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Problem 1 Entropies of quantum states

Consider the four bipartite states (of systems A and B), whose representations in the
computational basis are given by the following density matrices:

ρ1 =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 , ρ2 =
1

4


1 0 0

√
3

0 0 0 0
0 0 0 0√
3 0 0 3

 , ρ3 =
1

4


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 ,

ρ4 =
1

4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , ρ5 =
1

4


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

 .

(a) For each state, compute the von Neumann entropies S(A) and S(B) of the reduced
states, as well as the von Neumann entropy S(A,B) of the whole state.

Solution. Let us consider only ρ2 as an example. Calculations for the other states
are similar.

The state ρ2 can also be written in Dirac notation as

ρ2 =
1

4
|00⟩ ⟨00|+

√
3

4
|00⟩ ⟨11|+

√
3

4
|11⟩ ⟨00|+ 3

4
|11⟩ ⟨11| .

Applying the definition of partial trace, we find the reduced state of each system

ρA2 = trB ρ2

=
1

4
|0⟩ ⟨0| ⟨0|0⟩+

√
3

4
|0⟩ ⟨1| ⟨1|0⟩+

√
3

4
|1⟩ ⟨0| ⟨0|1⟩+ 3

4
|1⟩ ⟨1| ⟨1|1⟩

=
1

4
|0⟩⟨0|+ 3

4
|1⟩⟨1| ,

ρB2 = trA ρ2

=
1

4
⟨0|0⟩ |0⟩ ⟨0|+

√
3

4
⟨1|0⟩ |0⟩ ⟨1|+

√
3

4
⟨0|1⟩ |1⟩ ⟨0|+ 3

4
⟨1|1⟩ |1⟩ ⟨1|

=
1

4
|0⟩⟨0|+ 3

4
|1⟩⟨1| .

Computing the von Neumann entropies for these states, we obtain

S(A) = S(B) = −
(
1

4
log

1

4
+

3

4
log

3

4

)
= −

(
−1

2
+

[
3

4
log 3− 3

2

])
= 2− 3

4
log 3 ≈ 0.811.
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Diagonalising ρ2, we find it has a single nonzero eigenvalue, and this eigenvalue is
equal to 1. The von Neumann entropy of the whole state ρ2 is therefore

S(A,B) = −1 log 1 = 0.

Entropies of the other states are in accordance with the following table.

State S(A) S(B) S(A,B)

ρ1 1 1 0
ρ2 2− 3

4
log 3 ≈ 0.811 2− 3

4
log 3 ≈ 0.811 0

ρ3 1 1 1
ρ4 1 1 2
ρ5 0 0 0

(b) For each state, compute the conditional quantum entropy S(A | B) = S(A,B)−S(B)
and the quantum mutual information S(A : B) = S(A) + S(B)− S(A,B).

Solution. Inserting the previously calculated entropies into the definitions given for
S(A | B) and S(A : B) gives the following table.

State S(A) S(B) S(A,B) S(A | B) S(A : B)

ρ1 1 1 0 −1 2
ρ2 2− 3

4
log 3 2− 3

4
log 3 0 3

4
log 3− 2 4− 3

2
log 3

ρ3 1 1 1 0 1
ρ4 1 1 2 1 0
ρ5 0 0 0 0 0

(c) Use the definitions of the tensor product and what you know about projections and
pure states in order to rewrite each of the bipartite states in a simplified form. Discuss
how these relate to the results obtained in (a) and (b).

Solution. Each of the states can be simplified in Dirac notation to be written as

ρ1 = |Φ+⟩⟨Φ+| ,

ρ2 =

(
1

2
|00⟩+

√
3

2
|11⟩

)(
1

2
⟨00|+

√
3

2
⟨11|

)
,

ρ3 =
1

2
(|++⟩⟨++|+ |−−⟩⟨−−|),

ρ4 =
1

4
(1⊗ 1),

ρ5 = |+⟩⟨+| ⊗ |−⟩⟨−| .

The state ρ1 is actually one of the Bell states, which confirms that ρ1 is pure and
S(A,B) is zero. Notice that the conditional entropy of ρ1 is negative. As opposed to
classical probability distribution, where the conditional entropy is always positive,
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quantum states can have a negative conditional entropy, which is a clear signature of
the non-classicality of the state. Observe also that the mutual information for ρ4 is
equal to 2. This is impossible classically, and is related to the fact that it is possible
to communicate 2 bits of classical information by transmitting only a single qubit:
so-called “superdense coding”. Remark that the state ρ3 is equivalent to a perfectly
correlated coin in the |±⟩ basis, whereas ρ4 is equivalent to two uncorrelated unbiased
coins in the computational basis. Finally, ρ5 corresponds to the tensor product of
two uncorrelated local pure states.

Problem 2

(a) Compute the secret key rate R of a QKD protocol given the probability that the
sent qubits are detected is Q = 1/3, the error as a result of classical post-processing
is ξ = 1/3, the penalty for using Holevo quantities is ∆(n, ε) = 1/10, and given the
following von Neumann entropies:

S(ρA) =
1

3
, S(ρB) =

1

4
, S(ρAB) =

1

12
, S(ρE) =

1

5
, S(ρAE) =

7

15
.

Solution. We compute the secret key rate using the general formula

R =
Q

2
(ξ ·H(A : B)− S(A : E)−∆(n, ϵ)).

We first compute the mutual information quantities

H(A : B) = S(ρA) + S(ρB)− S(ρAB),

S(A : E) = S(ρA) + S(ρE)− S(ρAE).

In our case we obtain

H(A : B) =
1

3
+

1

4
− 1

12
=

1

2
,

S(A : E) =
1

3
+

1

5
− 7

15
=

1

15
.

Therefore, we obtain

R =
1

2
· 1
3

(
1

3
· 1
2
− 1

15
− 1

10

)
= 0.

(b) What is the secret key rate if the QKD protocol in use is BB84 and we instead assume
perfect detection, no finite-size effects, ideal classical post-processing, an average
error in the {|0⟩ , |1⟩} basis of eb = 1/16, and an average error in the {|+⟩ , |−⟩} basis
of ep = 1/8?

Solution. We compute the secret key rate using the simplified formula for the BB84
protocol:

RBB84 =
1

2
(1− h(eb)− h(ep)).
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We first compute the binary entropy quantities

h(eb) = −eb log2(eb)− (1− eb) log2(1− eb)

= − 1

16
· (−4)− 15

16
log2

15

16
≈ 0.337,

h(ep) = −ep log2 ep − (1− ep) log2(1− ep)

= −1

8
· (−3)− 7

8
log2

7

8
≈ 0.544.

Therefore, we obtain

RBB84 ≈
1

2
(1− 0.337− 0.544) = 0.060.

Problem 3

Alice sends to Bob one out of two possible states, depending on the outcome of tossing a
fair coin. If the outcome is heads, then Alice sends ρH = 1

2
|0⟩⟨0|+ 1

2
|1⟩⟨1|. If the outcome

is tails, then Alice sends |1⟩. Using the Holevo bound, determine an upper bound on the
accessible information that Bob can obtain.

Solution. Alice prepares ρH = 1
2
|0⟩⟨0|+ 1

2
|1⟩⟨1| with probability pH = 1/2 and ρT = |1⟩⟨1|

with probability pT = 1/2. Bob’s state is then

ρ = pHρH + pTρT

=
1

2
|1⟩ ⟨1|+ 1

4
|0⟩ ⟨0|+ 1

4
|1⟩ ⟨1|

=
1

4
|0⟩ ⟨0|+ 3

4
|1⟩ ⟨1|

=
1

4

(
1 0
0 3

)
.

The accessible information by Bob is bounded by the Holevo quantity

Iacc(X : Y ) ≤ S(ρ)− pHS(ρH)− pTS(ρT ).

We first determine S(ρ). We compute the eigenvalues of ρ by solving

0 = det(ρ− λI) =

∣∣∣∣14 − λ 0
0 3

4
− λ

∣∣∣∣ = (
1

4
− λ

)(
3

4
− λ

)
.

Thus λ1 = 1/4 and λ2 = 3/4. The von Neumann entropy of ρ is then

S(ρ) = −λ1 log2 λ1 − λ2 log2 λ2 = −1

4
· (−2)− 3

4
log2

3

4
≈ 0.811.

For ρH , note that this is the maximally mixed qubit state, which gives the maximum
value for the von Neumann entropy S(ρH) = log2 2 = 1 For ρT , since it is a pure state,
we know that S(ρT ) = 0. Finally, the Holevo bound gives us

Iacc(X : Y ) ≤ −3

4
log2

3

4
≈ 0.311.
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Problem 4

(a) Consider a secret bit string (random variable) X with outcomes in {0, 1}15 and a 2-
universal family of hash functionsH = {hi}i, where hi = h(i, ·) with h : S×{0, 1}15 →
{0, 1}3. Using the leftover hash lemma, determine the maximum number of allowed
leaked bits t of X such that, after using privacy amplification with the family of
functions H, we produce a bit string that is ε-close to uniformly distributed in
statistical distance, where ε = 2−4. That is, such that δ[(hi(x), i), (u, i)] ≤ 2−4.

Solution. Using the leftover hash lemma, we know that if we satisfy the condition

m ≤ n− t− 2 log2
1

ε
,

then we have
δ[(hi(x), i), (u, i)] ≤ ε.

In our case, in which m = 3, n = 15, and ε = 2−4, the condition becomes

t ≤ n−m− 2 log2
1

ε
= 15− 3− 2 · 4 = 4.

(b) Prove that the family of functions H = {ha,b}a,b is 2-universal, where ha,b : Zp → Zp

for p prime and (a, b) ∈ Zp × Zp is defined by

ha,b(x) ≡ ax+ b (mod p).

Solution. Consider two distinct inputs x1, x2 ∈ Zp. For any two possible outputs
t1, t2 ∈ Zp, we first want to compute the probability that both

ha,b(x1) ≡ t1 (mod p),

ha,b(x2) ≡ t2 (mod p).

Substituting the definition of ha,b, these are equivalent to

ax1 + b ≡ t1 (mod p),

ax2 + b ≡ t2 (mod p).

Subtracting these relations, we get

a(x2 − x1) ≡ t2 − t1 (mod p).

Since x2 ̸= x1 (and so x2 − x1 ̸= 0) and p is prime, we know x2 − x1 has a modular
multiplicative inverse denoted (x2 − x1)

−1, and thus

a ≡ (t2 − t1)(x2 − x1)
−1 (mod p).

Using this a, we can find b by rearranging either of the initial relations. For example,
using the first relation,

b ≡ t1 − ax1 (mod p).
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We have now constructed a unique key (a, b) such that ha,b(x1) ≡ t1 and ha,b(x2) ≡ t2.
Thus, we have the probability

Pr
(a,b)∈Zp×Zp

[ha,b(x1) ≡ t1 ∧ ha,b(x2) ≡ t2] =
1

p2
.

Regarding the uniformity property, we need to prove that for a fixed x ∈ Zp and for
(a, b) sampled at random from Zp × Zp,

Pr
(a,b)∈Zp×Zp

[ha,b(x) ≡ t] =
1

p
.

for all outputs t. Substituting the definition of ha,b, this is equivalent to

Pr
(a,b)∈Zp×Zp

[ax+ b ≡ t] =
1

p
.

We can see that for any possible value of a ∈ Zp, there exists a unique b such that
ax+ b ≡ t, namely b ≡ t− ax. Therefore,

Pr
(a,b)∈Zp×Zp

[ax+ b ≡ t] =
p

p2
=

1

p
.

Finally, if we combine the uniformity property with the first property above, we
obtain the pairwise independence condition

Pr
(a,b)∈Zp×Zp

[ha,b(x1) ≡ t1 ∧ ha,b(x2) ≡ t2] =
1

p2

=
1

p
· 1
p

= Pr
(a,b)∈Zp×Zp

[ha,b(x1) ≡ t1] · Pr
(a,b)∈Zp×Zp

[ha,b(x2) ≡ t2].

Problem 5

Compute the secret key rate R6 for the 6-state protocol given that the quantum bit error
rate (QBER) is D′

a = 1/8.

Solution. We use the secret key rate formula specific to the 6-state protocol:

R6 =
1

3

[
1 + 3

D′
a

2
log2

D′
a

2
+

(
1− 3D′

a

2

)
log2

(
1− 3D′

a

2

)]
.

Therefore, we obtain

R6 =
1

3

[
1 + 3 · 1

16
· (−4) +

13

16
log2

13

16

]
≈ 0.0022.
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