Problem 1

Consider the four Bell states

$$\begin{split} \left|\Phi^{+}\right\rangle &= \frac{\left|00\right\rangle + \left|11\right\rangle}{\sqrt{2}}, \quad \left|\Phi^{-}\right\rangle &= \frac{\left|00\right\rangle - \left|11\right\rangle}{\sqrt{2}}, \\ \left|\Psi^{+}\right\rangle &= \frac{\left|01\right\rangle + \left|10\right\rangle}{\sqrt{2}}, \quad \left|\Psi^{-}\right\rangle &= \frac{\left|01\right\rangle - \left|10\right\rangle}{\sqrt{2}}. \end{split}$$

Those maximally entangled states form an orthonormal basis of the two-qubit Hilbert space $\mathcal{H} = \mathbb{C}^4$.

- (a) Verify that the Bell states form an orthonormal family of states, i.e., that they are pair-wise orthogonal, and each of them is normalised.
- (b) Simplify the following:
 - i. $X \otimes X | \Psi^- \rangle$
 - ii. $X \otimes Z | \Psi^- \rangle$
 - iii. $Z \otimes X | \Psi^- \rangle$
 - iv. $Z \otimes Z | \Psi^- \rangle$

Problem 2

Consider the CHSH "game" described in the lecture. Assume that Alice and Bob share the quantum state

$$\left|\Phi^{+}\right\rangle = \frac{\left|00\right\rangle + \left|11\right\rangle}{\sqrt{2}}.$$

Recall that

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

If x = 0 Alice measures the observable $A_0 = Z$, and if x = 1 Alice measures the observable $A_1 = X$. If y = 0 Bob measures the observable $B_0 = \frac{1}{\sqrt{2}}(X + Z)$, and if y = 1 Bob measures the observable $B_1 = \frac{1}{\sqrt{2}}(X - Z)$.

- (a) Compute the correlator $E_{00} = \langle \Phi^+ | A_0 \otimes B_0 | \Phi^+ \rangle = \langle \Phi^+ | Z \otimes \frac{1}{\sqrt{2}} (X + Z) | \Phi^+ \rangle$.
- (b) Compute the quantity $\beta = E_{00} E_{01} + E_{10} + E_{11}$ and show that it attains the maximum Bell inequality violation $2\sqrt{2}$, as given in the lectures.

Problem 3

Consider the same setting of the game as in Problem 1, but with the difference that now Alice and Bob share the state $|\psi\rangle = \frac{1}{\sqrt{3}}|00\rangle + \sqrt{\frac{2}{3}}|11\rangle$. Compute the quantity β in this case.

Problem 4

Consider the same setting of the game as in Problem 1, but now Alice and Bob share a mixed state ρ that is given by the ensemble where with probability $p_1 = 1/4$ the state is

$$|\psi_1\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}},$$

with probability $p_2 = 1/4$ the state is

$$|\psi_2\rangle = \frac{1}{\sqrt{3}}|00\rangle + \sqrt{\frac{2}{3}}|11\rangle,$$

and with probability $p_3 = 1/2$ the state is

$$|\psi_3\rangle = |0\rangle \otimes |+\rangle$$
.

- (a) Compute the correlator $E_{01}(\rho) = \operatorname{tr}[\rho(Z \otimes \frac{X-Z}{\sqrt{2}})].$
- (b) Determine the quantity β corresponding to this realisation of the CHSH game.

Problem 5

In this problem, we will derive the Schmidt decomposition for a two-qubit bipartite system. That is, for any two-qubit bipartite state $|\psi\rangle_{AB}$, there exist orthonormal bases $\{|e_1\rangle, |e_2\rangle\}$ and $\{|f_1\rangle, |f_2\rangle\}$ for the single-qubit systems A and B respectively and positive constants c_1 and c_2 such that $|\psi\rangle_{AB} = c_1 |e_1\rangle \otimes |f_1\rangle + c_2 |e_2\rangle \otimes |f_2\rangle$.

- (a) Consider any two orthonormal bases for the systems A and B, $\{|a_1\rangle, |a_2\rangle\}$ and $\{|b_1\rangle, |b_2\rangle\}$ respectively. Write $|\psi\rangle_{AB}$ in the matrix representation M_{ψ} with respect to these bases.
- (b) Consider the singular value decomposition $M_{\psi} = U \Sigma V^{\dagger}$, where U and V are 2×2 unitaries and Σ is a diagonal matrix whose entries are the joint eigenvalues of the bipartite system. From this decomposition deduce $\{|e_1\rangle, |e_2\rangle\}$ and $\{|f_1\rangle, |f_2\rangle\}$. What are the constants c_1 and c_2 ?

Problem 6

For a general quantum state $|\psi\rangle$, the number of nonzero constants (Schmidt coefficients) c_i in its Schmidt decomposition is called the "Schmidt number" for the state $|\psi\rangle$.

- (a) Prove that a pure state $|\psi\rangle_{AB}$ of a two-qubit bipartite system is entangled if and only if its Schmidt number is greater than 1.
- (b) Suppose that $|\psi_1\rangle$ and $|\psi_2\rangle$ are two states of a two-qubit bipartite system (with components A and B) having identical Schmidt coefficients. Show that there are unitary transformations U on system A and V on system B such that $|\psi_1\rangle = (U \otimes V) |\psi_2\rangle$.