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Problem 1

Consider the four Bell states∣∣Φ+
〉
=

|00⟩+ |11⟩√
2

,
∣∣Φ−〉 = |00⟩ − |11⟩√

2
,

∣∣Ψ+
〉
=

|01⟩+ |10⟩√
2

,
∣∣Ψ−〉 = |01⟩ − |10⟩√

2
.

Those maximally entangled states form an orthonormal basis of the two-qubit Hilbert space
H = C4.

(a) Verify that the Bell states form an orthonormal family of states, i.e., that they are pair-wise
orthogonal, and each of them is normalised.

Solution. We need to prove that for any two distinct Bell states |Ψ⟩ , |Ψ′⟩, they are orthog-
onal, i.e., ⟨Ψ|Ψ′⟩ = 0. As an example we consider |Φ⟩ and |Φ′⟩ but the derivation is similar
for other pairs:〈

Φ+
∣∣Φ−〉 = ⟨00|+ ⟨11|√

2

|00⟩ − |11⟩√
2

=
⟨00|00⟩ − ⟨00|11⟩+ ⟨11|00⟩ − ⟨11|11⟩

2

=
1− 0 + 0− 1

2
= 0

where we have used the fact that {|0⟩ , |1⟩} is an orthonormal basis. Let us show that |Φ+⟩
has norm 1:〈

Φ+
∣∣Φ+

〉
=

⟨00|+ ⟨11|√
2

|00⟩+ |11⟩√
2

=
⟨00|00⟩+ ⟨00|11⟩+ ⟨11|00⟩+ ⟨11|11⟩

2

=
1 + 0 + 0 + 1

2
= 1

A similar derivation for other Bell states then allows us to conclude that all of them are
normalised. Since they are also pair-wise orthogonal, they form an orthonormal family of
states.

(b) Simplify the following:

i. X ⊗X |Ψ−⟩
Solution.

X⊗X
∣∣Ψ−〉 = X⊗X |01⟩ − |10⟩√

2
=
X ⊗X |01⟩ −X ⊗X |10⟩√

2
=

|10⟩ − |01⟩√
2

= −
∣∣Ψ−〉

ii. X ⊗ Z |Ψ−⟩
Solution.

X ⊗ Z
∣∣Ψ−〉 = X ⊗ Z |01⟩ −X ⊗ Z |10⟩√

2
=

− |11⟩ − |00⟩√
2

= −
∣∣Φ+

〉
iii. Z ⊗X |Ψ−⟩

Solution.

Z ⊗X
∣∣Ψ−〉 = Z ⊗X |01⟩ − Z ⊗X |10⟩√

2
=

|00⟩+ |11⟩√
2

=
∣∣Φ+

〉
1
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iv. Z ⊗ Z |Ψ−⟩
Solution.

Z ⊗ Z
∣∣Ψ−〉 = Z ⊗ Z |01⟩ − Z ⊗ Z |10⟩√

2
=

− |01⟩+ |10⟩√
2

= −
∣∣Ψ−〉

Problem 2

Consider the CHSH “game” described in the lecture. Assume that Alice and Bob share the
quantum state ∣∣Φ+

〉
=

|00⟩+ |11⟩√
2

.

Recall that

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
.

If x = 0 Alice measures the observable A0 = Z, and if x = 1 Alice measures the observable
A1 = X. If y = 0 Bob measures the observable B0 = 1√

2
(X + Z), and if y = 1 Bob measures

the observable B1 =
1√
2
(X − Z).

(a) Compute the correlator E00 = ⟨Φ+|A0 ⊗B0 |Φ+⟩ = ⟨Φ+|Z ⊗ 1√
2
(X + Z) |Φ+⟩.

Solution.

E00 =
〈
Φ+
∣∣A0 ⊗B0

∣∣Φ+
〉
=
〈
Φ+
∣∣Z ⊗ 1√

2
(X + Z)

∣∣Φ+
〉

=
1√
2

〈
Φ+
∣∣Z ⊗X

∣∣Φ+
〉
+

1√
2

〈
Φ+
∣∣Z ⊗ Z

∣∣Φ+
〉
.

Let us define D = ⟨Φ+|Z ⊗X |Φ+⟩ and E = ⟨Φ+|Z ⊗ Z |Φ+⟩ so that E00 = 1√
2
(D + E).

We first compute the term D. To compute D, we start from

Z ⊗X
∣∣Φ+

〉
=

1√
2
(Z ⊗X)(|00⟩+ |11⟩)

=
1√
2
[(Z ⊗X) |00⟩+ (Z ⊗X) |11⟩]

=
1√
2
(|01⟩ − |10⟩).

Then, we have

D =
〈
Φ+
∣∣Z ⊗X

∣∣Φ+
〉
=

1√
2

〈
Φ+
∣∣ (|01⟩ − |10⟩)

=
1

2
(⟨00|+ ⟨11|)(|01⟩ − |10⟩) = 0.

To compute E, we start from

Z ⊗ Z
∣∣Φ+

〉
=

1√
2
(Z ⊗ Z)(|00⟩+ |11⟩)

=
1√
2
[(Z ⊗ Z) |00⟩+ (Z ⊗ Z) |11⟩]

=
1√
2
(|00⟩+ |11⟩).

2
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Then, we have

E =
〈
Φ+
∣∣Z ⊗ Z

∣∣Φ+
〉
=

1√
2

〈
Φ+
∣∣ (|00⟩+ |11⟩)

=
1

2
(⟨00|+ ⟨11|)(|00⟩+ |11⟩) = 1.

Therefore, we obtain

E00 =
D + E√

2
=

0 + 1√
2

=
1√
2
.

(b) Compute the quantity β = E00 − E01 + E10 + E11 and show that it attains the maximum
Bell inequality violation 2

√
2, as given in the lectures.

Solution. We will proceed similarly to the previous part to compute E01, E10, and E11.
First, we see that

E01 =
1√
2

〈
Φ+
∣∣Z ⊗X

∣∣Φ+
〉
− 1√

2

〈
Φ+
∣∣Z ⊗ Z

∣∣Φ+
〉

=
D − E√

2
= − 1√

2
.

In the case of E10, we have

E10 =
1√
2

〈
Φ+
∣∣X ⊗X

∣∣Φ+
〉
+

1√
2

〈
Φ+
∣∣X ⊗ Z

∣∣Φ+
〉
.

Let us define F = ⟨Φ+|X ⊗X |Φ+⟩ and G = ⟨Φ+|X ⊗ Z |Φ+⟩ so that E10 = 1√
2
(F + G).

We first compute the term F . To compute F , we start from

X ⊗X
∣∣Φ+

〉
=

1√
2
(X ⊗X)(|00⟩+ |11⟩)

=
1√
2
(|00⟩+ |11⟩).

Then, we have

F =
〈
Φ+
∣∣X ⊗X

∣∣Φ+
〉
=

1√
2

〈
Φ+
∣∣ (|00⟩+ |11⟩)

=
1

2
(⟨00|+ ⟨11|)(|00⟩+ |11⟩) = 1.

To compute G, we start from

X ⊗ Z
∣∣Φ+

〉
=

1√
2
(X ⊗ Z)(|00⟩+ |11⟩)

=
1√
2
(|10⟩ − |01⟩).

Then, we have

G =
〈
Φ+
∣∣X ⊗ Z

∣∣Φ+
〉
=

1√
2

〈
Φ+
∣∣ (|10⟩ − |01⟩)

=
1

2
(⟨00|+ ⟨11|)(|10⟩ − |01⟩) = 0

3
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Therefore, we obtain

E10 =
F +G√

2
=

1√
2
.

For the case of E11, we have

E11 =
1√
2

〈
Φ+
∣∣X ⊗X

∣∣Φ+
〉
− 1√

2

〈
Φ+
∣∣X ⊗ Z

∣∣Φ+
〉

=
F −G√

2
=

1√
2
.

Combining all of these, we obtain the quantity

β =
1√
2
−
(
− 1√

2

)
+

1√
2
+

1√
2
= 2

√
2.

Problem 3

Consider the same setting of the game as in Problem 1, but with the difference that now Alice

and Bob share the state |ψ⟩ = 1√
3
|00⟩+

√
2
3 |11⟩. Compute the quantity β in this case.

Solution. We start with the expressions for each correlator

E00 = ⟨ψ|Z ⊗ 1√
2
(X + Z) |ψ⟩ ,

E01 = ⟨ψ|Z ⊗ 1√
2
(X − Z) |ψ⟩ ,

E10 = ⟨ψ|X ⊗ 1√
2
(X + Z) |ψ⟩ ,

E11 = ⟨ψ|X ⊗ 1√
2
(X − Z) |ψ⟩ .

For E00, we have

E00 =
1√
2
(⟨ψ|Z ⊗X |ψ⟩+ ⟨ψ|Z ⊗ Z |ψ⟩)

To compute the first term D = ⟨ψ|Z ⊗X |ψ⟩, we first use the fact that

Z ⊗X |ψ⟩ = (Z ⊗X)
1√
3
|00⟩+ (Z ⊗X)

√
2√
3
|11⟩ = 1√

3
|01⟩ −

√
2√
3
|10⟩ ,

which gives us

D =

(
1√
3
⟨00|+

√
2√
3
⟨11|

)(
1√
3
|01⟩ −

√
2√
3
|10⟩

)
= 0.

Dor the second term E = ⟨ψ|Z ⊗ Z |ψ⟩,

Z ⊗ Z |ψ⟩ = (Z ⊗ Z)
1√
3
|00⟩+ (Z ⊗ Z)

√
2√
3
|11⟩ = 1√

3
|00⟩+

√
2√
3
|11⟩ = |ψ⟩ ,

which gives us
E = ⟨ψ|ψ⟩ = 1.

4
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Thus, we have

E00 =
D + E√

2
=

1√
2
.

From the computed quantities, we can also deduce directly that

E01 =
1√
2
⟨ψ|Z ⊗X |ψ⟩ − 1√

2
⟨ψ|Z ⊗ Z |ψ⟩ = D − E√

2
= − 1√

2
.

For E10, we have

E10 =
1√
2
⟨ψ|X ⊗X |ψ⟩+ 1√

2
⟨ψ|X ⊗ Z |ψ⟩ .

To compute F = ⟨ψ|X ⊗X |ψ⟩, we start from

X ⊗X |ψ⟩ = 1√
3
(X ⊗X) |00⟩+

√
2√
3
(X ⊗X) |11⟩ = 1√

3
|11⟩+

√
2√
3
|00⟩ ,

which gives us

F =

(
1√
3
⟨00|+

√
2√
3
⟨11|

)(
1√
3
|11⟩+

√
2√
3
|00⟩

)
=

√
2

3
+

√
2

3
=

2
√
2

3
.

To compute G = ⟨ψ|X ⊗ Z |ψ⟩, we start from

X ⊗ Z |ψ⟩ = 1√
3
(X ⊗ Z) |00⟩+

√
2√
3
(X ⊗ Z) |11⟩ = 1√

3
|10⟩ −

√
2√
3
|01⟩ ,

which gives us

G =

(
1√
3
⟨00|+

√
2√
3
⟨11|

)(
1√
3
|10⟩ −

√
2√
3
|01⟩

)
= 0.

Thus, we have

E10 =
F +G√

2
=

1√
2
· 2

√
2

3
=

2

3
.

From the computed quantities, we can also deduce directly that

E11 =
F −G√

2
=

2

3
.

Finally, we obtain the quantity

β =
1√
2
−
(
− 1√

2

)
+

2

3
+

2

3
=

√
2 +

4

3
≈ 2.74 < 2

√
2.

Problem 4

Consider the same setting of the game as in Problem 1, but now Alice and Bob share a mixed
state ρ that is given by the ensemble where with probability p1 = 1/4 the state is

|ψ1⟩ =
|00⟩+ |11⟩√

2
,

5
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with probability p2 = 1/4 the state is

|ψ2⟩ =
1√
3
|00⟩+

√
2

3
|11⟩ ,

and with probability p3 = 1/2 the state is

|ψ3⟩ = |0⟩ ⊗ |+⟩ .

(a) Compute the correlator E01(ρ) = tr[ρ(Z ⊗ X−Z√
2
)].

Solution. First notice that

E01(ρ) = tr(ρA0 ⊗B1)

= tr[(p1 |ψ1⟩⟨ψ1|+ p2 |ψ2⟩⟨ψ2|+ p3 |ψ3⟩⟨ψ3|)A0 ⊗B0]

= p1 tr(|ψ1⟩⟨ψ1|A0 ⊗B0) + p2 tr(|ψ2⟩⟨ψ2|A0 ⊗B0) + p3 tr(|ψ3⟩⟨ψ3|A0 ⊗B0)

= p1E01(|ψ1⟩⟨ψ1|) + p2E01(|ψ2⟩⟨ψ2|) + p3E01(|ψ3⟩⟨ψ3|).

As part of Problem 1, we calculated E01(|ψ1⟩⟨ψ1|) = − 1√
2
. As part of Problem 2, we

calculated E01(|ψ2⟩⟨ψ2|) = − 1√
2
. We now calculate the third term

E01(|ψ3⟩⟨ψ3|) =
1√
2
⟨ψ3|Z ⊗X |ψ3⟩ −

1√
2
⟨ψ3|Z ⊗ Z |ψ3⟩ .

To do this, note that

Z ⊗X |ψ3⟩ = Z ⊗X

(
|00⟩+ |01⟩√

2

)
=

1√
2
|01⟩+ 1√

2
|00⟩ = |ψ3⟩

and thus
⟨ψ3|Z ⊗X |ψ3⟩ = ⟨ψ3|ψ3⟩ = 1.

Also note that

Z ⊗ Z |ψ3⟩ = Z ⊗ Z

(
|00⟩+ |01⟩√

2

)
=

1√
2
|00⟩ − 1√

2
|01⟩

and thus

⟨ψ3|Z ⊗ Z |ψ3⟩ =
1

2
(⟨00|+ ⟨01|)(|00⟩ − |01⟩) = 0.

We therefore have

E01(|ψ3⟩⟨ψ3|) =
1− 0√

2
=

1√
2
.

Finally, combining E01(|ψ1⟩⟨ψ1|), E01(|ψ2⟩⟨ψ2|), and E01(|ψ3⟩⟨ψ3|) we obtain

E01(ρ) =
1

4
·
(
− 1√

2

)
+

1

4
·
(
− 1√

2

)
+

1

2
·
(

1√
2

)
= 0.

(b) Determine the quantity β corresponding to this realisation of the CHSH game.

6
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Solution. In the previous part, we showed E01(ρ) = 0. Similarly to the previous part,

E00(ρ) = p1E00(|ψ1⟩⟨ψ1|) + p2E00(|ψ2⟩⟨ψ2|) + p3E00(|ψ3⟩⟨ψ3|),
E10(ρ) = p1E10(|ψ1⟩⟨ψ1|) + p2E10(|ψ2⟩⟨ψ2|) + p3E10(|ψ3⟩⟨ψ3|),
E11(ρ) = p1E11(|ψ1⟩⟨ψ1|) + p2E11(|ψ2⟩⟨ψ2|) + p3E11(|ψ3⟩⟨ψ3|).

From Problem 1 we know

E00(|ψ1⟩⟨ψ1|) = E10(|ψ1⟩⟨ψ1|) = E11(|ψ1⟩⟨ψ1|) =
1√
2

and from Problem 2 we know

E00(|ψ2⟩⟨ψ2|) =
1√
2
, E10(|ψ2⟩⟨ψ2|) = E11(|ψ2⟩⟨ψ2|) =

2

3
.

Hence, we only need to compute E00(|ψ3⟩⟨ψ3|), E10(|ψ3⟩⟨ψ3|), and E11(|ψ3⟩⟨ψ3|). For
E00(|ψ3⟩⟨ψ3|), we can use quantities calculated in the previous part to write

E00(|ψ3⟩⟨ψ3|) =
1√
2
⟨ψ3|Z ⊗X |ψ3⟩+

1√
2
⟨ψ3|Z ⊗ Z |ψ3⟩ =

1 + 0√
2

=
1√
2
.

For E10(|ψ3⟩⟨ψ3|), we compute

E00(|ψ3⟩⟨ψ3|) =
1√
2
⟨ψ3|X ⊗X |ψ3⟩+

1√
2
⟨ψ3|X ⊗ Z |ψ3⟩ .

Noting that

X ⊗X |ψ3⟩ = X ⊗X

(
|00⟩+ |01⟩√

2

)
=

1√
2
|11⟩+ 1√

2
|10⟩

so that

⟨ψ3|X ⊗X |ψ3⟩ =
1

2
(⟨00|+ ⟨01|)(|11⟩+ |10⟩) = 0,

and

X ⊗ Z |ψ3⟩ = X ⊗ Z

(
|00⟩+ |01⟩√

2

)
=

1√
2
|10⟩ − 1√

2
|11⟩

so that

⟨ψ3|X ⊗ Z |ψ3⟩ =
1

2
(⟨00|+ ⟨01|)(|10⟩ − |11⟩) = 0.

Therefore, we obtain E10(|ψ3⟩⟨ψ3|) = 0+0√
2
= 0. Similarly, for E11(|ψ3⟩⟨ψ3|) we compute

E11(|ψ3⟩⟨ψ3|) =
1√
2
⟨ψ3|X ⊗X |ψ3⟩ −

1√
2
⟨ψ3|X ⊗ Z |ψ3⟩ =

0− 0√
2

= 0.

We now combine all computed quantities to obtain

E00(ρ) =
1

4
· 1√

2
+

1

4
· 1√

2
+

1

2
· 1√

2
=

1√
2
,

E10(ρ) =
1

4
· 1√

2
+

1

4
· 2
3
+

1

2
· 0 =

1

4
√
2
+

1

6
,

E11(ρ) =
1

4
· 1√

2
+

1

4
· 2
3
+

1

2
· 0 =

1

4
√
2
+

1

6
.

7
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Finally, we combine the four correlators to obtain

β = E00(ρ)− E01(ρ) + E10(ρ) + E11(ρ)

=
1√
2
− 0 +

(
1

4
√
2
+

1

6

)
+

(
1

4
√
2
+

1

6

)
=

3

2
√
2
+

1

3
≈ 1.394.

Problem 5

In this problem, we will derive the Schmidt decomposition for a two-qubit bipartite system.
That is, for any two-qubit bipartite state |ψ⟩AB, there exist orthonormal bases {|e1⟩ , |e2⟩} and
{|f1⟩ , |f2⟩} for the single-qubit systems A and B respectively and positive constants c1 and c2
such that |ψ⟩AB = c1 |e1⟩ ⊗ |f1⟩+ c2 |e2⟩ ⊗ |f2⟩.

(a) Consider any two orthonormal bases for the systems A and B, {|a1⟩ , |a2⟩} and {|b1⟩ , |b2⟩}
respectively. Write |ψ⟩AB in the matrix representation Mψ with respect to these bases.

Solution. We can write the state with respect to the bases {|a1⟩ , |a2⟩} and {|b1⟩ , |b2⟩} as

|ψ⟩AB = m11 |a1⟩ ⊗ |b1⟩+m12 |a1⟩ ⊗ |b2⟩+m21 |a2⟩ ⊗ |b1⟩+m22 |a2⟩ ⊗ |b2⟩

This then gives us the matrix

Mψ =

(
m11 m12

m21 m22

)
.

(b) Consider the singular value decomposition Mψ = UΣV †, where U and V are 2×2 unitaries
and Σ is a diagonal matrix whose entries are the joint eigenvalues of the bipartite system.
From this decomposition deduce {|e1⟩ , |e2⟩} and {|f1⟩ , |f2⟩}. What are the constants c1
and c2?

Solution. Using the singular value decomposition for Mψ, we have

Mψ = UΣV †.

Given that U and V are 2× 2 matrices and Σ is a diagonal matrix, we can write them as

U =

(
u11 u12
u21 u22

)
, V =

(
v11 v12
v21 v22

)
, Σ =

(
d1 0
0 d2

)
.

Then, we can write Mψ as

Mψ =

(
u11d1v

∗
11 + u12d2v

∗
12 u11d1v

∗
21 + u12d2v

∗
22

u21d1v
∗
11 + u22d2v

∗
12 u21d1v

∗
21 + u22d2v

∗
22

)
,

which can alternatively be rewritten as

Mψ = d1

(
u11
u21

)(
v∗11 v∗21

)
+ d2

(
u12
u22

)(
v∗12 v∗22

)
= d1

(
u11
u21

)(
v11
v21

)†
+ d2

(
u12
u22

)(
v12
v22

)†

8
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Now, if we use the notation e1 =

(
u11
u21

)
, e2 =

(
u12
u22

)
, f1 =

(
v11
v21

)
, and f2 =

(
v12
v22

)
, then

we can write
Mψ = d1 · e1f †1 + d2 · e2f †2 .

Therefore, finally we have

|ψ⟩AB = d1 · e1 ⊗ f1 + d2 · e2 ⊗ f2.

Example. We now show here an example of the Schmidt decomposition. Take the two
initial bases to be computational bases {|e1⟩ , |e2⟩} = {|f1⟩ , |f2⟩} = {|0⟩ , |1⟩}. Let the state
|ψ⟩AB be described with respect to these bases as

|ψ⟩AB =
1√
2
|00⟩+ 1√

3
|01⟩+ 1√

6
|11⟩ .

Then, we have

Mψ =

(
1√
2

1√
3

0 1√
6

)
.

Now, we need to find the singular value decomposition for this matrix Mψ = UΣV †. To do
this, the steps are the following:

i. Compute W1 =MMT and W2 =MTM .

ii. Determine the eigenvalues of W1 and W2 and the eigenvectors corresponding to these
eigenvalues.

iii. Normalise the eigenvectors. Then, the normalized eigenvectors corresponding to W1

are the columns of U and the normalized eigenvectors corresponding to W2 are the
columns of V .

iv. The elements on the diagonal of Σ, placed in descending order, are the square roots
of the eigenvalues of W1 (or W2).

We have the matrices

W1 =

(
5
6

1√
18

1√
18

1
6

)
, W2 =

(
1
2

1√
6

1√
6

1
2

)
.

For W1, we have the eigenvalues λ1 = 3+
√
6

6 and λ2 = 3−
√
6

6 , and the corresponding eigen-
vectors

u1 =

(√
2 +

√
3

1

)
, u2 =

(√
2−

√
3

1

)
.

For W2, we have the eigenvalues λ1 = 3+
√
6

6 and λ2 = 3−
√
6

6 and the corresponding eigen-
vectors

v1 =

(
1
1

)
, v2 =

(
−1
1

)
.

After normalising the eigenvectors, we obtain U and V as

U =
(

u1
∥u1∥

u2
∥u2∥

)
=

 √
2+

√
3√

1+(
√
2+

√
3)2

√
2−

√
3√

1+(
√
2−

√
3)2

1√
1+(

√
2+

√
3)2

1√
1+(

√
2−

√
3)2

 ,

V =
(

v1
∥v1∥

v2
∥v2∥

)
=

(
1√
2

− 1√
2

1√
2

1√
2

)
.
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As for the diagonal matrix,

Σ ≡
(
σ1 0
0 σ2

)
=

(√
λ1 0
0

√
λ2

)
=

√3+
√
6

6 0

0

√
3−

√
6

6

 .

Finally, as we saw earlier, our Schmidt decomposition gives us

|ψ⟩AB = σ1 · u1 ⊗ v1 + σ2 · u2 ⊗ v2.

Problem 6

For a general quantum state |ψ⟩, the number of nonzero constants (Schmidt coefficients) ci in
its Schmidt decomposition is called the “Schmidt number” for the state |ψ⟩.

(a) Prove that a pure state |ψ⟩AB of a two-qubit bipartite system is entangled if and only if its
Schmidt number is greater than 1.

Solution. We will prove this by contraposition. That is, we will show that |ψ⟩AB is a
product state if and only if its Schmidt number is equal to 1.

“ =⇒ ” If |ψ⟩AB is a product state, then it can be written in the form |ψ⟩AB = c1 |e1⟩⊗|f1⟩.
Therefore, its Schmidt number is equal to 1.

“ ⇐= ” For |ψ⟩AB, using the Schmidt decomposition and given that Schmidt number is
equal to 1, we know we can express the state in the form |ψ⟩AB = c1 |e1⟩ ⊗ |f1⟩. Therefore,
|ψ⟩AB is a product state.

(b) Suppose that |ψ1⟩ and |ψ2⟩ are two states of a two-qubit bipartite system (with components
A and B) having identical Schmidt coefficients. Show that there are unitary transformations
U on system A and V on system B such that |ψ1⟩ = (U ⊗ V ) |ψ2⟩.
Solution. If |ψ1⟩ and |ψ2⟩ are two-qubit states, we can write them using the Schmidt decom-
position with respect to some orthonormal bases {|e1⟩A , |e2⟩A} and {|f1⟩B , |f2⟩B} for |ψ1⟩,
and {|e′1⟩A , |e′2⟩A} and {|f ′1⟩B , |f ′2⟩B} for |ψ2⟩. Given that the two states have identical
Schmidt coefficients, they can be expressed as

|ψ1⟩ = c1 |e1⟩ ⊗ |f1⟩+ c2 |e2⟩ ⊗ |f2⟩ ,
|ψ2⟩ = c1

∣∣e′1〉⊗ ∣∣f ′1〉+ c2
∣∣e′2〉⊗ ∣∣f ′2〉 .

Defining U and V as

U = |e1⟩
〈
e′1
∣∣+ |e2⟩

〈
e′2
∣∣,

V = |f1⟩
〈
f ′1
∣∣+ |f2⟩

〈
f ′2
∣∣,

notice that

(U ⊗ V ) |ψ2⟩ =
[(
|e1⟩

〈
e′1
∣∣+ |e2⟩

〈
e′2
∣∣)⊗ (|f1⟩ 〈f ′1∣∣+ |f2⟩

〈
f ′2
∣∣)] (c1 ∣∣e′1〉⊗ ∣∣f ′1〉+ c2

∣∣e′2〉⊗ ∣∣f ′2〉)
= c1

(
|e1⟩

〈
e′1
∣∣+ |e2⟩

〈
e′2
∣∣) ∣∣e′1〉⊗ (|f1⟩ 〈f ′1∣∣+ |f2⟩

〈
f ′2
∣∣) ∣∣f ′1〉

+ c2
(
|e1⟩

〈
e′1
∣∣+ |e2⟩

〈
e′2
∣∣) ∣∣e′2〉⊗ (|f1⟩ 〈f ′1∣∣+ |f2⟩

〈
f ′2
∣∣) ∣∣f ′2〉

= c1 |e1⟩ ⊗ |f1⟩+ c2 |e2⟩ ⊗ |f2⟩
= |ψ1⟩ .
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