcomes for any measurement will be the the same
in both cases. An experimenter may only rely on these outcome statistics to
determine information about the system, therefore the two ensembles are said
to be indistinguishable from one another.
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