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Problem 1

Consider the encryption defined using the secret key k = a as follows. If the input state is
ρψ = |ψ⟩⟨ψ|, then

Enca(ρψ) = HaρψH
a

Deca(ρψ) = HaρψH
a.

(a) Check the encryption scheme satisfies correctness.

Solution. For correctness we need to check that Deck(Enck(ρψ)) = ρψ for any input state
ρψ. In our case we have that

Deca(Enca(ρψ)) = Ha(HaρψH
a)Ha = (H2)aρψ(H

2)a = IρψI = ρψ.

(b) Which are the possible encryptions for the following two quantum states.

i. |ψ1⟩ = |0⟩.
Solution. The input state is ρψ1 = |0⟩⟨0|. If a = 0 then Enca(ρψ1) = H0ρψ1H

0 = |0⟩⟨0|.
If a = 1 then Enca(ρψ1) = H1ρψ1H

1 = H |0⟩⟨0|H = |+⟩⟨+|.
ii. |ψ2⟩ = 1√

1+(
√
2−1)2

(
|0⟩+

(√
2− 1

)
|1⟩

)
.

Solution. The input state is

ρψ2 =
1

1 + (
√
2− 1)2

(
|0⟩+

(√
2− 1

)
|1⟩

)(
⟨0|+

(√
2− 1

)
⟨1|

)
.

If a = 0 then Enca(ρψ1) = H0ρψ2H
0 = ρψ2 . For a = 1, first notice that |ψ2⟩ remains

invariant when applying H. That is, H |ψ2⟩ = |ψ2⟩. Thus, if a = 1 then Enca(ρψ1) =
H1ρψ1H

1 = H |ψ2⟩⟨ψ2|H = |ψ2⟩ ⟨ψ2| = ρψ2 .

(c) What are the average ciphertexts ρE(ψ1) and ρE(ψ2)?

Solution. The average ciphertexts can be written using part (b) as

ρE(ψ1) =
1

2

∑
a∈{0,1}

Haρψ1H
a =

1

2
(|0⟩⟨0|+ |+⟩⟨+|),

ρE(ψ2) =
1

2

∑
a∈{0,1}

Haρψ2H
a =

1

2
(ρψ2 + ρψ2) = ρψ2 = |ψ2⟩⟨ψ2| .

(d) Compute the fidelity of ρE(ψ1) and ρE(ψ2).

Solution. Because ρE(ψ2) = |ψ2⟩⟨ψ2| is a pure state, we can use the simplified expression
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for fidelity in the case one of the states is pure.

F (ρE(ψ2), ρE(ψ1))

= ⟨ψ2| ρE(ψ1) |ψ2⟩ =
1

2
⟨ψ2| (|0⟩⟨0|+ |+⟩⟨+|) |ψ2⟩

=
1

2 + 2
(√

2− 1
)2(⟨0|+ (√

2− 1
)
⟨1|

)(
|0⟩⟨0|+ |+⟩⟨+|

)(
|0⟩+

(√
2− 1

)
|1⟩

)
=

1

4 + 4
(√

2− 1
)2(⟨0|+ (√

2− 1
)
⟨1|

)(
3 |0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0|+ |1⟩⟨1|

)(
|0⟩+

(√
2− 1

)
|1⟩

)
=

1

4 + 4
(√

2− 1
)2(3 ⟨0|+ ⟨1|+

(√
2− 1

)
⟨0|+

(√
2− 1

)
⟨1|

)(
|0⟩+

(√
2− 1

)
|1⟩

)
=

1

4 + 4
(√

2− 1
)2(3 + (√

2− 1
)
+

(√
2− 1

)
+
(√

2− 1
)2)

=
1

4 + 4
(√

2− 1
)2 · 4 =

1

4− 2
√
2
≈ 0.854.

(e) Using the bounds between fidelity and trace distance, argue whether the encryption is
secure. In other words, do there exist any |ψ1⟩ ≠ |ψ2⟩ such that ρE(ψ1) = ρE(ψ2)?

Solution. Using the general inequalities relating fidelity and trace distance

1−
√
F (ρ, σ) ≤ D(ρ, σ) ≤

√
1− F (ρ, σ),

we get in our case

0 < 0.076 ≈ 1− 1√
4− 2

√
2
≤ D(ρE(ψ2), ρE(ψ1)).

Therefore, the encryption is not information-theoretically secure, as we have two distinct
input states for which the trace distance between their averaged quantum ciphertexts is
strictly greater than 0. In particular, the above inequalities mean that someone can distin-
guish between the two cases with at least 0.076 advantage over a random guess.

Problem 2

Consider the Regev public-key cryptosystem with the parameters q = 17 and n = 4. The private
key is defined as s = (0, 13, 9, 11) and the public key is defined by m = 4 LWE samples

(a1 = (14, 15, 5, 2), b1 = 8),

(a2 = (13, 14, 14, 6), b2 = 16),

(a3 = (6, 10, 13, 1), b3 = 3),

(a4 = (9, 5, 9, 6), b4 = 9).

(a) What is the encryption (a, c) for the message µ = 1 if we pick the set S = {2, 4}?
Solution. To encrypt the message µ, we first compute

a =
∑
i∈S

ai = a2 + a4 = (13, 14, 14, 6) + (9, 5, 9, 6) = (22, 19, 23, 12),

b =
∑
i∈S

bi = b2 + b4 = 16 + 9 = 25.
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Now we take a and b modulo q and we get a = (5, 2, 6, 12) and b = 8. Finally,

c = b+ µ ·
⌊q
2

⌋
= 8 + 1 · 8 = 16.

Therefore, the ciphertext is Enc(µ) = (a, c) = ((5, 2, 6, 12), 16).

(b) Decrypt (a, c) to verify the correctness of the cryptosystem.

Solution. To decrypt Enc(µ) = (a, c) using the secret key s we first compute

⟨a, s⟩ = 5 · 0 + 2 · 13 + 6 · 9 + 12 · 11 = 212.

Next, we compute

⟨a, s⟩ − c ≡ 212− 16 (mod q)

≡ 196 (mod q)

≡ 196 (mod 17)

≡ 9 (mod 17).

Finally, we observe that this quantity is closer to
⌊ q
2

⌋
= 8 than to 0, and so we conclude

that µ = 1.

Problem 3

Consider the trap-based quantum authentication scheme given in the lectures. Let the key
shared between the parties be: The QOTP part k⃗ = (k1x, k

1
z , k

2
x, k

2
z , k

3
x, k

3
z) = (1, 0, 1, 1, 0, 1). The

permutation part of the key is given by the permutation Π(1) = 2 , Π(2) = 3 , Π(3) = 1.

(a) Imagine that Bob receives the state ρ = |+− 0⟩ ⟨+− 0|. Check the verification algorithm
and confirm that Bob accepts the message with certainty.

Solution. The one-time-pad is (k1x, k
1
z , k

2
x, k

2
z , k

3
x, k

3
z) = (1, 0, 1, 1, 0, 1), so we need to apply

X1 ⊗ (X2Z2)⊗ Z3 to the state.

(X1 ⊗ (X2Z2)⊗ Z3) |+− 0⟩ = |++ 0⟩ .

The inverse of the permutation is Π−1(1) = 3, Π−1(2) = 1, Π−1(3) = 1; applying this
inverse permutation, we get |+0+⟩.
Finally, we project on the correct space (checking that qubit 2 and qubit 3, the traps are
correct/not-affected) Pacc = I ⊗ |0⟩⟨0| ⊗ |+⟩⟨+|.
Both qubits are in the correct states (second qubit is |0⟩, third qubit is |+⟩) so we accept
with probability one, and output the state |+⟩ as the message that was authenticated (we
output the first qubit, after we have accepted by checking qubit 2 and qubit 3).

We can calculate this probability by using the expression pacc = tr(Paccρ̃), where ρ̃ is the
state before the measurement. In this case we have

pacc = ⟨+0+|Pacc |+0+⟩ = 1
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(b) Now check that the message |+⟩ was the one that was given to Bob, by computing the
Authentication algorithm on this state, with the shared key k⃗ and checking that it is
consistent with the previous question.

Solution. We first start with the state |+⟩ and add the trap qubits to get |+0+⟩.
Then we permute the qubits according to the given permutation leading to get to the state
|++ 0⟩.
The we apply the QOTP using the keys (k1x, k

1
z , k

2
x, k

2
z , k

3
x, k

3
z) = (1, 0, 1, 1, 0, 1), so we need

to apply X1 ⊗ (X2Z2)⊗ Z3 to the state, which leads to the state we expect:

X1 ⊗ (X2Z2)⊗ Z3 |++ 0⟩ = |+− 0⟩ .

(c) Now imagine that Bob receives the state |0− 0⟩ ⟨0− 0| (can think of Eve having applied
Hadamard at the first qubit after the Authentication). Check the verification algorithm
and state with what probability will he accept.

Solution. We follow the verification algorithm step by step.

First we undo the QOTP (using the same key as before)

X1 ⊗X2Z2 ⊗ Z3 |0− 0⟩ = |1 + 0⟩

Then we undo the permutation (recall that the inverse of the permutation is Π−1(1) =
3;Π−1(2) = 1;Π−1(3) = 2) to get the state |+01⟩.
Now we need to project on the accept space. To calculate the probability of accept we use:

pacc = ⟨+01|Pacc |+01⟩
= ⟨+01| (I ⊗ |0⟩ ⟨0| ⊗ |+⟩ ⟨+|) |+01⟩
= ⟨+| I |+⟩ ⊗ ⟨0| (|0⟩ ⟨0|) |0⟩ ⊗ ⟨1| (|+⟩ ⟨+|) |1⟩
= 1× 1× ⟨1| |+⟩ × ⟨+| |1⟩ = (1/

√
2)2 = 0.5

Therefore the probability that this state is accepted by the verification algorithm is 0.5.
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