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Problem 1
Consider the four Bell states
11 — |11
@by 2 10040y jo0) — 1)
V2 V2
}\Il+>: |01) + |10) ‘ _>: |01)—\10>.
V2o V2

Those maximally entangled states form an orthonormal basis of the two-qubit Hilbert space
H =C*

(a) Verify that the Bell states form an orthonormal family of states, i.e., that they are pair-wise
orthogonal, and each of them is normalised.

Solution. We need to prove that for any two distinct Bell states |¥) , |U’), they are orthog-
onal, i.e., (U|¥') = 0. As an example we consider |®) and |®’) but the derivation is similar
for other pairs:

(00| + (11] [00) — [11)  (00]00) — (00[11) 4 (11]00) — (11|11)

ot|P) = =
1-0+0-1
= = O
2
where we have used the fact that {|0),|1)} is an orthonormal basis. Let us show that |®*)
has norm 1:
(@ [0+) = (00] + (111 |00) + [11) _ (00]00) + (00]11) + (11]00) + (11]11)
V2 V2 2
_ 1404041
S

A similar derivation for other Bell states then allows us to conclude that all of them are
normalised. Since they are also pair-wise orthogonal, they form an orthonormal family of
states.

(b) Simplify the following:

i X®X|U)
Solution.
_ |01) —]10) X ® X |01) — X ® X [10) [10) —|01) _
XX [U)=X®X N 7 i =—|v)
. X®Z|v7)
Solution.
X®Z‘\I/_>: X®Z|01) - X ® Z]10) _ —|11) —|00) :_‘q>+>
V2 V2
. Z@ X |¥7)
Solution.
Z7X[01)-ZxX|1 11
Zox u-y = ZEXI0N —Z X0 _ [00) +11) _ g

V2 V2
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iv. Ze@Z|¥7)
Solution.
Z® Z1|01) — Z® Z110 —|01) + |10 _
Zozlu-y = ZOZIN-ZOZ10) _ —I0h 10 _
V2 V2
Problem 2

Consider the CHSH “game” described in the lecture. Assume that Alice and Bob share the
quantum state

|00) + |11)

(o) 7= 4)

If = 0 Alice measures the observable Ag = Z, and if x = 1 Alice measures the observable
Ay = X. If y = 0 Bob measures the observable By = (X + Z), and if y = 1 Bob measures

[27) =

Recall that

. V2
the observable B; = W(X - 7).
(a) Compute the correlator Fog = (27| Ay ® By |®T) = (¢F]| Z ® \[(X + Z)|®T).

Solution.

Eg = (®"| Ag® By |[®T) = <<I>+\Z®\}§(X+Z) &)

1 1
= (T ZoX|dT\+ —(dT|Zx Z|®T).
(@ ZeX |8+ o (87 20 7|eY)

Let us define D = (®7|Z @ X |®1) and £ = (®T|Z ® Z |®T) so that Epy = %(D + E).

We first compute the term D. To compute D, we start from

Z®X\<I>+>—f (Z ® X)(|00) + [11))
1
ﬁ[(Z®X)\OO> (Z @ X) [11)]
ﬁ(\01> [10)).

Then, we have
1
D={(dT|ZxX|d")=—(d1|(|01) — |10
(0¥ 2 X [0%) = (@] (01) - |10)

= ((00] + (11])(J01) ~10)) = 0.
To compute E, we start from
Z@Z|®") = —(Z® Z)(]00) + [11))
(Z® Z)]00) + (Z ® Z) |11)]

(100) + [11)).

E\HE\H&\H
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Then, we have
1
B=(27|Z0Z|27) = -5 ($7](100) + 11))
_ %(<oo| + (11])(/00) + [11)) =

Therefore, we obtain
D+FE 041 1

Vi Vi Ve

(b) Compute the quantity 5 = Eoy — Eo1 + E10 + E11 and show that it attains the maximum
Bell inequality violation 2v/2, as given in the lectures.

Ey =

Solution. We will proceed similarly to the previous part to compute Fp1, F1g, and Fi1.
First, we see that

1

1
E — (Pt Zx X |oT Ot Zw Z|dt
mﬁ<\®\>ﬂ<r®\>
_b-F_ 1
\/5 V2
In the case of E71g, we have
1 1
Eog=—(d"XX|d")+ —= (| X Z|0T).
=5 (7| X 0 X[07) + (07| X o 7[0F)
Let us define F = (&1 X ® X |®T) and G = (1| X ® Z|®7) so that Fig = %= (F + G).

V2

We first compute the term F'. To compute F', we start from

X®X|oh) = (X®X)(\OO>+|11>)

%\

(|00> +[11)).

%\

Then, we have

\}5 (@*](100) + |11))

_ %(<ooy +(11])(]00) + 11)) = 1.

F= (3" X X|0*) =

To compute G, we start from

X®Z|®1) = —=(X ® Z)(|00) + |11))

Sl

(|10) 01)).

%\

Then, we have
1
G=(dT|X®Z|d")=—(d"|(]10) — |01
(27| X @ z[27) = 7 (27| (110) - |o1))

= £((00] + (11))(10) ~ [01)) = 0
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Therefore, we obtain

E10:F+G:L'
V2 V2
For the case of E11, we have
B = 5 (97| X 9 X[0%) - = (8| X & 2|0)
_F-G 1
V22

Combining all of these, we obtain the quantity

Problem 3

Consider the same setting of the game as in Problem 1, but with the difference that now Alice
and Bob share the state [¢)) = f |00) + \[ |11). Compute the quantity 5 in this case.

Solution. We start with the expressions for each correlator

E00=<¢|Z®\}§(X+Z) ),

Eo1 = <w|Z®j§<X—Z> ),

Em=<w|X®\}§<X+Z> ),

B = <w|X®;§<XZ> ).

For Eyy, we have

By = (0120 X [V) + (] 2@ Z )
To compute the first term D = (| Z ® X |¢), we first use the fact that
_ 1 V2 V2
Z®wa>_(Z®X)ﬁ\00>+(Z®X)f\11) f’01> \/5\10),

which gives us

(1 V2 V2 B
D= (\/§<00\+ \[(11;) (\[\on \/§110>> =0
Dor the second term E = (¢| Z ® Z |1),

et v e
which gives us
= (Yly) =1.
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Thus, we have

B D+FE 1
TV R
From the computed quantities, we can also deduce directly that
1 1 D-F 1
Epp = — ZRX - — YA = =——.
For Eyp, we have
1 1
Fpop=—®WX®X + —= WX ®Z|Y).
=5 WIX O X+ WX 0 Zv)
To compute F' = (| X ® X |¢), we start from
1 V2 1 V2
X®X =—=(X®X)|00)+ —=(X®X)|11) = — [11) + — |00) ,
) = (X @ X)[00) + Y2(X 0 X)[11) = = 1) + Y2 joo)

which gives us

F- <1<ooy+*/§<11\> (1111>+\/§|oo>> VEICI e

NEAREVE RS AWVE LR 375 3
To compute G = (Y| X ® Z|¢), we start from
_ 1 v2 _ g ¥2
X®Z]w>——3(X®Z)|00>+E(X®Z)|11)— \/§]10> \/§|01),

which gives us
(1 V2 1 V2 B
G = ﬁ (00| + ﬁ (11\) <\/§ 110) — % \01)) =0.

_F+G 1 2V/2 2

By = — z

From the computed quantities, we can also deduce directly that

Thus, we have

F-G 2
E11: \/5 :g

Finally, we obtain the quantity

1 2 2 4
Y -+ = =V2+ - =274 < 2V2.
( \/§>+3+3 Vs V2

Problem 4

Consider the same setting of the game as in Problem 1, but now Alice and Bob share a mixed
state p that is given by the ensemble where with probability p; = 1/4 the state is

_ [00) +J11)

1) 7
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with probability po = 1/4 the state is

1 2
) = 100+ /20,

and with probability ps = 1/2 the state is
l1hs) = 10) ® |+) .

(a) Compute the correlator Ey;(p) = tr[p(Z ® %)]

Solution. First notice that

Eo1(p) = tr(pAo ® Bi)
= tr[(p1 [¥1) (1] + p2 [¥2) (Y2| + p3 [¥3) (¢3]) Ao © By
= p1tr(|Y1) (1| Ao ® Bo) + pa tr(|ie) (2| Ao ® Bo) + p3tr(|ys)(y3| Ao ® Bo)
= p1Eo1([¥1) (Y1) + p2Eo1 (|v2) (12]) + psEo1 (|v3) (¥s]).-

As part of Problem 1, we calculated Eoi(|11)(¢1]) = —%. As part of Problem 2, we

calculated Epq(|12)(¢2|) = —%. We now calculate the third term

1

\/5(¢3|Z®Z!1/13>.

Eoa(1s) (sl) = = (6] 2@ X )

To do this, note that

Z®X|z/)3>:Z®X<’00>+|01>> _ L

1
7 01) + = [00) = )

VRN
and thus
(V3] Z @ X |[3) = (Ys]hs) = 1.

Also note that
1

|00) — NG

01)

Z®Z|¢3>:Z®Z<’OO>+‘01>> S

V2 V2
and thus )
(3] Z ® Z]¢p5) = 5({00] +(01])(|00) — |01)) = 0.

We therefore have 1-0 1
Eo1(|vs)(¥s) = V2 NG

Finally, combining Eo1 (|11)(¥1]), Eo1(|12)(w2]), and Ep1(|1)s)(s|) we obtain

= () ()3 ()

(b) Determine the quantity § corresponding to this realisation of the CHSH game.
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Solution. In the previous part, we showed Fpi(p) = 0. Similarly to the previous part,

Eoo(p) = prEoo([v1) (1]) + p2Eoo([v2) (2]) + p3Loo(|3)(¥3]),
E10(p) = p1Ewo(|v1) (1]) + paEro([¢2) (W2]) + psEro(|s) (¥s)),
E11(p) = prEu([r)(W1]) + paEri(|v2) (W2]) + p3Er1(Jis) (¥3]).

From Problem 1 we know

Eoo([91)(¢1]) = Ero([¢1) (]) = Eua(|y1)(¥al) = \}i

and from Problem 2 we know

Eoo(l2)al) = =, Bo(la) () = B (ln) () = 5.

7

Hence, we only need to compute Ego(|v3)(ws|), E1o(|1s)(1s]), and Ei1(|is)(vs]). For
Eoo(|13)(13]), we can use quantities calculated in the previous part to write

Bool[t63) () = \2 (3] Z © X [ih3) + é (3] Z ® Z |ih5) = 1;;’ - \2
For Eio(|13)(13]), we compute
Bool[463) (ts]) = % (5] X © X ) + = (o] X © Z 1)

Noting that

X®X\w3>:X®X(mO>:/F§|Ol>> :\2|11>+;§\10>
so that )
(¥s] X ® X |¢3) = 5 ((00] + {01])(|11) +[10)) =0,
and
X®Z\1/13>:X®Z<|00>\J/r§|01>> :\}5|10>—\2\11>
so that

1
(Y] X ® Z |ihs) = 5((00] + (01[)(|10) — [11)) = 0.
Therefore, we obtain E1o(|13)(y3]|) = % = 0. Similarly, for E11(|13)(¢3]) we compute

1 1 0—-0
NG —ﬁ<¢3|X®Z|¢3>:7:0-

V2
We now combine all computed quantities to obtain

B ([93)(¥s]) = (V3] X @ X [4h3)

E —_ — - — _ — - =
E — - _ — — — —_ —
E —_— - _ — — — —_ —
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Finally, we combine the four correlators to obtain

B = Eoo(p) — Eo1(p) + Eio(p) + Er1(p)

() )

= 3 + — =~ 1.394.

1
2v/2 3
Problem 5

In this problem, we will derive the Schmidt decomposition for a two-qubit bipartite system.
That is, for any two-qubit bipartite state 1) 45, there exist orthonormal bases {|e1) , |e2)} and
{|f1),|f2)} for the single-qubit systems A and B respectively and positive constants ¢; and ¢y
such that [¢) yp = c1]e1) @ [f1) + c2le2) @ [ f2).

(a) Consider any two orthonormal bases for the systems A and B, {|a1),|a2)} and {|b1), |b2)}
respectively. Write [¢) 45 in the matrix representation M, with respect to these bases.

Solution. We can write the state with respect to the bases {|a1),|a2)} and {|b1),]b2)} as

V) 4 = mi1|a1) @ |b1) + miz|a1) ® |ba) + mai |az) & |b1) + maa|az) ® |ba)

mi1 M2
M, = (m ) |
21 M2
(b) Consider the singular value decomposition M, = USVT, where U and V are 2 x 2 unitaries
and X is a diagonal matrix whose entries are the joint eigenvalues of the bipartite system.

From this decomposition deduce {|e1),|e2)} and {|f1),|f2)}. What are the constants c;
and cg?

This then gives us the matrix

Solution. Using the singular value decomposition for My, we have
My, =USVT.
Given that U and V are 2 x 2 matrices and ¥ is a diagonal matrix, we can write them as
U— (un u12)7 v — <v11 7)12>, v <d1 0>‘
U1 U22 V21 U22 0 do
Then, we can write My, as

M, — u11d1v]] + u12dav]y  u11d1v3; + u12davs,
U21A1V11 T U2G2V19  U21A1V91 T U2202V99

which can alternatively be rewritten as
u11 U12
My =d vy vy)+d vy U3
P 1 <u21> ( 11 21) 2 <u22> ( 12 22)

() ()
U921 V21 U22 V22
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Now, if we use the notation e; = (ZH), eg = <u12>’ fi= <v11)’ and fo = <512>, then
21 22

U22 V21
we can write
Mw =d - elflT +ds - €2f2T.

Therefore, finally we have

V) sp =di-e1® f1 +da-ea® fo.

Example. We now show here an example of the Schmidt decomposition. Take the two
initial bases to be computational bases {|e1) , e2)} = {|f1),]f2)} = {]0),|1)}. Let the state
1)) 45 be described with respect to these bases as

1 1
) ap = NG 00) + 7

1 1
M, = (%05 @) |
V6
Now, we need to find the singular value decomposition for this matrix My, = U YVT. To do
this, the steps are the following:
i. Compute Wi = MMT and Wy = M T M.
ii. Determine the eigenvalues of W; and W5 and the eigenvectors corresponding to these
eigenvalues.

1
01) + —11).
01) + = 111)

V6

Then, we have

iii. Normalise the eigenvectors. Then, the normalized eigenvectors corresponding to Wy
are the columns of U and the normalized eigenvectors corresponding to W are the
columns of V.

iv. The elements on the diagonal of 3, placed in descending order, are the square roots
of the eigenvalues of W; (or Wa).

We have the matrices

5 1 11
Vig 6 6 2
For Wy, we have the eigenvalues A\ = % and Ao = 3_6‘/6, and the corresponding eigen-
vectors
_(V2+ V3 _(V2—V3
uy = s ug = .
1 1
For W5, we have the eigenvalues \; = % and g = 3_6‘/6 and the corresponding eigen-
vectors

=)+ ()

After normalising the eigenvectors, we obtain U and V as

V2+V3 V2-V3
U— ( u A) _ \/1+(\/1§+\/§)2 \/1+(\/1§—\/§)2

Tuall Tue]
VIHVZHVE)? V14(V2-V3)?

1 1
_ (v v _[v2 V2
V= (nvin Hé\\) = (1 i )

V2 V2
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As for the diagonal matrix,

s (o O _ (VA 0N _ [VESE o
—\0 09 - 0 \/)\2 - 0 3—/6
6

Finally, as we saw earlier, our Schmidt decomposition gives us

|¢>A3201'U1®v1+02'uz®v2.

Problem 6

For a general quantum state [¢), the number of nonzero constants (Schmidt coefficients) ¢; in
its Schmidt decomposition is called the “Schmidt number” for the state |1).

(a) Prove that a pure state |1) 4 5 of a two-qubit bipartite system is entangled if and only if its
Schmidt number is greater than 1.

Solution. We will prove this by contraposition. That is, we will show that [¢),5 is a
product state if and only if its Schmidt number is equal to 1.

“="1If [¢)) 4 5 Is a product state, then it can be written in the form [¢)) 45 = 1 |e1) ® | f1).
Therefore, its Schmidt number is equal to 1.

“ <=7 For [¢) 45, using the Schmidt decomposition and given that Schmidt number is
equal to 1, we know we can express the state in the form |¢) 45 = ¢1 |e1) ®|f1). Therefore,
1) 45 1s a product state.

(b) Suppose that [11) and |i)2) are two states of a two-qubit bipartite system (with components
A and B) having identical Schmidt coefficients. Show that there are unitary transformations
U on system A and V on system B such that |11) = (U ® V) [¢)2).

Solution. If |11) and [¢)2) are two-qubit states, we can write them using the Schmidt decom-
position with respect to some orthonormal bases {|e1) 4 ,|e2) 4} and {|f1) g, |f2) g} for [¢1),
and {|e}) 4.le5) 4} and {|f1) 5, |f2) g} for |¢2). Given that the two states have identical
Schmidt coefficients, they can be expressed as

[v1) = c1ler) @ [f1) + cale2) @[ f2),
) = c1|eh) @ | fi) + ez ler) @[ f3) -
Defining U and V as

U = lex) (e1] + [ez) (b,
V=1f) (f] + 1f2) {fa],

notice that

U@ V) [w2) = [(lex) (e1] + le2) (ea]) @ (1) (1] + 1F2) (2])] (ex |er) @ | f1) + e2|en) @ | f3))
= c1 (Jex) (eh] + le2) (en]) |er) @ (1) (fi] + [f2) (f3]) | F1)
+ 2 (ler) (1] + le2) (ed]) [en) © (If1) (1| + | f2) (f2]) [ f2)
=ci1le1) ®[f1) + cale2) ® | f2)
= |tp1) -

10



	
	
	
	
	
	

